1
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593085. [PMID: 38766135 PMCID: PMC11100667 DOI: 10.1101/2024.05.08.593085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Humans can remember specific remote events without acting on them and influence which memories are retrieved based on internal goals. However, animal models typically present sensory cues to trigger memory retrieval and then assess retrieval based on action. Thus, it is difficult to determine whether measured neural activity patterns relate to the cue(s), the memory, or the behavior. We therefore asked whether retrieval-related neural activity could be generated in animals without cues or a behavioral report. We focused on hippocampal "place cells" which primarily represent the animal's current location (local representations) but can also represent locations away from the animal (remote representations). We developed a neurofeedback system to reward expression of remote representations and found that rats could learn to generate specific spatial representations that often jumped directly to the experimenter-defined target location. Thus, animals can deliberately engage remote representations, enabling direct study of retrieval-related activity in the brain.
Collapse
Affiliation(s)
- Michael E Coulter
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Anna K Gillespie
- Departments of Biological Structure and Lab Medicine and Pathology, University of Washington
| | - Joshua Chu
- Neuroengineering Initiative, Rice University
| | - Eric L Denovellis
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | | | - Daniel F Liu
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Katherine Wadhwani
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Baibhav Sharma
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | | | - Xinyi Deng
- Dept. of Statistics, Beijing University of Technology
| | - Uri T Eden
- Dept. of Mathematics and Statistics, Boston University
| | | | - Loren M Frank
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| |
Collapse
|
2
|
Bjelica B, Bartels MB, Hesebeck-Brinckmann J, Petri S. Non-motor symptoms in patients with amyotrophic lateral sclerosis: current state and future directions. J Neurol 2024; 271:3953-3977. [PMID: 38805053 PMCID: PMC11233299 DOI: 10.1007/s00415-024-12455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of both upper and lower motor neurons. A defining histopathological feature in approximately 97% of all ALS cases is the accumulation of phosphorylated trans-activation response (TAR) DNA-binding protein 43 protein (pTDP-43) aggregates in the cytoplasm of neurons and glial cells within the central nervous system. Traditionally, it was believed that the accumulation of TDP-43 aggregates and subsequent neurodegeneration primarily occurs in motor neurons. However, contemporary evidence suggests that as the disease progresses, other systems and brain regions are also affected. Despite this, there has been a limited number of clinical studies assessing the non-motor symptoms in ALS patients. These studies often employ various outcome measures, resulting in a wide range of reported frequencies of non-motor symptoms in ALS patients. The importance of assessing the non-motor symptoms reflects in a fact that they have a significant impact on patients' quality of life, yet they frequently go underdiagnosed and unreported during clinical evaluations. This review aims to provide an up-to-date overview of the current knowledge concerning non-motor symptoms in ALS. Furthermore, we address their diagnosis and treatment in everyday clinical practice.
Collapse
Affiliation(s)
- Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany.
| | - Maj-Britt Bartels
- Precision Neurology of Neuromuscular and Motoneuron Diseases, University of Luebeck, Lübeck, Germany
| | - Jasper Hesebeck-Brinckmann
- Neurology Department, Division for Neurodegenerative Diseases, University Medicine Mannheim, Heidelberg University, Mannheim Center for Translational Medicine, Mannheim, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany
| |
Collapse
|
3
|
Biswas D, Gupta S. Effect of adaptation functions and multilayer topology on synchronization. Phys Rev E 2024; 109:024221. [PMID: 38491636 DOI: 10.1103/physreve.109.024221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 03/18/2024]
Abstract
This study investigates the synchronization of globally coupled Kuramoto oscillators in monolayer and multilayer configurations. The interactions are taken to be pairwise, whose strength adapts with the instantaneous synchronization order parameter. The route to synchronization is analytically investigated using the Ott-Antonsen ansatz for two broad classes of adaptation functions that capture a wide range of transition scenarios. The formulation is subsequently extended to adaptively coupled multilayer configurations, using which a wider range of transition scenarios is uncovered for a bilayer model with cross-adaptive interlayer interactions.
