1
|
Fukumoto H, Shimoda M, Hoshino S. The effects of different designs of indoor biophilic greening on psychological and physiological responses and cognitive performance of office workers. PLoS One 2024; 19:e0307934. [PMID: 39058729 PMCID: PMC11280145 DOI: 10.1371/journal.pone.0307934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Impression on biophilic designs influences the effects of indoor greening. The current study aimed to investigate the effects of different biophilic designs in office rooms on the psychological and physiological responses and the cognitive performance of office workers. Indoor greening rooms with Japanese and tropical designs were used along with the green-free (control) design in this study. The heart rate variability of the participants was not affected by green designs. However, there was improvement in impressions on tropical and Japanese designs in office rooms. In particular, the Japanese design was more effective in decreasing negative emotions than the tropical design. The electroencephalography during 5-min exposure to the greening designs showed limited frequency bands and regions of interest affected by the greenery design. Taken together with the psychological data, indoor greening with the tropical design promoted positive mood states. Meanwhile, indoor greening in the Japanese design, inhibited negative mood states. However, there were no significant differences between the two designs in terms of cognitive task performance. Hence, indoor greening increases neural efficiency during cognitive tasks.
Collapse
Affiliation(s)
- Hiroyuki Fukumoto
- Division of Environment Conservation, Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho Fuchu, Tokyo, Japan
| | - Masahiro Shimoda
- Division of Environment Conservation, Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho Fuchu, Tokyo, Japan
| | - Saeko Hoshino
- Urban Scape Unit, Green Relation Department, Greeval Co. Ltd., Minato-ku, Tokyo, Japan
| |
Collapse
|
2
|
Zhozhikashvili N, Protopova M, Shkurenko T, Arsalidou M, Zakharov I, Kotchoubey B, Malykh S, Pavlov YG. Working memory processes and intrinsic motivation: An EEG study. Int J Psychophysiol 2024; 201:112355. [PMID: 38718899 DOI: 10.1016/j.ijpsycho.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
Processes typically encompassed by working memory (WM) include encoding, retention, and retrieval of information. Previous research has demonstrated that motivation can influence WM performance, although the specific WM processes affected by motivation are not yet fully understood. In this study, we investigated the effects of motivation on different WM processes, examining how task difficulty modulates these effects. We hypothesized that motivation level and personality traits of the participants (N = 48, 32 females; mean age = 21) would modulate the parietal alpha and frontal theta electroencephalography (EEG) correlates of WM encoding, retention, and retrieval phases of the Sternberg task. This effect was expected to be more pronounced under conditions of very high task difficulty. We found that increasing difficulty led to reduced accuracy and increased response time, but no significant relationship was found between motivation and accuracy. However, EEG data revealed that motivation influenced WM processes, as indicated by changes in alpha and theta oscillations. Specifically, higher levels of the Resilience trait-associated with mental toughness, hardiness, self-efficacy, achievement motivation, and low anxiety-were related to increased alpha desynchronization during encoding and retrieval. Increased scores of Subjective Motivation to perform well in the task were related to enhanced frontal midline theta during retention. Additionally, these effects were significantly stronger under conditions of high difficulty. These findings provide insights into the specific WM processes that are influenced by motivation, and underscore the importance of considering both task difficulty and intrinsic motivation in WM research.
