1
|
Morishima S, Abe A, Okamoto S, Kapoor MP, Osumi M, Oda M, Okubo T, Ozeki M, Nishio M, Inoue R. Partially hydrolyzed guar gum suppresses binge alcohol-induced liver fat accumulation via gut environment modulation in mice. J Gastroenterol Hepatol 2024. [PMID: 39313361 DOI: 10.1111/jgh.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Alcohol-associated liver disease (ALD), including alcoholic fatty liver, is a serious problem in many countries, and its economic costs to society are enormous. There is evidence indicating the relations between gut environments and liver disease, and thus, improvement of gut environment is expected to be an effective approach for ALD prevention. In this study, we explored the preventive effect of partially hydrolyzed guar gum (PHGG) on ALD focusing on the gut-liver axis. Two weeks of PHGG pre-feeding suppressed the liver fat accumulation in the experimental binge alcohol model mouse. In cecal microbiome, PHGG pre-feeding increased beneficial Bifidobacterium with its metabolite acetate concentration and suppressed the alcohol-induced increase in the potential pathobiont Streptococcus. PHGG pre-feeding increased colonic gene expression of angiogenin genes, which act as antimicrobial peptides and decreased expression of genes for mast cell protease, which suggests a potential involvement in leaky gut. Correlation network analysis based on evaluated parameters revealed four relations worth noticing. (i) The abundance of Bifidobacterium positively correlated with cecal acetate. (ii) Cecal acetate negatively correlated with Streptococcus via colonic angiogenin expression. (iii) Streptococcus positively correlated with liver fat area. (iv) Cecal acetate had direct negative correlation with liver fat area. Considering these relations comprehensively, acetate produced by Bifidobacterium may be a key mediator in ALD prevention; it inhibited growth of potential pathobiont Streptococcus and also directly regulated liver lipid metabolism reaching through portal vein. This study demonstrated that regularly intake of PHGG may be effective in reducing the risk of alcoholic fatty liver via gut-liver axis.
Collapse
Affiliation(s)
- So Morishima
- Laboratory of Food Function, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Saki Okamoto
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | | | - Masahide Osumi
- Laboratory of Nutritional Chemistry, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Machi Oda
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Tsutomu Okubo
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Ozeki
- Laboratory of Food Function, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Masahiro Nishio
- Laboratory of Nutritional Chemistry, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
2
|
Krzystyniak A, Gluchowska A, Pytyś A, Dudkowska M, Wójtowicz T, Targonska A, Janiszewska D, Sikora E, Mosieniak G. 2-Bromopalmitate treatment attenuates senescence phenotype in human adult cells - possible role of palmitoylation. Aging (Albany NY) 2024; 16:11796-11808. [PMID: 39181690 PMCID: PMC11386925 DOI: 10.18632/aging.206080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/10/2024] [Indexed: 08/27/2024]
Abstract
Cells may undergo senescence in response to DNA damage, which is associated with cell cycle arrest, altered gene expression and altered cell morphology. Protein palmitoylation is one of the mechanisms by which the DNA damage response is regulated. Therefore, we hypothesized that protein palmitoylation played a role in regulation of the senescent phenotype. Here, we showed that treatment of senescent human vascular smooth muscle cells (VSMCs) with 2-bromopalmitate (2-BP), an inhibitor of protein acyltransferases, is associated with changes in different aspects of the senescent phenotype, including the resumption of cell proliferation, a decrease in DNA damage markers and the downregulation of senescence-associated β-galactosidase activity. The effects were dose dependent and associated with significantly decreased total protein palmitoylation level. We also showed that the senescence-modifying properties of 2-BP were at least partially mediated by the downregulation of elements of DNA damage-related molecular pathways, such as phosphorylated p53. Our data suggest that cell senescence may be regulated by palmitoylation, which provides a new perspective on the role of this posttranslational modification in age-related diseases.