Collapse
Affiliation(s)
- Dhrubajyoti Biswas
- Department of Physics, Indian Institute of Technology Madras, Madras 600036, India
| | - Sayan Gupta
- The Uncertainty Lab, Department of Applied Mechanics & Biomedical Engineering, Indian Institute of Technology Madras, Madras 600036, India and Complex Systems and Dynamics Group, Indian Institute of Technology Madras, Madras 600036, India
| |
Collapse
|
4
|
Mazzari G, Lowry CA, Langgartner D, Reber SO. Subcutaneous Mycobacterium vaccae ameliorates the effects of early life adversity alone or in combination with chronic stress during adulthood in male and female mice. Neurobiol Stress 2023; 26:100568. [PMID: 37727147 PMCID: PMC10506060 DOI: 10.1016/j.ynstr.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
Chronic psychosocial stress is a burden of modern society and poses a clear risk factor for a plethora of somatic and affective disorders, of which most are associated with an activated immune status and chronic low-grade inflammation. Preclinical and clinical studies further suggest that a failure in immunoregulation promotes an over-reaction of the inflammatory stress response and, thus, predisposes an individual to the development of stress-related disorders. Therefore, all genetic (i.e., sex) and environmental (i.e., early life adversity; ELA) factors facilitating an adult's inflammatory stress response are likely to increase their stress vulnerability. In the present study we investigated whether repeated subcutaneous (s.c.) administrations with a heat-killed preparation of Mycobacterium vaccae (M. vaccae; National Collection of Type Cultures (NCTC) 11659), an abundant soil saprophyte with immunoregulatory properties, are protective against negative behavioral, immunological and physiological consequences of ELA alone or of ELA followed by chronic psychosocial stress during adulthood (CAS) in male and female mice. ELA was induced by the maternal separation (MS) paradigm, CAS was induced by 19 days of chronic subordinate colony housing (CSC) in males and by a 7-week exposure to the social instability paradigm (SIP) in females. Our data indicate that ELA effects in both sexes, although relatively mild, were to a great extent prevented by subsequent s.c. M. vaccae administrations. Moreover, although the use of different paradigms for males and females impedes a direct comparison, male mice seemed to be more susceptible to CAS than females, with only females benefitting slightly from the stress protective effects of s.c. M. vaccae administrations when given prior to CAS alone. Finally, our data support the hypothesis that female mice are more vulnerable to the additive effects of ELA and CAS than male mice and that s.c. M. vaccae administrations subsequent to ELA but prior to CAS are protective in both sexes. Taken together and considering the limitation that CAS in males and females was induced by different paradigms, our findings are consistent with the hypotheses that murine stress vulnerability during different phases of life is strongly sex dependent and that developing immunoregulatory approaches, such as repeated s.c. administrations with immunoregulatory microorganisms, have potential for prevention/treatment of stress-related disorders.
Collapse
Affiliation(s)
- Giulia Mazzari
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Christopher A. Lowry
- Department of Integrative Physiology, Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
5
|
Gnoni V, Zoccolella S, Giugno A, Urso D, Tamburrino L, Filardi M, Logroscino G. Hypothalamus and amyotrophic lateral sclerosis: potential implications in sleep disorders. Front Aging Neurosci 2023; 15:1193483. [PMID: 37465321 PMCID: PMC10350538 DOI: 10.3389/fnagi.2023.1193483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects both motor and non-motor functions, including sleep regulation. Emerging evidence suggests that the hypothalamus, a brain region that plays a critical role in sleep-wake regulation, may be involved in the pathogenesis of ALS-related sleep disturbances. In this review, we have summarized results of studies on sleep disorders in ALS published between 2000 and 2023. Thereafter, we examined possible mechanisms by which hypothalamic dysfunctions may contribute to ALS-related sleep disturbances. Achieving a deeper understanding of the relationship between hypothalamic dysfunction and sleep disturbances in ALS can help improve the overall management of ALS and reduce the burden on patients and their families.