Collapse
Affiliation(s)
- Natalia Zhozhikashvili
- Faculty of Social Sciences, HSE University, Moscow, Russia; Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Maria Protopova
- Center for Language and Brain, HSE University, Moscow, Russia
| | | | | | - Ilya Zakharov
- Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sergey Malykh
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yuri G Pavlov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Eskikurt G, Duru AD, Ermutlu N, İşoğlu-Alkaç Ü. Evaluation of Brain Electrical Activity of Visual Working Memory with Time-Frequency Analysis. Clin EEG Neurosci 2024:15500594231224014. [PMID: 38225169 DOI: 10.1177/15500594231224014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The term visual working memory (VWM) refers to the temporary storage of visual information. In electrophysiological recordings during the change detection task which relates to VWM, contralateral negative slow activity was detected. It was found to occur during the information is kept in memory and it was called contralateral delay activity. In this study, the characteristics of electroencephalogram frequencies of the contralateral and ipsilateral responses in the retention phase of VWM were evaluated by using time-frequency analysis (discrete wavelet transform [DWT]) in the change detection task. Twenty-six volunteers participated in the study. Event-related brain potentials (ERPs) were examined, and then a time-frequency analysis was performed. A statistically significant difference between contralateral and ipsilateral responses was found in the ERP. DWT showed a statistically significant difference between contralateral and ipsilateral responses in the delta and theta frequency bands range. When volunteers were grouped as either high or low VWM capacity the time-frequency analysis between these groups revealed that high memory capacity groups have a significantly higher negative coefficient in alpha and beta frequency bands. This study showed that during the retention phase delta and theta bands may relate to visual memory retention and alpha and beta bands may reflect individual memory capacity.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Faculty of Humanities and Social Sciences, Department of Psychology, Istinye University, Istanbul, Turkey
| | - Adil Deniz Duru
- Faculty of Sport Sciences, Department of Physical Education and Sports Teaching, Marmara University, Marmara University, Istanbul, Turkey
| | - Numan Ermutlu
- Faculty of Medicine, Department of Physiology, Istanbul Sağlık ve Teknoloji University, Istanbul, Turkey
| | - Ümmühan İşoğlu-Alkaç
- Istanbul Faculty of Medicine, Department of Physiology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Ou S, Cao Y, Xie T, Jiang T, Li J, Luo W, Ma N. Effect of homeostatic pressure and circadian arousal on the storage and executive components of working memory: Evidence from EEG power spectrum. Biol Psychol 2023; 184:108721. [PMID: 37952693 DOI: 10.1016/j.biopsycho.2023.108721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Diurnal fluctuations in working memory (WM) performance, characterized by task-specific peaks and troughs, are likely attributed to the differential regulation of WM subcomponents by interactions between circadian and homeostatic processes. The current study aimed to investigate the independent effects of circadian and homeostatic processes on the storage and executive subcomponents of WM. We assessed the change in frontal-midline theta (FMT) power supporting WM executive component and posterior alpha/beta power supporting WM storage during N-back tasks in the morning, midafternoon with and without a nap from 31 healthy adults. The results suggested that when the accumulated sleep homeostasis was alleviated in the midafternoon by a daytime nap, higher ACC, less number of omissions, and a stronger increase in FMT power from the no nap to nap conditions. Compared to the morning, a stronger decrease in posterior alpha power, and posterior beta power (only in the 3-back task), was observed in the no-nap condition because of circadian arousal regulation. These findings suggest that the circadian process primarily influences the storage aspect of WM supported by posterior alpha and beta activity, while sleep homeostasis has a greater impact on the execution aspect supported by FMT activity.
Collapse
Affiliation(s)
- Simei Ou
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yixuan Cao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tian Xie
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Tianxiang Jiang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jiahui Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Wei Luo
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China; Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Rahman M, Karwowski W, Sapkota N, Ismail L, Alhujailli A, Sumano RF, Hancock PA. Isometric Arm Forces Exerted by Females at Different Levels of Physical Comfort and Their EEG Signatures. Brain Sci 2023; 13:1027. [PMID: 37508959 PMCID: PMC10377375 DOI: 10.3390/brainsci13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