Collapse
Affiliation(s)
- Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Gluchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agata Pytyś
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Calcium Binding Protein, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Targonska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dorota Janiszewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Calcium Binding Protein, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
3
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
4
|
Vera-Chang MN, Danforth JM, Stuart M, Goodarzi AA, Brand M, Richardson RB. Profound DNA methylomic differences between single- and multi-fraction alpha irradiations of lung fibroblasts. Clin Epigenetics 2023; 15:174. [PMID: 37891670 PMCID: PMC10612361 DOI: 10.1186/s13148-023-01564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Alpha (α)-radiation is a ubiquitous environmental agent with epigenotoxic effects. Human exposure to α-radiation at potentially harmful levels can occur repetitively over the long term via inhalation of naturally occurring radon gas that accumulates in enclosed spaces, or as a result of a single exposure from a nuclear accident. Alterations in epigenetic DNA methylation (DNAm) have been implicated in normal aging and cancer pathogenesis. Nevertheless, the effects of aberrations in the methylome of human lung cells following exposure to single or multiple α-irradiation events on these processes remain unexplored. RESULTS We performed genome-wide DNAm profiling of human embryonic lung fibroblasts from control and irradiated cells using americium-241 α-sources. Cells were α-irradiated in quadruplicates to seven doses using two exposure regimens, a single-fraction (SF) where the total dose was given at once, and a multi-fraction (MF) method, where the total dose was equally distributed over 14 consecutive days. Our results revealed that SF irradiations were prone to a decrease in DNAm levels, while MF irradiations mostly increased DNAm. The analysis also showed that the gene body (i.e., exons and introns) was the region most altered by both the SF hypomethylation and the MF hypermethylation. Additionally, the MF irradiations induced the highest number of differentially methylated regions in genes associated with DNAm biomarkers of aging, carcinogenesis, and cardiovascular disease. The DNAm profile of the oncogenes and tumor suppressor genes suggests that the fibroblasts manifested a defensive response to the MF α-irradiation. Key DNAm events of ionizing radiation exposure, including changes in methylation levels in mitochondria dysfunction-related genes, were mainly identified in the MF groups. However, these alterations were under-represented, indicating that the mitochondria undergo adaptive mechanisms, aside from DNAm, in response to radiation-induced oxidative stress. CONCLUSIONS We identified a contrasting methylomic profile in the lung fibroblasts α-irradiated to SF compared with MF exposures. These findings demonstrate that the methylome response of the lung cells to α-radiation is highly dependent on both the total dose and the exposure regimen. They also provide novel insights into potential biomarkers of α-radiation, which may contribute to the development of innovative approaches to detect, prevent, and treat α-particle-related diseases.
Collapse
Affiliation(s)
- Marilyn N Vera-Chang
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - John M Danforth
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Marilyne Stuart
- Environment and Waste Technologies Branch, Chalk River Laboratories, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Aaron A Goodarzi
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Marjorie Brand
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Richard B Richardson
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada.
- McGill Medical Physics Unit, Cedars Cancer Centre-Glen Site, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules 2022; 12:biom12111655. [DOI: 10.3390/biom12111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genomic DNA damage occurs as an inevitable consequence of exposure to harmful exogenous and endogenous agents. Therefore, the effective sensing and repair of DNA damage are essential for maintaining genomic stability and cellular homeostasis. Inappropriate responses to DNA damage can lead to genomic instability and, ultimately, cancer. Protein post-translational modifications (PTMs) are a key regulator of the DNA damage response (DDR), and recent progress in mass spectrometry analysis methods has revealed that a wide range of metabolites can serve as donors for PTMs. In this review, we will summarize how the DDR is regulated by lipid metabolite-associated PTMs, including acetylation, S-succinylation, N-myristoylation, palmitoylation, and crotonylation, and the implications for tumorigenesis. We will also discuss potential novel targets for anti-cancer drug development.