Collapse
Affiliation(s)
- Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Neurology Unit, San Paolo Hospital, Azienda Sanitaria Locale (ASL) Bari, Bari, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ludovica Tamburrino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Bomela W, Singhal B, Li JS. Engineering spatiotemporal patterns: information encoding, processing, and controllability in oscillator ensembles. Biomed Phys Eng Express 2023; 9:045033. [PMID: 37348467 PMCID: PMC10486008 DOI: 10.1088/2057-1976/ace0c9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
The ability to finely manipulate spatiotemporal patterns displayed in neuronal populations is critical for understanding and influencing brain functions, sleep cycles, and neurological pathologies. However, such control tasks are challenged not only by the immense scale but also by the lack of real-time state measurements of neurons in the population, which deteriorates the control performance. In this paper, we formulate the control of dynamic structures in an ensemble of neuron oscillators as a tracking problem and propose a principled control technique for designing optimal stimuli that produce desired spatiotemporal patterns in a network of interacting neurons without requiring feedback information. We further reveal an interesting presentation of information encoding and processing in a neuron ensemble in terms of its controllability property. The performance of the presented technique in creating complex spatiotemporal spiking patterns is demonstrated on neural populations described by mathematically ideal and biophysical models, including the Kuramoto and Hodgkin-Huxley models, as well as real-time experiments on Wein bridge oscillators.
Collapse
Affiliation(s)
- Walter Bomela
- Department of Electrical and Systems Engineering, Washington University in St. Louis,
United States of America
| | - Bharat Singhal
- Department of Electrical and Systems Engineering, Washington University in St. Louis,
United States of America
| | - Jr-Shin Li
- Department of Electrical and Systems Engineering, Washington University in St. Louis,
United States of America
- Division of Biology & and Biomedical Sciences, Washington University in St. Louis,
United States of America
| |
Collapse
|
7
|
Wang JQ, Liu YR, Xia QR, Liang J, Wang JL, Li J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci 2023; 19:1316-1335. [PMID: 36923934 PMCID: PMC10008696 DOI: 10.7150/ijbs.81518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most prevalent neuropsychological disorders worldwide, and its pathogenesis is convoluted and poorly understood. There is considerable evidence demonstrating significant associations between multiple heritable factors and the onset and progression of AUD. In recent years, a substantial body of research conducted by emerging biotechnologies has increasingly highlighted the crucial roles of noncoding RNAs (ncRNAs) in the pathophysiology of mental diseases. As in-depth understanding of ncRNAs and their mechanisms of action, they have emerged as prospective diagnostic indicators and preclinical therapeutic targets for a variety of psychiatric illness, including AUD. Of note, dysregulated expression of ncRNAs such as circRNAs, lncRNAs and miRNAs was routinely found in AUD individuals, and besides, exogenous regulation of partial ncRNAs has also been shown to be effective in ameliorating alcohol preference and excessive alcohol consumption. However, the exact molecular mechanism still remains elusive. Herein, we systematically summarized current knowledge regarding alterations in the expression of certain ncRNAs as well as their-mediated regulatory mechanisms in individuals with AUD. And finally, we detailedly reviewed the potential theranostics applications of gene therapy agents targeting ncRNAs in AUD mice. Overall, a deeper comprehension of functional roles and biological mechanisms of ncRNAs may make significant contributions to the accurate diagnosis and effective treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Ya-Ru Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
8
|
Pan P, Huang X. The Clinical Application of Growth Hormone and Its Biological and Molecular Mechanisms in Assisted Reproduction. Int J Mol Sci 2022; 23:ijms231810768. [PMID: 36142677 PMCID: PMC9505823 DOI: 10.3390/ijms231810768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Growth hormone (GH) has been used as a co-gonadotrophin in assisted reproduction, particularly in poor ovarian responders. The application of GH has been alleged to activate primordial follicles and improve oocyte quality, embryo quality, and steroidogenesis. However, the effects of GH on the live birth rate among women is controversial. Additionally, although the basic biological mechanisms that lead to the above clinical differences have been investigated, they are not yet well understood. The actions of GH are mediated by GH receptors (GHRs) or insulin-like growth factors (IGFs). GH regulates the vital signal transduction pathways that are involved in primordial follicular activation, steroidogenesis, and oocyte maturation. However, the therapeutic windows and duration of GH administration during assisted reproductive technology require further investigation. The review aimed to clarify the role of GH in human fertility from a molecular and biological point of view to provide evidence for proper GH administration.