A variety of subjective measures have traditionally been used to assess the perception of physical exertion at work and related body responses. However, the current understanding of physical comfort experienced at work is very limited. The main objective of this study was first to investigate the magnitude of isometric arm forces exerted by females at different levels of physical comfort measured on a new comfort scale and, second, to assess their corresponding neural signatures expressed in terms of power spectral density (PSD). The study assessed PSDs of four major electroencephalography (EEG) frequency bands, focusing on the brain regions controlling motor and perceptual processing. The results showed statistically significant differences in exerted arm forces and the rate of perceived exertion at the various levels of comfort. Significant differences in power spectrum density at different physical comfort levels were found for the beta EEG band. Such knowledge can be useful in incorporating female users' force requirements in the design of consumer products, including tablets, laptops, and other hand-held information technology devices, as well as various industrial processes and work systems.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Nabin Sapkota
- Department of Engineering Technology, Northwestern State University of Louisiana, Natchitoches, LA 71497, USA
| | - Lina Ismail
- Department of Industrial and Management Engineering, Arab Academy for Science, Technology, and Maritime Transport, Alexandria 2913, Egypt
| | - Ashraf Alhujailli
- Department of Management Science, Yanbu Industrial College, Yanbu 46452, Saudi Arabia
| | - Raul Fernandez Sumano
- Industrial Engineering Technology, Dunwoody College of Technology, Minneapolis, MN 55403, USA
| | - P A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
6
|
Yoon JE, Mo H, Kim DW, Im HJ. Quantitative electroencephalographic analysis of delirium tremens development following alcohol-withdrawal seizure based on a small number of male cases. Brain Behav 2022; 12:e2804. [PMID: 36306397 PMCID: PMC9759131 DOI: 10.1002/brb3.2804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Seizures and delirium tremens (DTs) are recognized as severe alcohol-withdrawal symptoms. Prolonged admission and serious complications associated with alcohol withdrawal are responsible for increased costs and use of medical and social resources. This study investigated the predictive value of quantitative electroencephalography (QEEG) for developing alcohol-related DTs after alcohol-withdrawal seizure (AWS). METHODS We compared differences in QEEG in patients after AWS (n = 13). QEEG was performed in the intensive care unit within 48 h of admission, including in age- and sex-matched healthy controls. We also investigated the prognostic value of QEEG for the development of alcohol DTs after AWS in a retrospective, case-control study. The spectral power of each band frequency and the ratio of the theta to alpha band (TAR) in the electroencephalogram were analyzed using iSyncBrain® (iMediSync, Inc., Korea). RESULTS The beta frequency and the alpha frequency band power were significantly higher and lower, respectively, in patients than in age- and sex-matched healthy controls. In AWS patients with DTs, the relative beta-3 power was lower, particularly in the left frontal area, and the TAR was significantly higher in the central channel than in those without DTs. CONCLUSION Quantitative EEG showed neuronal excitability and decreased cognitive activities characteristic of AWS associated with alcohol-withdrawal state, and we demonstrated that quantitative EEG might be a helpful tool for detecting patients at a high risk of developing DTs during an alcohol-dependence period.
Collapse
Affiliation(s)
- Jee-Eun Yoon
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| | - Heejung Mo
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Dong Wook Kim
- Department of Neurology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Im
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| |
Collapse
|
7
|
Angulo-Sherman IN, Saavedra-Hernández A, Urbina-Arias NE, Hernández-Granados Z, Sainz M. Preliminary Evidence of EEG Connectivity Changes during Self-Objectification of Workers. SENSORS (BASEL, SWITZERLAND) 2022; 22:7906. [PMID: 36298257 PMCID: PMC9606942 DOI: 10.3390/s22207906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Economic objectification is a form of dehumanization in which workers are treated as tools for enhancing productivity. It can lead to self-objectification in the workplace, which is when people perceive themselves as instruments for work. This can cause burnout, emotional drain, and a modification of self-perception that involves a loss of human attributes such as emotions and reasoning while focusing on others' perspectives for evaluating the self. Research on workers self-objectification has mainly analyzed the consequences of this process without exploring the brain activity that underlies the individual's experiences of self-objectification. Thus, this project explores the electroencephalographic (EEG) changes that occur in participants during an economic objectifying task that resembled a job in an online store. After the task, a self-objectification questionnaire was applied and its resulting index was used to label the participants as self-objectified or non-self-objectified. The changes over time in EEG event-related synchronization (ERS) and partial directed coherence (PDC) were calculated and compared between the self-objectification groups. The results show that the main differences between the groups in ERS and PDC occurred in the beta and gamma frequencies, but only the PDC results correlated with the self-objectification group. These results provide information for further understanding workers' self-objectification. These EEG changes could indicate that economic self-objectification is associated with changes in vigilance, boredom, and mind-wandering.