Collapse
|
7
|
SEDT2 palmitoylation mediated by ZDHHC16 in EGFR-mutated glioblastoma promotes ionizing radiation-induced DNA damage. Int J Radiat Oncol Biol Phys 2022; 113:648-660. [DOI: 10.1016/j.ijrobp.2022.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/16/2022] [Accepted: 02/12/2022] [Indexed: 11/19/2022]
|
8
|
Lin F, Xu L, Yuan R, Han S, Xie J, Jiang K, Li B, Yu W, Rao T, Zhou X, Cheng F. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA‑binding protein RBFOX1 in this disease. Int J Mol Med 2022; 49:32. [PMID: 35059728 PMCID: PMC8788925 DOI: 10.3892/ijmm.2022.5087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of inflammatory responses and alternative splicing (AS) have been recently reported to be associated with various kidney diseases. The effect of inflammatory response on acute kidney injury (AKI) has not been fully clarified. In the present study, a mouse model of AKI induced by cisplatin and ischemia-reperfusion (IR) was established and genome-wide profiling analysis and identification of differentially expressed genes (DEGs) in kidney tissue was conducted by Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) network analysis and RT-qPCR. The results revealed that common DEGs in AKI induced by cisplatin and IR were enriched in the inflammatory response pathway, including hub genes CSF-1, CXCL1, CXCL10, IL-1β, IL-34, IL-6 and TLR2. AS in AKI was initially reported. Cisplatin-induced AS was enriched in the phosphorylation pathway, involving regulated AS genes CSNK1A1, PAK2, CRK, ADK and IKBKB. IR-induced AS was enriched in apoptosis and proliferation pathways, including DEGs ZDHHC16, BCL2L1 and FGF1 regulated by AS. The ability of RNA-binding proteins (RBPs) to regulate AS was coordinated with the function of context-dependent genetic mechanisms. A total of 49 common differentially expressed RBP genes were screened. RNA binding fox-1 homolog 1 (RBFOX1) was revealed to be the top downregulated gene. The relative levels of RBFOX1 in the nuclei of mouse renal tubular epithelial cells in mRNA and proteins were downregulated by cisplatin and IR. Moreover, the biological functions of RBFOX1 were investigated in human renal proximal tubular epithelial cells (HK-2 cells). Results of in vitro experiments revealed that exogenous RBFOX1 inhibited inflammation and oxidative stress to reduce hypoxia/reoxygenation-induced apoptosis of HK-2 cells. This phenomenon may be related to the inhibition of NF-κB and the activation of the NRF2/HO-1 signaling pathway. In conclusion, the inflammatory cytokines, AS and RBPs in AKI were analyzed in the present study via whole transcriptome sequencing. It was revealed that the RBP gene RBFOX1 was involved in the pathogenesis of AKI. Thus, the present study provided novel insights into the mechanism of AKI pathogenesis.
Collapse
Affiliation(s)
- Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Luo X, Ren C, Liu X, Zhang G, Huang S, Yu L, Li Y. [Screening of drugs that selectively inhibit uveal melanoma cells with SF3B1 mutations]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1835-1842. [PMID: 35012916 DOI: 10.12122/j.issn.1673-4254.2021.12.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To screen compounds that can selectively inhibit uveal melanoma cells with splicing factor 3B subunit 1 (SF3B1) mutations in comparison with isogenic SF3B1 wild-type counterparts in a cell model of SF3B1 mutant allele knockout. METHODS Principal component analysis was used to analyze transcriptome alternative splicing in TCGA cohorts of uveal melanoma with wild-type SF3B1 and SF3B1 mutations, and abnormal alternative splicing events derived from SF3B1 mutations were identified. The SF3B1 mutant allele in Mel202 cells was knocked out using CRISPR-Cas9 technology, and Sanger sequencing was used to verify the edited sequence. MTT and colony formation assays were used to assess the proliferation of Mel202 and Mut-KO cells. RT-PCR agarose electrophoresis combined with Sanger sequencing was used to determine alternative splicing events in Mel202 and Mut-KO cells. MTT assay was performed to screen the compounds that showed selective inhibitory effect against Mel202 cells with SF3B1 mutation. RESULTS Specific knockout of SF3B1 mutant allele in Mel202 cells obviously promoted the cell proliferation and caused changes in alternative splicing of ZDHHC16 and DYNLL1 transcripts. The screening data showed that 13 compounds had selective inhibitory activity against Mel202 cells with SF3B1 mutation (Fold change≥2), and among them, tetrandrine and lapatinib showed good dose-effect curves. CONCLUSION This study provides a cell screening model for identification of potential individualized treatment drugs for patients with uveal melanoma with SF3B1 mutation.
