1
|
Xu Q, Kim Y, Chung K, Schulz P, Gottlieb A. Prediction of Mild Cognitive Impairment Status: Pilot Study of Machine Learning Models Based on Longitudinal Data From Fitness Trackers. JMIR Form Res 2024; 8:e55575. [PMID: 39024003 PMCID: PMC11294783 DOI: 10.2196/55575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 06/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Early signs of Alzheimer disease (AD) are difficult to detect, causing diagnoses to be significantly delayed to time points when brain damage has already occurred and current experimental treatments have little effect on slowing disease progression. Tracking cognitive decline at early stages is critical for patients to make lifestyle changes and consider new and experimental therapies. Frequently studied biomarkers are invasive and costly and are limited for predicting conversion from normal to mild cognitive impairment (MCI). OBJECTIVE This study aimed to use data collected from fitness trackers to predict MCI status. METHODS In this pilot study, fitness trackers were worn by 20 participants: 12 patients with MCI and 8 age-matched controls. We collected physical activity, heart rate, and sleep data from each participant for up to 1 month and further developed a machine learning model to predict MCI status. RESULTS Our machine learning model was able to perfectly separate between MCI and controls (area under the curve=1.0). The top predictive features from the model included peak, cardio, and fat burn heart rate zones; resting heart rate; average deep sleep time; and total light activity time. CONCLUSIONS Our results suggest that a longitudinal digital biomarker differentiates between controls and patients with MCI in a very cost-effective and noninvasive way and hence may be very useful for identifying patients with very early AD who can benefit from clinical trials and new, disease-modifying therapies.
Collapse
Affiliation(s)
- Qidi Xu
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yejin Kim
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karen Chung
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul Schulz
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Wu L, Wang XQ, Yang Y, Dong TF, Lei L, Cheng QQ, Li SX. Spatio-temporal dynamics of EEG features during sleep in major depressive disorder after treatment with escitalopram: a pilot study. BMC Psychiatry 2020; 20:124. [PMID: 32171290 PMCID: PMC7071588 DOI: 10.1186/s12888-020-02519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/26/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have shown escitalopram is related to sleep quality. However, effects of escitalopram on dynamics of electroencephalogram (EEG) features especially during different sleep stages have not been reported. This study may help to reveal pharmacological mechanism underlying escitalopram treatment. METHODS The spatial and temporal responses of patients with major depressive disorder (MDD) to escitalopram treatment were analyzed in this study. Eleven MDD patients and eleven healthy control subjects who completed eight weeks' treatment of escitalopram were included in the final statistics. Six-channel sleep EEG signals were acquired during sleep. Power spectrum and nonlinear dynamics were used to analyze the spatio-temporal dynamics features of the sleep EEG after escitalopram treatment. RESULTS For temporal dynamics: after treatment, there was a significant increase in the relative energy (RE) of δ1 band (0.5 - 2 Hz), accompanied by a significant decrease in the RE of β2 band (20 - 30 Hz). Lempel-Ziv complexity and Co - complexity values were significantly lower. EEG changes at different sleep stages also showed the same regulation as throughout the night sleep. For spatio dynamics: after treatment, the EEG response of the left and right hemisphere showed asymmetry. Regarding band-specific EEG complexity estimations, δ1 and β2 in stage-1 and δ1 in stage-2 sleep stage in frontal cortex is found to be much more sensitive to escitalopram treatment in comparison to central and occipital cortices. CONCLUSIONS The sleep quality of MDD patients improved, EEG response occurred asymmetry in left and right hemispheres due to escitalopram treatment, and frontal cortex is found to be much more sensitive to escitalopram treatment. These findings may contribute to a comprehensive understanding of the pharmacological mechanism of escitalopram in the treatment of depression.