Collapse
|
9
|
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23052454. [PMID: 35269597 PMCID: PMC8910484 DOI: 10.3390/ijms23052454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally assessed for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study (molecular, biochemical, metabolic, and clinical), the intimate nature of both processes appears to consist of opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranging original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows us to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) is an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Furthermore, within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth. Finally, and for the first time, a new and integrated model of treatment for MS can now be advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
- Correspondence: ; Tel.: +34-629-047-141
| | - Khalid Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Julián Polo Orozco
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
10
|
Zheng S, Liang Z, Qu Y, Wu Q, Wu H, Liu Q. Kuramoto Model-Based Analysis Reveals Oxytocin Effects on Brain Network Dynamics. Int J Neural Syst 2021; 32:2250002. [PMID: 34860138 DOI: 10.1142/s0129065722500022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The oxytocin effects on large-scale brain networks such as Default Mode Network (DMN) and Frontoparietal Network (FPN) have been largely studied using fMRI data. However, these studies are mainly based on the statistical correlation or Bayesian causality inference, lacking interpretability at the physical and neuroscience level. Here, we propose a physics-based framework of the Kuramoto model to investigate oxytocin effects on the phase dynamic neural coupling in DMN and FPN. Testing on fMRI data of 59 participants administrated with either oxytocin or placebo, we demonstrate that oxytocin changes the topology of brain communities in DMN and FPN, leading to higher synchronization in the FPN and lower synchronization in the DMN, as well as a higher variance of the coupling strength within the DMN and more flexible coupling patterns at group level. These results together indicate that oxytocin may increase the ability to overcome the corresponding internal oscillation dispersion and support the flexibility in neural synchrony in various social contexts, providing new evidence for explaining the oxytocin modulated social behaviors. Our proposed Kuramoto model-based framework can be a potential tool in network neuroscience and offers physical and neural insights into phase dynamics of the brain.
Collapse
Affiliation(s)
- Shuhan Zheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhichao Liang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Youzhi Qu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qingyuan Wu
- State Key Laboratory of Cognitive, Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing, Normal University, 100875 Beijing, P. R. China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences, and Department of Psychology, University, of Macau, Macau, P. R. China
| | - Quanying Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Southern University of Science and Technology, Shenzhen 518005, P. R. China
| |
Collapse
|
11
|
Luo Y, Zheng Z, Yang Y, Bai X, Yang H, Zhu H, Pan H, Chen S. Effects of growth hormone on cognitive, motor, and behavioral development in Prader-Willi syndrome children: a meta-analysis of randomized controlled trials. Endocrine 2021; 71:321-330. [PMID: 33222122 DOI: 10.1007/s12020-020-02547-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The benefits of growth hormone (GH) therapy in Prader-Willi syndrome (PWS) children are well established, but there is still considerable controversy regarding whether GH treatment can improve cognitive, motor, and behavioral development in PWS children. The objectives of this meta-analysis were to quantitatively evaluate the effects of GH on cognitive, motor function, and behavioral development in PWS children. METHODS Randomized controlled trials (RCTs) examining the effects of GH on cognitive, motor, and behavioral development in PWS children were identified by searching the MEDLINE, EMBASE, and Cochrane Library databases. Intervention effects were represented by Hedges'g and pooled to calculate effect sizes using a random-effects model. RESULTS Ten relevant studies comprising data from 302 participants were finally included. We observed no significant difference in cognitive performance between the GH treatment group and the control group (p = 0.197). GH treatment was shown to remarkably improve motor development in PWS children compared with the control treatment (p < 0.001), with moderate positive treatment effects (Hedges'g [95% CI] = 0.71 [0.38, 1.03]). There were no significant differences between the GH group and the control group based on objective assessments of behavioral development (p = 0.53). CONCLUSIONS The meta-analysis suggested that GH treatment had a significantly positive effect on motor development, with moderate treatment effects in PWS children; however, there was no evidence of effects on cognitive or behavioral development.
Collapse
Affiliation(s)
- Yunyun Luo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Xi Bai
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China.
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China.