Collapse
Affiliation(s)
- X Luo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - C Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - X Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - G Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - S Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - L Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Y Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Wu Y, Zhang X, Zhang X, Liu S, Zhang J, Sun S, Zhao S, Wang Z, Cui Y, Huang X, Liu M. ZDHHC19 localizes to the cell membrane of spermatids and is involved in spermatogenesis. Biol Reprod 2021; 106:477-486. [PMID: 34897408 DOI: 10.1093/biolre/ioab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm is the ultimate executor of male reproductive function. Normal morphology, quantity, and motility of sperm ensure the normal reproductive process. Palmitoylation is a posttranslational modification mediated by palmitoyltransferases whereby palmitoyl is added to proteins. Seven palmitoyltransferases have been identified in Saccharomyces cerevisiae and 23 in humans (including ZDHHC1-9 and ZDHHC11-24), with corresponding homologs in mice. We identified two testis-specific palmitoyltransferases ZDHHC11 and ZDHHC19 in mice. The Zdhhc11 and Zdhhc19-knockout mouse models were constructed, and it was found that the Zdhhc11 knockout males were fertile, while Zdhhc19 knockout males were sterile. ZDHHC19 is located in the cell membrane of step 4-9 spermatids in the mouse testis, and phenotypic analysis showed that the testicular weight ratio in the Zdhhc19-/- mice decreased along with the number and motility of the sperm decreased, while sperm abnormalities increased, mainly due to the "folded" abnormal sperm caused by sperm membrane fusion, suggesting the involvement of ZDHHC19 in maintaining membrane stability in the male reproductive system. In addition, Zdhhc19-/- mice showed abnormal sperm morphologies and apoptosis during spermatogenesis, suggesting that spermatogenesis in the Zdhhc19-/- mice was abnormal. These results indicate that ZDHHC19 promotes membrane stability in male germ cells. Summary sentence: ZDHHC19 is located in the cell membrane of Step4-9 spermatids in mouse testis; Zdhhc19 knockout mice showed male infertility, abnormal spermatogenesis, sperm morphology and motility.
Collapse
Affiliation(s)
- Yangyang Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xi Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zerui Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
11
|
Tang J, Peng W, Feng Y, Le X, Wang K, Xiang Q, Li L, Wang Y, Xu C, Mu J, Xu K, Ji P, Tao Q, Huang A, Deng CX, Lin Y, Xiang T. Cancer cells escape p53's tumor suppression through ablation of ZDHHC1-mediated p53 palmitoylation. Oncogene 2021; 40:5416-5426. [PMID: 34282274 PMCID: PMC8413129 DOI: 10.1038/s41388-021-01949-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
The inactivation of tumor-suppressor genes contributes heavily to oncogenesis. The mutation of TP53 has been well-studied and recognized as a major factor in the development of tumors. Yet other means of p53 inactivation has not been well-elucidated. We previously identified a hypermethylated gene ZDHHC1 that suppresses tumor growth when the expression was restored, but the specific mechanism was yet to be found. The protein product of ZDHHC1 is an S-palmitoyltransferase and we have identified p53 as a substrate for ZDHHC1-mediated palmitoylation, specifically at the C135, C176, and C275 residues. The novel form of post-translational modification of p53 is required for the nuclear translocation of the tumor suppressor. p53 recruited DNMT3A to ZDHHC1 promoter and is responsible for the hypermethylation of ZDHHC1. The epigenetic feedback loop formed by ZDHHC1 and p53 sheds light on the inactivation of p53 without the presence of genetic mutations.