Collapse
Affiliation(s)
- Li Wu
- School of automation Hangzhou Dianzi University, HangZhou Economic Development Zone, 1158, 2# Road, BaiYang Street, Hangzhou, 310018 Zhejiang China
| | - Xue-Qin Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yong Yang
- School of automation Hangzhou Dianzi University, HangZhou Economic Development Zone, 1158, 2# Road, BaiYang Street, Hangzhou, 310018 Zhejiang China
| | - Teng-Fei Dong
- School of automation Hangzhou Dianzi University, HangZhou Economic Development Zone, 1158, 2# Road, BaiYang Street, Hangzhou, 310018 Zhejiang China
| | - Ling Lei
- School of automation Hangzhou Dianzi University, HangZhou Economic Development Zone, 1158, 2# Road, BaiYang Street, Hangzhou, 310018 Zhejiang China
| | - Qi-Qi Cheng
- School of automation Hangzhou Dianzi University, HangZhou Economic Development Zone, 1158, 2# Road, BaiYang Street, Hangzhou, 310018 Zhejiang China
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing, 100191 China
| |
Collapse
|
3
|
Bogáthy E, Papp N, Vas S, Bagdy G, Tóthfalusi L. AM-251, A Cannabinoid Antagonist, Modifies the Dynamics of Sleep-Wake Cycles in Rats. Front Pharmacol 2019; 10:831. [PMID: 31404291 PMCID: PMC6675864 DOI: 10.3389/fphar.2019.00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
Study Objectives: (a) To describe the microarchitecture of wakefulness and sleep following administrations of 5- and 10-mg/kg AM-251 in rats. (b) To develop a new statistical method to follow bout-to-bout dynamics. Method: Wistar rats (n = 6) had been equipped with electroencephalography (EEG) and electromyography (EMG) electrodes. Following their recovery and habituation after the surgery, the animals were injected with vehicle and 5- and 10-mg/kg AM-251 intraperitoneally and EEG, EMG, and motor activity were analyzed for the subsequent 3 h. Results: AM-251 induced a dose- and time-dependent increase in the number of bouts in active wake (AW), and it decreased this number in all other vigilance states except in passive wake (PW). In contrast, the bout duration in PW compensatory decreased. The effect of AM-251 on the sleep transition dynamics was monitored with a new tool we call "transition heatmap." The analysis of bout trajectories with transition heatmaps reveals a highly organized pattern. Conclusion: AM-251 selectively influences the frequency of vigilance state transitions, but it has no direct impact on the state lengths. AM-251 markedly changed the state transition dynamics, which was visualized with the help of state transition heatmaps.
Collapse
Affiliation(s)
- Emese Bogáthy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Noémi Papp
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Szilvia Vas
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,MTA-SE, Neuropsychopharmacology and Neurochemistry Research Group, Budapest, Hungary.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - György Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary.,MTA-SE, Neuropsychopharmacology and Neurochemistry Research Group, Budapest, Hungary.,NAP-A-SE, New Antidepressant Target Research Group, Budapest, Hungary.,NAP-2-SE, New Antidepressant Target Research Group, Budapest, Hungary
| | - László Tóthfalusi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Ma B, Chen J, Mu Y, Xue B, Zhao A, Wang D, Chang D, Pan Y, Liu J. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system. PLoS One 2018; 13:e0199237. [PMID: 30235220 PMCID: PMC6147403 DOI: 10.1371/journal.pone.0199237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level.
Collapse
Affiliation(s)
- Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jincheng Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bingjie Xue
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aimei Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (JL); (YP)
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
- * E-mail: (JL); (YP)
| |
Collapse
|
5
|
Rempe MJ, Grønli J, Pedersen TT, Mrdalj J, Marti A, Meerlo P, Wisor JP. Mathematical modeling of sleep state dynamics in a rodent model of shift work. Neurobiol Sleep Circadian Rhythms 2018; 5:37-51. [PMID: 31236510 PMCID: PMC6584688 DOI: 10.1016/j.nbscr.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/12/2023] Open
Abstract
Millions of people worldwide are required to work when their physiology is tuned for sleep. By forcing wakefulness out of the body’s normal schedule, shift workers face numerous adverse health consequences, including gastrointestinal problems, sleep problems, and higher rates of some diseases, including cancers. Recent studies have developed protocols to simulate shift work in rodents with the intention of assessing the effects of night-shift work on subsequent sleep (Grønli et al., 2017). These studies have already provided important contributions to the understanding of the metabolic consequences of shift work (Arble et al., 2015; Marti et al., 2016; Opperhuizen et al., 2015) and sleep-wake-specific impacts of night-shift work (Grønli et al., 2017). However, our understanding of the causal mechanisms underlying night-shift-related sleep disturbances is limited. In order to advance toward a mechanistic understanding of sleep disruption in shift work, we model these data with two different approaches. First we apply a simple homeostatic model to quantify differences in the rates at which sleep need, as measured by slow wave activity during slow wave sleep (SWS) rises and falls. Second, we develop a simple and novel mathematical model of rodent sleep and use it to investigate the timing of sleep in a simulated shift work protocol (Grønli et al., 2017). This mathematical framework includes the circadian and homeostatic processes of the two-process model, but additionally incorporates a stochastic process to model the polyphasic nature of rodent sleep. By changing only the time at which the rodents are forced to be awake, the model reproduces some key experimental results from the previous study, including correct proportions of time spent in each stage of sleep as a function of circadian time and the differences in total wake time and SWS bout durations in the rodents representing night-shift workers and those representing day-shift workers. Importantly, the model allows for deeper insight into circadian and homeostatic influences on sleep timing, as it demonstrates that the differences in SWS bout duration between rodents in the two shifts is largely a circadian effect. Our study shows the importance of mathematical modeling in uncovering mechanisms behind shift work sleep disturbances and it begins to lay a foundation for future mathematical modeling of sleep in rodents. Millions of people worldwide are required to work when their physiology is tuned for sleep. Enforcing wakefulness during this time leads to numerous adverse health consequences including sleep problems and higher rates of some diseases. Rodent models of shift work have illuminated some of the effects of night shift work on subsequent sleep. This study uses mathematical modeling to accurately simulate rodent sleep during baseline and shift work conditions. A simple mathematical framework can help us understand possible mechanisms underlying the sleep disturbances seen in shift work.