| |
Collapse
|
12
|
Tao Y, Rapp B. Investigating the network consequences of focal brain lesions through comparisons of real and simulated lesions. Sci Rep 2021; 11:2213. [PMID: 33500494 PMCID: PMC7838400 DOI: 10.1038/s41598-021-81107-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
Given the increased interest in the functional human connectome, a number of computer simulation studies have sought to develop a better quantitative understanding of the effects of focal lesions on the brain’s functional network organization. However, there has been little work evaluating the predictions of this simulation work vis a vis real lesioned connectomes. One of the few relevant studies reported findings from real chronic focal lesions that only partially confirmed simulation predictions. We hypothesize that these discrepancies arose because although the effects of focal lesions likely consist of two components: short-term node subtraction and long-term network re-organization, previous simulation studies have primarily modeled only the short-term consequences of the subtraction of lesioned nodes and their connections. To evaluate this hypothesis, we compared network properties (modularity, participation coefficient, within-module degree) between real functional connectomes obtained from chronic stroke participants and “pseudo-lesioned” functional connectomes generated by subtracting the same sets of lesioned nodes/connections from healthy control connectomes. We found that, as we hypothesized, the network properties of real-lesioned connectomes in chronic stroke differed from those of the pseudo-lesioned connectomes which instantiated only the short-term consequences of node subtraction. Reflecting the long-term consequences of focal lesions, we found re-organization of the neurotopography of global and local hubs in the real but not the pseudo-lesioned connectomes. We conclude that the long-term network re-organization that occurs in response to focal lesions involves changes in functional connectivity within the remaining intact neural tissue that go well beyond the short-term consequences of node subtraction.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, USA.
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
13
|
Gong Y, Luo S, Fan P, Zhu H, Li Y, Huang W. Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 2020; 18:121. [PMID: 33287836 PMCID: PMC7720521 DOI: 10.1186/s12958-020-00677-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It is reported that growth hormone (GH) can alleviate oxidative stress (OS) induced apoptosis in some types of cells by activating the PI3K/Akt signaling pathway. This study investigated the role and underlying mechanism of GH in OS and apoptosis in granulosa cells (GCs) of patients with polycystic ovary syndrome (PCOS). METHODS Primary GCs were collected from patients with and without PCOS (controls, n = 32) during oocyte retrieval. The patients with PCOS were randomly assigned to take GH treatment (PCOS-GH, n = 30) or without GH treatment (PCOS-C, n = 31). Reactive oxygen species (ROS) level was determined by spectrophotometry and fluorescence microscopy. GC apoptosis and mitochondrial membrane potential (MMP) were detected by Annexin V-FITC/PI double-staining and JC-1 staining, respectively (flow cytometry). The expression of apoptosis-related genes and proteins involved in PI3K/Akt signaling was determined by quantitative reverse-transcription polymerase chain reaction and western blotting, while active caspase-9 and caspase-3 levels of GCs were determined by enzyme-linked immunosorbent assay. RESULTS Our study found that in GCs of the PCOS-GH group, the ROS levels and apoptotic rates were significantly decreased, whereas MMP was significantly increased when compared to those in the PCOS-C group (P < 0.05). The mRNA levels of FOXO1, Bax, caspase-9, and caspase-3 were significantly decreased, whereas Bcl-2 was increased in GCs of the PCOS-GH group than those in the PCOS-C group (P < 0.05). The protein levels of FOXO1, Bax, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 were decreased, whereas p-PI3K/PI3K, p-Akt/Akt, p-FOXO1 and Bcl-2 were increased in GCs of the PCOS-GH group, compared with those in the PCOS-C group (P < 0.05). CONCLUSION OS induced apoptosis and downregulated the PI3K/Akt signaling pathway in patients with PCOS. GH could alleviate apoptosis and activate the PI3K/Akt signaling pathway. CLINICAL TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry. ChiCTR1800019437 . Prospectively registered on October 20, 2018.
Collapse
Affiliation(s)
- Yan Gong
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, People's Republic of China
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and children's Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Shan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Ping Fan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Huili Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Yujing Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan, People's Republic of China.
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, #1416 Chenglong Road, JinJiang District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
14
|
Growth hormone rescue cerebellar degeneration in SCA3 transgenic mice. Biochem Biophys Res Commun 2020; 529:467-473. [PMID: 32703453 DOI: 10.1016/j.bbrc.2020.05.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a fatal neurodegenerative disease for which no identified effective treatment or prevention methods exist. However, low-dose growth hormone (GH) therapy, as a potential off-label use, may deter the progress of SCA3. SCA3 15Q and SCA3 84Q transgenic mice harboring a YAC transgene that expresses the human ATXN3 gene with a pathogenic expanded 15 CAG repeat and 84 CAG repeat motif, respectively, were recruited. SCA3 15Q transgenic mice were considered as the healthy control group, whereas low-dose GH- and PBS-treated SCA3 84Q transgenic mice were considered as the study and sham groups, respectively. The SCA3 84Q transgenic mice were administered intraperitoneal injections of GH or PBS weekly from the postnatal age of 9 months-18 months. After 9 months of GH treatment in the SCA3 84Q transgenic mice, all locomotor functions including rotarod test, behavior box analysis were restored. The GH-treated SCA3 84Q transgenic mice revealed more preserved Purkinje cells/cerebellar cortex and less ataxin-3 aggregation, DNA oxidative, cell apoptosis compared with the PBS-treated SCA3 84Q transgenic mice. GH therapy may be one of the potential off-labeled using in the alleviation of SCA3 progression.