Collapse
Affiliation(s)
- Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Le
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yan Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ailong Huang
- MOE Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Disease, Chongqing Medical University, Chongqing, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Yong Lin
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Lo Faro V, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics 2021; 22:590. [PMID: 34348663 PMCID: PMC8336345 DOI: 10.1186/s12864-021-07846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Department of Ophthalmology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Xu Q, Xu H, Deng R, Li N, Mu R, Qi Z, Shen Y, Wang Z, Wen J, Zhao J, Weng D, Huang W. Immunological significance of prognostic alternative splicing signature in hepatocellular carcinoma. Cancer Cell Int 2021; 21:190. [PMID: 33794886 PMCID: PMC8017877 DOI: 10.1186/s12935-021-01894-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks the sixth prevalent tumors with high mortality globally. Alternative splicing (AS) drives protein diversity, the imbalance of which might act an important factor in tumorigenesis. This study aimed to construct of AS-based prognostic signature and elucidate the role in tumor immune microenvironment (TIME) and immunotherapy in HCC. METHODS Univariate Cox regression analysis was performed to determine the prognosis-related AS events and gene set enrichment analysis (GSEA) was employed for functional annotation, followed by the development of prognostic signatures using univariate Cox, LASSO and multivariate Cox regression. K-M survival analysis, proportional hazards model, and ROC curves were conducted to validate prognostic value. ESTIMATE R package, ssGSEA algorithm and CIBERSORT method and TIMER database exploration were performed to uncover the context of TIME in HCC. Quantitative real-time polymerase chain reaction was implemented to detect ZDHHC16 mRNA expression. Cytoscape software 3.8.0 were employed to visualize AS-splicing factors (SFs) regulatory networks. RESULTS A total of 3294 AS events associated with survival of HCC patients were screened. Based on splicing subtypes, eight AS prognostic signature with robust prognostic predictive accuracy were constructed. Furthermore, quantitative prognostic nomogram was developed and exhibited robust validity in prognostic prediction. Besides, the consolidated signature was significantly correlated with TIME diversity and ICB-related genes. ZDHHC16 presented promising prospect as prognostic factor in HCC. Finally, the splicing regulatory network uncovered the potential functions of splicing factors (SFs). CONCLUSION Herein, exploration of AS patterns may provide novel and robust indicators (i.e., risk signature, prognostic nomogram, etc.,) for prognostic prediction of HCC. The AS-SF networks could open up new approach for investigation of potential regulatory mechanisms. And pivotal players of AS events in context of TIME and immunotherapy efficiency were revealed, contributing to clinical decision-making and personalized prognosis monitoring of HCC.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No 109. Xueyuan West Road, Wenzhou, 325000, Zhejiang, China
| | - Hao Xu
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Rongshan Deng
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Nanjun Li
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Ruiqi Mu
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhixuan Qi
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yunuo Shen
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zijie Wang
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jingchao Wen
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiaxin Zhao
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Di Weng
- Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No 109. Xueyuan West Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
14
|
Fan X, Yang H, Zhao C, Hu L, Wang D, Wang R, Fang Z, Chen X. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation. Stem Cell Res Ther 2021; 12:107. [PMID: 33541421 PMCID: PMC7863430 DOI: 10.1186/s13287-021-02175-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. METHODS The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. RESULTS In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. CONCLUSIONS In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Haoran Yang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Delong Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Ruiting Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Zhiyou Fang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Xueran Chen
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
15
|
Wu Z, Tan R, Zhu L, Yao P, Hu Q. Protein S-Palmitoylation and Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:165-186. [PMID: 34019269 DOI: 10.1007/978-3-030-68748-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-palmitoylation of protein is a posttranslational, reversible lipid modification; it was catalyzed by a family of 23 mammalian palmitoyl acyltransferases in humans. S-palmitoylation can impact protein function by regulating protein sorting, secretion, trafficking, stability, and protein interaction. Thus, S-palmitoylation plays a crucial role in many human diseases including mental illness and cancers. In this chapter, we systematically reviewed the influence of S-palmitoylation on protein performance, the characteristics of S-palmitoylation regulating protein function, and the role of S-palmitoylation in pulmonary inflammation and pulmonary hypertension and summed up the treatment strategies of S-palmitoylation-related diseases and the research status of targeted S-palmitoylation agonists/inhibitors. In conclusion, we highlighted the potential role of S-palmitoylation and depalmitoylation in the treatment of human diseases.