Collapse
Affiliation(s)
- Irma N. Angulo-Sherman
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Annel Saavedra-Hernández
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Natalia E. Urbina-Arias
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Zahamara Hernández-Granados
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza García 66238, Mexico
| | - Mario Sainz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Estudios a Distancia, C. de Bravo Murillo 38, 28015 Madrid, Spain
| |
Collapse
|
8
|
Kant P, Laskar SH, Hazarika J. Transfer learning-based EEG analysis of visual attention and working memory on motor cortex for BCI. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Rutkowski TM, Abe MS, Tokunaga S, Komendzinski T, Otake-Matsuura M. Dementia Digital Neuro-biomarker Study from Theta-band EEG Fluctuation Analysis in Facial and Emotional Identification Short-term Memory Oddball Paradigm. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4056-4059. [PMID: 36086235 DOI: 10.1109/embc48229.2022.9871991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An efficient machine learning (ML) implementation in the so-called 'AI for social good' domain shall contribute to dementia digital neuro-biomarker development for early-onset prognosis of a possible cognitive decline. We report encouraging initial developments of wearable EEG-derived theta-band fluctuations examination and a successive classification embracing a time-series complexity examination with a multifractal detrended fluctuation analysis (MFDFA) in the face or emotion video-clip identification short-term oddball memory tasks. We also report findings from a thirty-five elderly volunteer pilot study that EEG responses to instructed to ignore (inhibited) oddball paradigm stimulation results in more informative MFDFA features, leading to better machine learning classification results. The reported pilot project showcases vital social assistance of artificial intelligence (AI) application for an early-onset dementia prognosis. Clinical Relevance- This introduces a candidate for an objective digital neuro-biomarker from theta-band EEG recorded by a wearable for a plausible replacement of biased 'paper & pencil' tests for a mild cognitive impairment (MCI) evaluation.
Collapse
|
10
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
11
|
Chikhi S, Matton N, Blanchet S. EEG
power spectral measures of cognitive workload: A meta‐analysis. Psychophysiology 2022; 59:e14009. [DOI: 10.1111/psyp.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| | - Nadine Matton
- CLLE‐LTC University of Toulouse, CNRS (UMR5263) Toulouse France
- ENAC Research Lab École Nationale d’Aviation Civile Toulouse France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition (MC2Lab, URP 7536), Institute of Psychology University of Paris Boulogne‐Billancourt France
| |
Collapse
|
12
|
Study of EEG characteristics while solving scientific problems with different mental effort. Sci Rep 2021; 11:23783. [PMID: 34893689 PMCID: PMC8664921 DOI: 10.1038/s41598-021-03321-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022] Open
Abstract
Studying the mental effort in problem-solving is important to the understanding of how the brain allocates cognitive resources to process information. The electroencephalogram is a promising physiological approach to assessing the online mental effort. In this study, we investigate the EEG indicators of mental effort while solving scientific problems. By manipulating the complexity of the scientific problem, the level of mental effort also changes. With the increase of mental effort, theta synchronization in the frontal region and lower alpha desynchronization in the parietal and occipital regions significantly increase. Also, upper alpha desynchronization demonstrates a widespread enhancement across the whole brain. According to the functional topography of brain activity in the theta and alpha frequency, our results suggest that the mental effort while solving scientific problems is related to working memory, visuospatial processing, semantic processing and magnitude manipulation. This study suggests the reliability of EEG to evaluate the mental effort in an educational context and provides valuable insights into improving the problem-solving abilities of students in educational practice.
Collapse
|
13
|
Pavlov YG, Kotchoubey B. Temporally distinct oscillatory codes of retention and manipulation of verbal working memory. Eur J Neurosci 2021; 54:6497-6511. [PMID: 34514642 DOI: 10.1111/ejn.15457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Most psychophysiological studies of working memory (WM) target only the short-term memory construct, whereas short-term memory is only a part of the WM responsible for the storage of sensory information. Here, we aimed to further investigate oscillatory brain mechanisms supporting the executive components of WM-the part responsible for the manipulation of information. We conducted an exploratory reanalysis of a previously published EEG dataset where 156 participants (82 females) performed tasks requiring either simple retention or retention and manipulation of verbal information in WM. A relatively long delay period (>6 s) was employed to investigate the temporal trajectory of the oscillatory brain activity. Compared with baseline, theta activity was significantly enhanced during encoding and the delay period. Alpha-band power decreased during encoding and switched to an increase in the first part of the delay before returning to the baseline in the second part; beta-band power remained below baseline during encoding and the delay. The difference between the manipulation and retention tasks in spectral power had diverse temporal trajectories in different frequency bands. The difference maintained over encoding and the first part of the delay in theta, during the first part of the delay in beta, and during the whole delay period in alpha. Our results suggest that task-related modulations in theta power co-vary with the demands on the executive control network; beta suppression during mental manipulation can be related to the activation of motor networks; and alpha is likely to reflect the activation of language areas simultaneously with sensory input blockade.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russia
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Hebbar PA, Bhattacharya K, Prabhakar G, Pashilkar AA, Biswas P. Correlation Between Physiological and Performance-Based Metrics to Estimate Pilots' Cognitive Workload. Front Psychol 2021; 12:555446. [PMID: 33959060 PMCID: PMC8093450 DOI: 10.3389/fpsyg.2021.555446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
This paper discusses the utilization of pilots' physiological indications such as electroencephalographic (EEG) signals, ocular parameters, and pilot performance-based quantitative metrics to estimate cognitive workload. The study aims to derive a non-invasive technique to estimate pilot's cognitive workload and study their correlation with standard physiological parameters. Initially, we conducted a set of user trials using well-established psychometric tests for evaluating the effectiveness of pupil and gaze-based ocular metrics for estimating cognitive workload at different levels of task difficulty and lighting conditions. Later, we conducted user trials with the NALSim flight simulator using a business class Learjet aircraft model. We analyzed participants' ocular parameters, power levels of different EEG frequency bands, and flight parameters for estimating variations in cognitive workload. Results indicate that introduction of secondary task increases pilot's cognitive workload significantly. The beta frequency band of EEG, nearest neighborhood index specifying distribution of gaze fixation, L1 Norm of power spectral density of pupil diameter, and the duty cycle metric indicated variations in cognitive workload.
