1
|
Li H, Han L, Zhou F, Wu Z, Zhang L, Xie R, Jiang F, Tian Q, Huang X. Ningxiang Pig-Derived Microbiota Affects the Growth Performance, Gut Microbiota, and Serum Metabolome of Nursery Pigs. Animals (Basel) 2024; 14:2450. [PMID: 39272235 PMCID: PMC11394380 DOI: 10.3390/ani14172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota is crucial for maintaining the host's intestinal homeostasis and metabolism. This study investigated the effects of fecal microbiota transplantation (FMT) from Ningxiang pigs on the growth performance, fecal microbiota, and serum metabolites of the same-old DLY pigs. The results indicated that the average daily gain of FMT pigs was significantly greater than that of the control (CON) group. Compared to the CON group, the FMT group significantly improved the apparent digestibility of crude fiber, crude ash, gross energy, and calcium of the pigs. The analysis of serum antioxidant status revealed that the activities of total superoxide dismutase and catalase in the serum of pigs in the FMT group were significantly elevated, whereas the level of malondialdehyde was significantly reduced. Furthermore, 16S rRNA sequencing analysis revealed that the Ningxiang pig-derived microbiota altered the fecal microbiota structure and modulated the diversity of the gut microbiota in the DLY pigs. Untargeted LC-MS metabolomics demonstrated that pigs in the FMT group exhibited distinct metabolomic profiles compared to those in the CON group. Significant changes were observed in key metabolites involved in amino acid, lipid, and carbohydrate metabolism. Additionally, a correlation analysis between serum differential metabolites and the gut microbiota revealed that the relative abundance of Lachnospiraceae_NK4A136_group and Corynebacterium was highly correlated with lipid compounds. In conclusion, Ningxiang pig-derived microbiota can alleviate oxidative stress and enhance growth performance in DLY pigs by modulating their gut microbiota and metabolic features.
Collapse
Affiliation(s)
- Hongkun Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Li Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Renjie Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Qiyu Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
- Hunan Agriculture Research System, Changsha 410128, China
| |
Collapse
|
2
|
Liu J, Ahmad AA, Yang C, Zhang J, Zheng J, Liang Z, Wang F, Zhai H, Qin S, Yang F, Ding X. Modulations in gastrointestinal microbiota during postpartum period fulfill energy requirements and maintain health of lactating Tibetan cattle. Front Microbiol 2024; 15:1369173. [PMID: 39228376 PMCID: PMC11368858 DOI: 10.3389/fmicb.2024.1369173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Postpartum period of dairy cattle is an important phase of their life mainly associated with the changes in physiology, rumen function, and energy metabolism. Studies have shown that gut microbial composition undergoes drastic changes during the postpartum period. However, little is known about the temporal variations in digestive tract microbiota in postpartum Tibetan cattle. The aim of this study was to investigate the temporal variations in blood metabolites, ruminal fermentation, and microbial community of oral, rumen, and gut in lactating Tibetan cattle during postpartum. Methods We collected blood, saliva, rumen fluid, and fecal samples from lactating Tibetan cattle during 1st week (1 W), the 2nd week (2 W), the 1st month (1 M), and the 2nd month (2 M) of the postpartum period. The microbiota of saliva, rumen fluid, and fecal samples were assessed using 16S rRNA sequencing. The rumen volatile fatty acid and blood parameters were also quantified. Results The content of volatile fatty acids (VFAs) and blood parameters showed opposite tendency to each other and reached to stability at 2 M. Rumen microbiota showed the highest alpha diversity compared to other two sites. At phylum level, the oral cavity was dominated by Proteobacteria, while most dominant phylum in rumen and feces were Firmicutes and Bacteroidetes, respectively. The dominant genera in oral cavity were Moraxella and Bibersteinia, while genera Prevotella 1 and Ruminococcaceae UCG-005 were dominant in rumen and fecal samples, respectively. Discussion Microbial network analysis revealed that most of the active genera in all networks belonged to phylum Firmicutes, indicating the importance of this phyla during postpartum period of lactating cattle. The functional analysis revealed distinct division of labor among three gastrointestinal sites associated with defense, fatty acid synthesis, and maintaining health of host. All in all, our findings provide insights into the metabolic and microbial changes of lactating Tibetan cattle and help to the improvement of the management strategies.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Chen Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Fang Wang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Huan Zhai
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghong Qin