Collapse
Affiliation(s)
- Zeang Wu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rubin Tan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Liping Zhu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinghua Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
A STAT3 palmitoylation cycle promotes T H17 differentiation and colitis. Nature 2020; 586:434-439. [PMID: 33029007 DOI: 10.1038/s41586-020-2799-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
Cysteine palmitoylation (S-palmitoylation) is a reversible post-translational modification that is installed by the DHHC family of palmitoyltransferases and is reversed by several acyl protein thioesterases1,2. Although thousands of human proteins are known to undergo S-palmitoylation, how this modification is regulated to modulate specific biological functions is poorly understood. Here we report that the key T helper 17 (TH17) cell differentiation stimulator, STAT33,4, is subject to reversible S-palmitoylation on cysteine 108. DHHC7 palmitoylates STAT3 and promotes its membrane recruitment and phosphorylation. Acyl protein thioesterase 2 (APT2, also known as LYPLA2) depalmitoylates phosphorylated STAT3 (p-STAT3) and enables it to translocate to the nucleus. This palmitoylation-depalmitoylation cycle enhances STAT3 activation and promotes TH17 cell differentiation; perturbation of either palmitoylation or depalmitoylation negatively affects TH17 cell differentiation. Overactivation of TH17 cells is associated with several inflammatory diseases, including inflammatory bowel disease (IBD). In a mouse model, pharmacological inhibition of APT2 or knockout of Zdhhc7-which encodes DHHC7-relieves the symptoms of IBD. Our study reveals not only a potential therapeutic strategy for the treatment of IBD but also a model through which S-palmitoylation regulates cell signalling, which might be broadly applicable for understanding the signalling functions of numerous S-palmitoylation events.
Collapse
|
17
|
Shahid M, Kim M, Jin P, Zhou B, Wang Y, Yang W, You S, Kim J. S-Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer. Int J Biol Sci 2020; 16:2490-2505. [PMID: 32792852 PMCID: PMC7415425 DOI: 10.7150/ijbs.45640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Protein S-palmitoylation is a powerful post-translational modification that regulates protein trafficking, localization, turnover, and signal transduction. Palmitoylation controls several important cellular processes, and, if dysregulated, can lead to cancer, cardiovascular disease, and neurological disorders. The role of protein palmitoylation in mediating resistance to systemic cisplatin-based chemotherapies in cancer is currently unknown. This is of particular interest because cisplatin is currently the gold standard of treatment for bladder cancer (BC), and there are no feasible options after resistance is acquired. Using unbiased global proteomic profiling of purified S-palmitoylated peptides combined with intensive bioinformatics analyses, we identified 506 candidate palmitoylated proteins significantly enriched in cisplatin-resistant BC cells. One of these proteins included PD-L1, which is highly palmitoylated in resistant cells. Pharmacological inhibition of fatty acid synthase (FASN) suppressed PD-L1 palmitoylation and expression, which suggests the potential use of FASN-PD-L1-targeted therapeutic strategies in BC patients. Taken together, these results highlight the role of protein palmitoylation in mediating BC chemoresistance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peng Jin
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a Signal for Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:399-424. [DOI: 10.1007/978-981-15-3266-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane. Nat Commun 2019; 10:2535. [PMID: 31182712 PMCID: PMC6557901 DOI: 10.1038/s41467-019-10349-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane.