Collapse
|
15
|
Nebie O, Barro L, Wu YW, Knutson F, Buée L, Devos D, Peng CW, Blum D, Burnouf T. Heat-treated human platelet pellet lysate modulates microglia activation, favors wound healing and promotes neuronal differentiation in vitro. Platelets 2020; 32:226-237. [PMID: 32106742 DOI: 10.1080/09537104.2020.1732324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The neurorestorative efficacy of human platelet lysates in neurodegenerative disorders is still under investigation. Platelets prepared from standard and pathogen reduced platelet concentrates were pelletized, washed, concentrated, and subjected to freeze-thawing. The lysate was heated to 56°C for 30 min and characterized. Toxicity was evaluated using SH-SY5Y neuroblastoma, BV-2 microglial, and EA-hy926 endothelial cells. Inflammatory activity was tested by examining tumor necrosis factor (TNF) and cyclooxygenase (COX)-2 expressions by BV-2 microglia with or without stimulation by lipopolysaccharides (LPS). The capacity to stimulate wound healing was evaluated by a scratch assay, and the capacity to differentiate SH-SY5Y into neurons was also examined. Platelet lysates contained a range of neurotrophins. They were not toxic to SH-SY5Y, EA-hy926, or BV-2 cells, did not induce the expression of TNF or COX-2 inflammatory markers by BV-2 microglia, and decreased inflammation after LPS stimulation. They stimulated the wound closure in the scratch assay and induced SH-SY5Y differentiation as revealed by the increased length of neurites as well as β3-tubulin and neurofilament staining. These data confirm the therapeutic potential of platelet lysates in the treatment of disorders of the central nervous system and support further evaluation as novel neurorestorative biotherapy in preclinical models.
Collapse
Affiliation(s)
- Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, France
| | - Chih-Wei Peng
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - David Blum
- Univ. Lille, Inserm, CHU-Lille, U1172, Lille Neuroscience & Cognition, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,PhD Program in Mind, Brain & Consciousness, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Pregowska A, Casti A, Kaplan E, Wajnryb E, Szczepanski J. Information processing in the LGN: a comparison of neural codes and cell types. BIOLOGICAL CYBERNETICS 2019; 113:453-464. [PMID: 31243531 PMCID: PMC6658673 DOI: 10.1007/s00422-019-00801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
To understand how anatomy and physiology allow an organism to perform its function, it is important to know how information that is transmitted by spikes in the brain is received and encoded. A natural question is whether the spike rate alone encodes the information about a stimulus (rate code), or additional information is contained in the temporal pattern of the spikes (temporal code). Here we address this question using data from the cat Lateral Geniculate Nucleus (LGN), which is the visual portion of the thalamus, through which visual information from the retina is communicated to the visual cortex. We analyzed the responses of LGN neurons to spatially homogeneous spots of various sizes with temporally random luminance modulation. We compared the Firing Rate with the Shannon Information Transmission Rate , which quantifies the information contained in the temporal relationships between spikes. We found that the behavior of these two rates can differ quantitatively. This suggests that the energy used for spiking does not translate directly into the information to be transmitted. We also compared Firing Rates with Information Rates for X-ON and X-OFF cells. We found that, for X-ON cells the Firing Rate and Information Rate often behave in a completely different way, while for X-OFF cells these rates are much more highly correlated. Our results suggest that for X-ON cells a more efficient "temporal code" is employed, while for X-OFF cells a straightforward "rate code" is used, which is more reliable and is correlated with energy consumption.