- Department of Endocrinology, The Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Feng Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Zhou L, Hou G, Liu S, Zhou H, Ye Y, Lv R, Abouelezz K, Wang D. Effects of mixed extract from two tropical plants on gut microbiome and metabolome in piglets. J Anim Physiol Anim Nutr (Berl) 2024; 108:987-998. [PMID: 38420856 DOI: 10.1111/jpn.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
In this study, we performed a quantitative analysis of 12 compounds derived from Piper sarmentosum extract (PSE) and guava leaf extract (GE). In addition, we investigated the effects of mixed extract (ME) of PSE and GE (1:1) on piglets' gut microbiome and metabolome. A total of 200 piglets (Duroc × Landrace × Large Yorkshire, 21-day-old) were randomly assigned into two groups with five replicates of 20 piglets/pen having the same initial body weight. Piglets were fed a basal diet supplemented with ME at 0 (T0) or 200 mg/kg (T1) for 3 weeks. The quantitation results by ultraperformance liquid chromatography linked to triple-quadrupole tandem mass spectrometry showed that vitexin 2-O-rhamnoside and pellitorine were the greatest abundant among six compounds detected in the PSE. In addition, quercetin, isoquercitrin and avicularin were found to be the richest of all detected compounds in the GE. Findings on experimental animals indicated that three differential metabolites, comprising L-alanine, sarcosine and dihydrofolic acid, in T1 compared with T0 groups, have exactly opposite levels trends in serum and faeces. Moreover, two metabolic pathways (i.e., urea cycle and glutamate metabolism) differed significantly in the serum and faeces of piglets between T0 and T1 (p < 0.05). At the same time, T1 had significantly higher relative abundances of Agathobacter and Alloprevotella than T0 at genus level (p < 0.05). Correlation analysis revealed that the genus Agathobacter correlated positively with carbamoyl phosphate (p < 0.01) and oxoglutaric acid (p < 0.05), and negatively with succinic acid (p < 0.01) and ornithine (p < 0.05). These four differential metabolites were also involved in the urea cycle and/or glutamate metabolism pathways. The results here indicated that the tested plant extract mixture represents a worthy feed additive with obvious antioxidative properties.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shengmin Liu
- Hainan State Farm Bureau Husbandry Group, Haikou, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Yuxiu Ye
- Hainan Yitian Biotechnology, Haikou, China
| | - Renlong Lv
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Khaled Abouelezz
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
4
|
Estrada R, Romero Y, Figueroa D, Coila P, Hañari-Quispe RD, Aliaga M, Galindo W, Alvarado W, Casanova D, Quilcate C. Effects of Age in Fecal Microbiota and Correlations with Blood Parameters in Genetic Nucleus of Cattle. Microorganisms 2024; 12:1331. [PMID: 39065099 PMCID: PMC11279168 DOI: 10.3390/microorganisms12071331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to determine the impact of age on the fecal microbiota in the genetic nucleus of cattle, with a focus on microbial richness, composition, functional diversity, and correlations with blood parameters. Fecal and blood samples from 21 cattle were analyzed using 16S rRNA gene sequencing. Older cattle exhibited greater bacterial diversity and abundance, with significant changes in alpha diversity indices (p < 0.05). Beta diversity analysis revealed significant variations in microbial composition between age groups and the interaction of age and sex (p < 0.05). Correlations between alpha diversity, community composition, and hematological values highlighted the influence of microbiota on bovine health. Beneficial butyrate-producing bacteria, such as Ruminococcaceae, were more abundant in older cattle, suggesting a role in gut health. Functional diversity analysis indicated that younger cattle had significantly more abundant metabolic pathways in fermentation and anaerobic chemoheterotrophy. These findings suggest management strategies including tailored probiotic therapies, dietary adjustments, and targeted health monitoring to enhance livestock health and performance. Further research should include comprehensive metabolic analyses to better correlate microbiota changes with age-related variations, enhancing understanding of the complex interactions between microbiota, age, and reproductive status.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Deyanira Figueroa
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Renán Dilton Hañari-Quispe
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Mery Aliaga
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Walter Galindo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano, Puno 21001, Peru; (P.C.); (R.D.H.-Q.); (M.A.); (W.G.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru;
| | - David Casanova
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (Y.R.); (D.F.); (D.C.)