Collapse
|
20
|
Palmitoylation in apicomplexan parasites: from established regulatory roles to putative new functions. Mol Biochem Parasitol 2019; 230:16-23. [PMID: 30978365 DOI: 10.1016/j.molbiopara.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
This minireview aims to provide a comprehensive synthesis on protein palmitoylation in apicomplexan parasites and higher eukaryotes where most of the data is available. Apicomplexan parasites encompass numerous obligate intracellular parasites with significant health risk to animals and humans. Protein palmitoylation is a widespread post-translational modification that plays important regulatory roles in several physiological and pathological states. Functional studies demonstrate that many processes important for parasites are regulated by protein palmitoylation. Structural analyses suggest that enzymes responsible for the palmitoylation process have a conserved architecture in eukaryotes although there are particular differences which could be related to their substrate specificities. Interestingly, with the publication of T. gondii and P. falciparum palmitoylomes new possible regulatory functions are unveiled. Here we focus our discussion on data from both palmitoylomes that suggest that palmitoylation of nuclear proteins regulate different chromatin-related processes such as nucleosome assembly and stability, transcription, translation and DNA repair.
Collapse
|
21
|
Tsai MH, Lee CK. STAT3 Cooperates With Phospholipid Scramblase 2 to Suppress Type I Interferon Response. Front Immunol 2018; 9:1886. [PMID: 30158934 PMCID: PMC6104169 DOI: 10.3389/fimmu.2018.01886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
Type I interferon (IFN-I) is a pluripotent cytokine that modulates innate and adaptive immunity. We have previously shown that STAT3 suppresses IFN-I response in a manner dependent on its N-terminal domain (NTD), but independent of its DNA-binding and transactivation ability. Using the yeast two-hybrid system, we have identified phospholipid scramblase 2 (PLSCR2) as a STAT3 NTD-binding partner and a suppressor of IFN-I response. Overexpression of PLSCR2 attenuates ISRE-driven reporter activity, which is further aggravated by co-expression of STAT3. Moreover, PLSCR2 deficiency enhances IFN-I-induced gene expression and antiviral activity without affecting the activation or nuclear translocation of STAT1 and STAT2 or the assembly of ISGF3 complex. Instead, PLSCR2 impedes promoter occupancy by ISGF3, an effect further intensified by the presence of STAT3. Moreover, palmitoylation of PLSCR2 is required for its binding to STAT3 and for this suppressive activity. In addition to STAT3, PLSCR2 also interacts with STAT2, which facilitates the suppressive effect on ISGF3-mediated transcriptional activity. Together, these results define the role of a novel STAT3–PLSCR2 axis in fine-tuning IFN-I response.
Collapse
Affiliation(s)
- Ming-Hsun Tsai
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
24
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Abrami L, Dallavilla T, Sandoz PA, Demir M, Kunz B, Savoglidis G, Hatzimanikatis V, van der Goot FG. Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. eLife 2017; 6:27826. [PMID: 28826475 PMCID: PMC5582869 DOI: 10.7554/elife.27826] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC palmitoyltransferase family is still limited. Here we show that human ZDHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, ZDHHC16, revealing the first palmitoylation cascade. The combination of site specific mutagenesis of the three ZDHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the eight differentially palmitoylated ZDHHC6 species. We found that species rapidly interconvert through the action of ZDHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly tune its ZDHHC6 activity.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tiziano Dallavilla
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrick A Sandoz
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mustafa Demir
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Georgios Savoglidis
- Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|