Collapse
Affiliation(s)
- Agnieszka Pregowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02–106 Warsaw, Poland
| | - Alex Casti
- Department of Mathematics, Gildart-Haase School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NY 07666 USA
| | - Ehud Kaplan
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- National Institute of Mental Health (NUDZ), Topolova 748, 250 67 Klecany, Czech Republic
- Department of Philosophy of Science, Charles University, Prague, Czech Republic
| | - Eligiusz Wajnryb
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02–106 Warsaw, Poland
| | - Janusz Szczepanski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02–106 Warsaw, Poland
| |
Collapse
|
17
|
Abstract
Intact spiral ganglion neurons are a specific requirement for hearing rehabilitation in deaf patients by cochlear implantation. Neurotrophic growth factors have been proposed as effective tools to protect and regenerate spiral ganglion neurons that are degenerated in the majority of patients suffering from hearing loss. Here, we show that growth hormone (GH), a pleiotropic growth factor whose neurotrophic role in the inner ear is still unclear, significantly increases neurite extension, as well as neuronal branching, in spiral ganglion cell cultures derived from early postnatal rats. Our data suggest that GH can act as a potent neurotrophic factor for inner ear neurons, which specifically promotes neurite growth. These effects might be elicited in a direct way or, alternatively, by induction of other growth factors that account for the observed neurotrophic effects. Thus, we conlude that GH might represent a novel candidate for the treatment of neurodegeneration in the hearing-impaired inner ear that has the potential to ultimately improve the performance and outcome of modern auditory implants.
Collapse
|
18
|
Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci 2017; 18:ijms18112441. [PMID: 29149058 PMCID: PMC5713408 DOI: 10.3390/ijms18112441] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction. Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. Methods. In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: “GH/IGF-1” associated with “neuroregeneration”, “amyotrophic lateral sclerosis”, “Alzheimer disease”, “Parkinson’s disease”, “brain”, and “neuron”. Results. Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. Conclusions. Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42-47891 Falciano, San Marino.
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca via Cadore, 48-20900 Monza Brianza, Italy.
| | - Laura Rizzi
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, 48-20900 Monza Brianza, Italy.
| |
Collapse
|
19
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
20
|
Gouel F, Do Van B, Chou ML, Jonneaux A, Moreau C, Bordet R, Burnouf T, Devedjian JC, Devos D. The protective effect of human platelet lysate in models of neurodegenerative disease: involvement of the Akt and MEK pathways. J Tissue Eng Regen Med 2016; 11:3236-3240. [PMID: 27943621 DOI: 10.1002/term.2222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 01/16/2023]
Abstract
Neurodegenerative diseases have huge economic and societal impacts, and place an immense emotional burden on patients and caregivers. Given that platelets have an essential physiological role in wound healing and tissue repair, human platelet lysates (HPLs) are being developed as a novel, effective biotherapy for neurodegenerative diseases. HPLs constitute abundant, readily accessible sources of physiological mixtures of many growth factors (GFs), with demonstrable effects on neuron survival and thus the development, maintenance, function and plasticity of the vertebrate nervous system. Here, we found that HPLs had marked neuroprotective abilities in cell-based models of Parkinson's disease and amyotrophic lateral sclerosis (the LUHMES and NSC-34 cell lines, respectively). The HPLs protected against specific cell death pathways (apoptosis and ferroptosis) and specific oxidative stress inducers [1-methyl-4-phenylpyridinium (MPP+) and menadione], and always afforded more protection than commonly used recombinant GFs (rGFs). The mechanism of protection of HPLs involved specific signalling pathways: whereas the Akt pathway was activated by HPLs under all conditions, the MEK pathway appeared to be more specifically involved in protection against MPP+ toxicity in LUHMES and, in a lesser extent, in staurosporine toxicity in NSC-34. Our present results suggest that HPLs-based therapies could be used to prevent neuronal loss in neurodegenerative diseases while overcoming the limitations currently associated with use of rGFs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Flore Gouel
- Department of Medical Pharmacology/INSERM U1171, Lille Faculty of Medicine, Lille University Medical Center and Lille Nord de France University, Lille, France
| | - Bruce Do Van
- Department of Medical Pharmacology/INSERM U1171, Lille Faculty of Medicine, Lille University Medical Center and Lille Nord de France University, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Aurélie Jonneaux
- Department of Medical Pharmacology/INSERM U1171, Lille Faculty of Medicine, Lille University Medical Center and Lille Nord de France University, Lille, France