| |
Collapse
|
5
|
Li Y, He J, Zhang L, Liu H, Cao M, Lin Y, Xu S, Che L, Fang Z, Feng B, Li J, Zhuo Y, Wu D. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim Microbiome 2024; 6:34. [PMID: 38907293 PMCID: PMC11191243 DOI: 10.1186/s42523-024-00323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation. RESULTS Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration. CONCLUSIONS DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7#, Tai'an, 271017, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Heverlee, 3001, Belgium
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lijia Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Haoyu Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
6
|
Pokhrel B, Jiang H. Postnatal Growth and Development of the Rumen: Integrating Physiological and Molecular Insights. BIOLOGY 2024; 13:269. [PMID: 38666881 PMCID: PMC11048093 DOI: 10.3390/biology13040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The rumen plays an essential role in the physiology and production of agriculturally important ruminants such as cattle. Functions of the rumen include fermentation, absorption, metabolism, and protection. Cattle are, however, not born with a functional rumen, and the rumen undergoes considerable changes in size, histology, physiology, and transcriptome from birth to adulthood. In this review, we discuss these changes in detail, the factors that affect these changes, and the potential molecular and cellular mechanisms that mediate these changes. The introduction of solid feed to the rumen is essential for rumen growth and functional development in post-weaning calves. Increasing evidence suggests that solid feed stimulates rumen growth and functional development through butyric acid and other volatile fatty acids (VFAs) produced by microbial fermentation of feed in the rumen and that VFAs stimulate rumen growth and functional development through hormones such as insulin and insulin-like growth factor I (IGF-I) or through direct actions on energy production, chromatin modification, and gene expression. Given the role of the rumen in ruminant physiology and performance, it is important to further study the cellular, molecular, genomic, and epigenomic mechanisms that control rumen growth and development in postnatal ruminants. A better understanding of these mechanisms could lead to the development of novel strategies to enhance the growth and development of the rumen and thereby the productivity and health of cattle and other agriculturally important ruminants.
Collapse
Affiliation(s)
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
7
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Jia Y, Shi Y, Qiao H. Bacterial community and diversity in the rumen of 11 Mongolian cattle as revealed by 16S rRNA amplicon sequencing. Sci Rep 2024; 14:1546. [PMID: 38233488 PMCID: PMC10794206 DOI: 10.1038/s41598-024-51828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Through microorganism in the rumen of ruminant, plant fiber can be converted to edible food such as meat and milk. Ruminants had a rich and complex microbial community within the rumen, and the bacteria comprised the dominant proportion of the ruminal microbes. High-throughput sequencing offered a viable solution for the study of rumen microbes. In this study, rumen fluid samples were taken from 11 cattle from Inner Mongolian, the DNA of 11 rumen fluid samples were extracted and bacterial amplicons of the V4 regions of 16S rRNA were subjected to Illumina sequencing. More than 90,000 raw reads and 60,000 effect Tags per sample were obtained. 28,122 operational taxonomic units (OTUs) were observed from 11 samples, in average 2557 ± 361 OTUs for each sample. Bacteroidetes (44.41 ± 7.31%), Firmicutes (29.07 ± 3.78%), and Proteobacteria (7.18 ± 5.63%) were the dominant phyla among the bacteria of rumen, accounting for 82%. At the genus level, the highest relative abundance was Prevotella. Their functions were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that they included metabolism, genetic information processing, environmental information processing and cellular processes. It explored the bacterial community diversity and composition of the rumen of Mongolian cattle. On the whole, our research showed that there was a high diversity as well as rich bacterial flora function of rumen bacteria in Mongolian cattle. Meanwhile, these findings provided information for further studies on the relationship between the community, diversity, functions of rumen bacteria and the nutritional physiological functions of the host.