Collapse
Affiliation(s)
- Michael J Rempe
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Dept. of Mathematics and Computer Science, Whitworth University, Spokane, WA, USA
| | - Janne Grønli
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Torhild Thue Pedersen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Andrea Marti
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jonathan P Wisor
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA.,Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
6
|
Wadhwa M, Chauhan G, Roy K, Sahu S, Deep S, Jain V, Kishore K, Ray K, Thakur L, Panjwani U. Caffeine and Modafinil Ameliorate the Neuroinflammation and Anxious Behavior in Rats during Sleep Deprivation by Inhibiting the Microglia Activation. Front Cell Neurosci 2018; 12:49. [PMID: 29599709 PMCID: PMC5863523 DOI: 10.3389/fncel.2018.00049] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Sleep deprivation (SD) plagues modern society due to the professional demands. It prevails in patients with mood and neuroinflammatory disorders. Although growing evidence suggests the improvement in the cognitive performance by psychostimulants during sleep-deprived conditions, the impending involved mechanism is rarely studied. Thus, we hypothesized that mood and inflammatory changes might be due to the glial cells activation induced modulation of the inflammatory cytokines during SD, which could be improved by administering psychostimulants. The present study evaluated the role of caffeine/modafinil on SD-induced behavioral and inflammatory consequences. Methods: Adult male Sprague-Dawley rats were sleep deprived for 48 h using automated SD apparatus. Caffeine (60 mg/kg/day) or modafinil (100 mg/kg/day) were administered orally to rats once every day during SD. Rats were subjected to anxious and depressive behavioral evaluation after SD. Subsequently, blood and brain were collected for biochemical, immunohistochemical and molecular studies. Results: Sleep deprived rats presented an increased number of entries and time spent in closed arms in elevated plus maze test and decreased total distance traveled in the open field (OF) test. Caffeine/modafinil treatment significantly improved these anxious consequences. However, we did not observe substantial changes in immobility and anhedonia in sleep-deprived rats. Caffeine/modafinil significantly down-regulated the pro- and up-regulated the anti-inflammatory cytokine mRNA and protein expression in the hippocampus during SD. Similar outcomes were observed in blood plasma cytokine levels. Caffeine/modafinil treatment significantly decreased the microglial immunoreactivity in DG, CA1 and CA3 regions of the hippocampus during SD, however, no significant increase in immunoreactivity of astrocytes was observed. Sholl analysis signified the improvement in the morphological alterations of astrocytes and microglia after caffeine/modafinil administration during SD. Stereological analysis demonstrated a significant improvement in the number of ionized calcium binding adapter molecule I (Iba-1) positive cells (different states) in different regions of the hippocampus after caffeine or modafinil treatment during SD without showing any significant change in total microglial cell number. Eventually, the correlation analysis displayed a positive relationship between anxiety, pro-inflammatory cytokines and activated microglial cell count during SD. Conclusion: The present study suggests the role of caffeine or modafinil in the amelioration of SD-induced inflammatory response and anxious behavior in rats. Highlights - SD induced mood alterations in rats. - Glial cells activated in association with the changes in the inflammatory cytokines. - Caffeine or modafinil improved the mood and restored inflammatory changes during SD. - SD-induced anxious behavior correlated with the inflammatory consequences.
Collapse
Affiliation(s)
- Meetu Wadhwa
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Garima Chauhan
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Koustav Roy
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Surajit Sahu
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Satyanarayan Deep
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Vishal Jain
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Krishna Kishore
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Koushik Ray
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Lalan Thakur
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Usha Panjwani
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| |
Collapse
|
7
|
Bertolesi GE, Hehr CL, Munn H, McFarlane S. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation. Pigment Cell Melanoma Res 2016; 29:688-701. [DOI: 10.1111/pcmr.12531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Carrie L. Hehr
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Hayden Munn
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy; Hotchkiss Brain Institute; Alberta Children's Hospital Research Institute; University of Calgary; Calgary AB Canada
| |
Collapse
|
8
|
REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants. Neuropharmacology 2016; 108:415-25. [PMID: 27150557 DOI: 10.1016/j.neuropharm.2016.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 12/16/2022]
Abstract
Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.
Collapse
|