| | - Caroline Moreau
- Department of Movement Disorders and Neurology, Lille University Medical Center and Lille Nord de France University, Lille, France
| | - Régis Bordet
- Department of Medical Pharmacology/INSERM U1171, Lille Faculty of Medicine, Lille University Medical Center and Lille Nord de France University, Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology/INSERM U1171, Lille Faculty of Medicine, Lille University Medical Center and Lille Nord de France University, Lille, France.,Université du Littoral Cote d'Opale, Calais, France
| | - David Devos
- Department of Medical Pharmacology/INSERM U1171, Lille Faculty of Medicine, Lille University Medical Center and Lille Nord de France University, Lille, France.,Department of Movement Disorders and Neurology, Lille University Medical Center and Lille Nord de France University, Lille, France
| |
Collapse
|
21
|
Lynch C, LaGasse AB. Training Endogenous Task Shifting Using Music Therapy: A Feasibility Study. J Music Ther 2016; 53:279-307. [PMID: 27235114 DOI: 10.1093/jmt/thw008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/10/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND People with acquired brain injury (ABI) are highly susceptible to disturbances in executive functioning (EF), and these effects are pervasive. Research studies using music therapy for cognitive improvement in this population are limited. OBJECTIVE The purpose of this study was to determine the feasibility of a Musical Executive Function Training (MEFT) intervention to address task-shifting skills in adults with ABI and to obtain preliminary evidence of intervention effect on task shifting. METHODS Fourteen participants were randomly assigned to one of three groups: a music therapy intervention group (MTG), a singing group (SG), or the no-intervention control group (CG). The SG and MTG met for one hour a day for five days. Feasibility measures included participant completion rates and intervention fidelity. Potential benefits were measured using the Trail Making Test and the Paced Auditory Serial Addition Task as a pre- and posttest measure. RESULTS Participant completion rates and interventionist fidelity to the protocol supported feasibility. One-way ANOVA of the pre- and posttest group differences revealed a trend toward improvement in the MTG over the SG. CONCLUSIONS Feasibility and effect size data support a larger trial of the MEFT protocol.
Collapse
Affiliation(s)
- Colleen Lynch
- Colorado State University Colleen Lynch, MM, MT-BC, is a music therapist currently working in the psychosomatic clinic of Ostalb Klinikum Aalen, Germany. Blythe LaGasse, PhD, MT-BC, is an associate professor of music therapy at Colorado State University
| | - A Blythe LaGasse
- Colorado State University Colleen Lynch, MM, MT-BC, is a music therapist currently working in the psychosomatic clinic of Ostalb Klinikum Aalen, Germany. Blythe LaGasse, PhD, MT-BC, is an associate professor of music therapy at Colorado State University.
| |
Collapse
|
22
|
|
23
|
Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016; 4:e1129476. [PMID: 27141418 PMCID: PMC4836458 DOI: 10.1080/21688370.2015.1129476] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
Blood brain barrier (BBB) is a group of astrocytes, neurons and endothelial cells, which makes restricted passage of various biological or chemical entities to the brain tissue. It gives protection to brain at one hand, but at the other hand it has very selective permeability for bio-actives and other foreign materials and is one of the major challenges for the drug delivery. Nanocarriers are promising to cross BBB utilizing alternative route of administration such as intranasal and intra-carotid drug delivery which bypasses BBB. In future more optimized drug delivery system can be achieved by compiling the best routes with the best carriers. Single photon emission tomography (SPECT) and different brain-on-a-chip in vitro models are being very reliable to study live in vivo tracking of BBB and its pathophysiology, respectively. In the current review we have tried to exploit mechanistically all these to understand and manage the various BBB disruptions in diseased condition along with crossing the hurdles occurring in drug or gene delivery across BBB.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Ashok Kumar Sharma
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Umesh Gupta
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| |
Collapse
|
24
|
Chung JY, Sunwoo JS, Kim MW, Kim M. The neuroprotective effects of human growth hormone as a potential treatment for amyotrophic lateral sclerosis. Neural Regen Res 2015; 10:1201-3. [PMID: 26487835 PMCID: PMC4590220 DOI: 10.4103/1673-5374.162690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jin-Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, Kangwon National University, Gangwondo, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Min-Wook Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea ; Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, Incheon, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea ; Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|