Collapse
Affiliation(s)
- Yijiu Jia
- College of Chemical Engineering, Inner Mongolia University of Technology, No. 49 Aimin Street, Xincheng District, Hohhot, 010051, China
| | - Yali Shi
- College of Chemical Engineering, Inner Mongolia University of Technology, No. 49 Aimin Street, Xincheng District, Hohhot, 010051, China.
| | - Huiyan Qiao
- College of Chemical Engineering, Inner Mongolia University of Technology, No. 49 Aimin Street, Xincheng District, Hohhot, 010051, China
| |
Collapse
|
9
|
Dong C, Wei M, Ju J, Du L, Zhang R, Xiao M, Zheng Y, Bao H, Bao M. Effects of guanidinoacetic acid on in vitro rumen fermentation and microflora structure and predicted gene function. Front Microbiol 2024; 14:1285466. [PMID: 38264478 PMCID: PMC10803542 DOI: 10.3389/fmicb.2023.1285466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The fermentation substrate was supplemented with 0% guanidinoacetic acid (GAA) (control group, CON), 0.2% GAA (GAA02), 0.4% GAA (GAA04), 0.6% GAA (GAA06) and 0.8% GAA (GAA08) for 48 h of in vitro fermentation. Gas production was recorded at 2, 4, 6, 8, 12, 24, 36, and 48 h of fermentation. The gas was collected, and the proportions (%, v/v) of H2, CH4 and CO2 were determined. The rumen fermentation parameters, including pH, ammonia nitrogen (NH3-N), microbial protein (MCP) and volatile fatty acids (VFAs), were also determined. Furthermore, the bacterial community structure was analyzed through 16S rRNA high-throughput sequencing. The gene functions were predicted using PICRUSt1 according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that with the increase in GAA supplementation levels, the MCP and the concentration of rumen propionate were significantly increased, while the concentration of isovalerate was significantly decreased (p < 0.05). The results of microbial diversity and composition showed that the Shannon index was significantly decreased by supplementation with GAA at different levels (p < 0.05), but the relative abundance of norank_f_F082 and Papillibacter in the GAA06 group was significantly increased (p < 0.05). Especially in group GAA08, the relative abundances of Bacteroidota, Prevotella and Prevotellaceae_UCG-001 were significantly increased (p < 0.05). The results of gene function prediction showed that the relative abundances of the functions of flagellar assembly, bacterial chemotaxis, plant-pathogen interaction, mismatch repair and nucleotide excision repair were significantly decreased (p < 0.05), but the relative abundances of bile secretion and protein digestion and absorption were significantly increased (p < 0.05). In conclusion, supplementation with 0.8% GAA enhanced in vitro rumen fermentation parameters, increased the relative abundance of Prevotella and Prevotellaceae_UCG-001 in the rumen, and increased the metabolic pathways of bile secretion and protein digestion and absorption.
Collapse
Affiliation(s)
- Chenyang Dong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Manlin Wei
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Ji Ju
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liu Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Runze Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Ming Xiao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yongjie Zheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Hailin Bao
- Horqin Left Wing Rear Banner Ethnic Vocational and Technical School, Tongliao, China
| | - Meili Bao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
10
|
Liu Y, Li L, Feng J, Wan B, Tu Q, Cai W, Jin F, Tang G, Rodrigues LR, Zhang X, Yin J, Zhang Y. Modulation of chronic obstructive pulmonary disease progression by antioxidant metabolites from Pediococcus pentosaceus: enhancing gut probiotics abundance and the tryptophan-melatonin pathway. Gut Microbes 2024; 16:2320283. [PMID: 38444395 PMCID: PMC10936690 DOI: 10.1080/19490976.2024.2320283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a condition primarily linked to oxidative stress, poses significant health burdens worldwide. Recent evidence has shed light on the association between the dysbiosis of gut microbiota and COPD, and their metabolites have emerged as potential modulators of disease progression through the intricate gut-lung axis. Here, we demonstrate the efficacy of oral administration of the probiotic Pediococcus pentosaceus SMM914 (SMM914) in delaying the progression of COPD by attenuating pulmonary oxidative stress. Specially, SMM914 induces a notable shift in the gut microbiota toward a community structure characterized by an augmented abundance of probiotics producing short-chain fatty acids and antioxidant metabolisms. Concurrently, SMM914 synthesizes L-tryptophanamide, 5-hydroxy-L-tryptophan, and 3-sulfino-L-alanine, thereby enhancing the tryptophan-melatonin pathway and elevating 6-hydroxymelatonin and hypotaurine in the lung environment. This modulation amplifies the secretion of endogenous anti-inflammatory factors, diminishes macrophage polarization toward the M1 phenotype, and ultimately mitigates the oxidative stress in mice with COPD. The demonstrated efficacy of the probiotic intervention, specifically with SMM914, not only highlights the modulation of intestine microbiota but also emphasizes the consequential impact on the intricate interplay between the gastrointestinal system and respiratory health.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Longjie Li
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Cai
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Fa Jin
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Guiying Tang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Lígia R. Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Yersin S, Garneau JR, Schneeberger PHH, Osman KA, Cercamondi CI, Muhummed AM, Tschopp R, Zinsstag J, Vonaesch P. Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits. Sci Rep 2023; 13:21342. [PMID: 38049420 PMCID: PMC10696028 DOI: 10.1038/s41598-023-47748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The composition and function of the intestinal microbiota are major determinants of human health and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we currently have only little data on microbiomes of non-westernized communities. We assess the stool microbiota composition in 59 children aged 2-5 years from the Adadle district of Ethiopia, Somali Regional State. Here, milk and starch-rich food are predominant components of the local diet, where the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic sequencing and compared to 1471 publicly available datasets from children living in traditional, transitional, and industrial communities with different subsistence strategies. Samples from the Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives in the feces of children living in industrialized and non-industrialized communities, respectively. In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, D-galactose and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal bacterial composition of human populations living different lifestyles.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pierre H H Schneeberger
- Helminth Drug Development Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | | | - Colin Ivano Cercamondi
- Department of Health Sciences and Technology, ETHZ, Rämistrasse 101, 8092, Zurich, Switzerland
| | - Abdifatah Muktar Muhummed
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Rea Tschopp
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Luo Z, Liu T, Li P, Cheng S, Casper DP. Effects of Essential Oil and/or Encapsulated Butyrate on Fecal Microflora in Neonatal Holstein Calves. Animals (Basel) 2023; 13:3523. [PMID: 38003141 PMCID: PMC10668834 DOI: 10.3390/ani13223523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study was conducted to investigate the effects of feeding oregano essential oil, butyrate, and its mixture on the intestinal microbial diversity of calves. A completely randomized experimental design was used. Sixty-four healthy neonatal Holstein female calves with birth weight ≥ 35 kg were randomly divided into one control and three treatments (16 calves per group). The control group was fed normally, and the treatment group was fed oregano essential oil, butyrate, and their mixture, respectively. The experiment lasted for 70 days, and the lactation period lasted for 56 days. On days 55 and 70, rectal fecal samples from five calves were collected from each group for 16S rRNA amplification and sequencing. The results showed as follows: (1) the three treatments had no significant effects on the intestinal microbial community diversity, community uniformity, and community pedigree diversity of calves (p > 0.05). (2) At the phylum level, Firmicutes, Bacteroidota, Spriochatetota, Actinobacteriota, Firmicutes, and Bacteroidota gates of the main bacteria were detected in feces. (3) At the genus level, the top ten species with relative abundance detected are: norank_ F_Muribaaculaceae, Ruminococcus, unclassified_ F_ Lachnospiraceae, UCG-005, Prevotelaceae_NK3B31_Group, Prevotella, Bacteroides, Rikenellaceae_RC9_Gut_Group, and Faecalibacterium, Alloprevotella. (4) LEfSe analysis results show that the species with significant differences in the control group were f__Lachnospiraceae, o__Lachnospirales, o__Coriobacteriales, and c__Coriobacteriia, g__Megasphaera; in the essential oil group were g__Lachnospiraceae_AC2044_group, o__Izemoplasmatales, g__norank_f__norank_o__Izemoplasmatales, and f__norank_o__Izemoplasmatales; in the sodium butyrate group were g__Lachnospiraceae_NK4A136_group, and g__Sharpea, g__Fournierella; in the mixed group were g__Flavonifractor, and g__UBA1819. (5) The functional prediction analysis of calf gut microbes, found on the KEGG pathway2, shows that essential oil significantly improved membrane transport, Sodium butyrate inhibits lipid metabolism and improves the body's resistance to disease. (p < 0.05). (6) The effects of each treatment on the intestinal microbial structure of calves did not last for 14 days after the treatment was stopped. In conclusion, the addition of oregano essential oil, butyrate, and its mixtures to milk fed to calves can modulate the microbial structure, and it is recommended that oregano essential oil and butyrate be used separately, as a mixture of the two can increase the rate of diarrhea in calves.
Collapse
Affiliation(s)
- Zhihao Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - Peng Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (P.L.); (S.C.)
| | - David P. Casper
- Casper’s Calf Ranch, 4890 West Lily Creek Road, Freeport, IL 61032, USA;
- Department of Animal Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
13
|
Wongkiew S, Polprasert C, Noophan PL, Koottatep T, Kanokkantapong V, Surendra KC, Khanal SK. Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117860. [PMID: 37086642 DOI: 10.1016/j.jenvman.2023.117860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600, Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
14
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
15
|
Yang S, Zhang G, Yuan Z, He S, Wang R, Zheng J, Mao H, Chai J, Wu D. Exploring the temporal dynamics of rumen bacterial and fungal communities in yaks ( Bos grunniens) from 5 days after birth to adulthood by full-length 16S and 18S rRNA sequencing. Front Vet Sci 2023; 10:1166015. [PMID: 37415968 PMCID: PMC10321131 DOI: 10.3389/fvets.2023.1166015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The rumen of ruminants is inhabited by complex and diverse microorganisms. Young animals are exposed to a variety of microorganisms from their mother and the environment, and a few colonize and survive in their digestive tracts, forming specific microflora as the young animals grow and develop. In this study, we conducted full-length sequencing of bacterial and fungal communities in the rumen of pastured yaks of different ages (from 5 days after birth to adulthood) using amplified sequencing technology. The results showed that the rumen microflora of Zhongdian yaks changed gradually from 5 to 180 days after birth and tended to stabilize at 2 years of age. The rumen of adult yaks was the most suitable for the growth and reproduction of most bacteria. Bactria diversity of the yak rumen increased gradually from 5 days after birth to adulthood. With the growth of yaks, different dominated bacteria were enriched in different groups, but Prevotella remained highly abundant in all groups. The yak rumen at 90 days of age was the most suitable for the growth and reproduction of most fungi, and 90 days of age could be a cut-off point for the distribution of fungal communities. Fungal Thelebolus was the firstly reported in yak rumen and was enriched in the yak rumen of 90 days after birth. The most abundant and balanced fungal genera were found in adult yaks, and most of them were only detected in adult yaks. Our study reported on the rumen bacterial and fungal communities of Zhongdian yaks grazed at different ages and provided insights into the dynamic changes of dominant microflora with yak growth.
Collapse
Affiliation(s)
- Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangrong Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zaimei Yuan
- Kunming Animal Disease Prevention And Control Center, Kunming, China
| | - Shichun He
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Rongjiao Wang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Jieyi Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Huaming Mao
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Dongwang Wu
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|