Collapse
Affiliation(s)
- P Archana Hebbar
- I3D Lab, Centre for Product Design and Manufacturing, Indian Institute of Science (IISc), Bengaluru, India.,Council of Scientific & Industrial Research (CSIR)-National Aerospace Laboratories, Bengaluru, India
| | - Kausik Bhattacharya
- I3D Lab, Centre for Product Design and Manufacturing, Indian Institute of Science (IISc), Bengaluru, India
| | - Gowdham Prabhakar
- I3D Lab, Centre for Product Design and Manufacturing, Indian Institute of Science (IISc), Bengaluru, India
| | - Abhay A Pashilkar
- Council of Scientific & Industrial Research (CSIR)-National Aerospace Laboratories, Bengaluru, India
| | - Pradipta Biswas
- I3D Lab, Centre for Product Design and Manufacturing, Indian Institute of Science (IISc), Bengaluru, India
| |
Collapse
|
15
|
Zhang L, Shao Y, Jin X, Cai X, Du F. Decreased effective connectivity between insula and anterior cingulate cortex during a working memory task after prolonged sleep deprivation. Behav Brain Res 2021; 409:113263. [PMID: 33775776 DOI: 10.1016/j.bbr.2021.113263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Total sleep deprivation (TSD) causes a decline in almost all cognitive domains, especially working memory. However, we do not have a clear understanding of the degree working memory is impaired under prolonged TSD, nor do we know the underlying neurophysiological mechanism. In this study, we recorded EEG data from 64 subjects while they performed a working memory task during resting wakefulness, after 24 h TSD, and after 30 h TSD. ANOVA was used to verify performance differences between 24 h and 30 h TSD in working memory tasks: (1) reaction time and accuracy hit rates, (2) P200, N200, and P300 amplitude and latency in measurements of event-related potential, as well as (3) effective connectivity strength between brain areas associated with working memory. Compared to 24 h TSD, 30 h TSD significantly decreased accuracy hit rates and induced a larger N200 difference waveform. The effective connectivity analysis showed that 30 h TSD also decreased beta frequency in effective connection strength from the right insular lobe to the left anterior cingulate cortex (ACC). Effective connection from the left ventrolateral prefrontal cortex to the left dorsolateral prefrontal cortex increased in the match condition of the 2-back task. In conclusion, 30 h TSD had a greater negative impact on working memory than 24 h TSD. This impairment of working memory is associated with decreased strength in the effective connection from the right insula to the left ACC.
Collapse
Affiliation(s)
- Liwei Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongcong Shao
- Department of Psychology, Beijing Sport University, Beijing, 100084, China
| | - Xueguang Jin
- College of Software and Big Data, Changzhou College of Information Technology, Changzhou, 213164, China
| | - Xiaoping Cai
- Department of Cadra Word 3 Division, PLA Army General Hospital, Beijing, 100700, China
| | - Feng Du
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Working Memory in Children with Learning Disorders: An EEG Power Spectrum Analysis. Brain Sci 2020; 10:brainsci10110817. [PMID: 33158135 PMCID: PMC7694181 DOI: 10.3390/brainsci10110817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Learning disorders (LDs) are diagnosed in children whose academic skills of reading, writing or mathematics are impaired and lagging according to their age, schooling and intelligence. Children with LDs experience substantial working memory (WM) deficits, even more pronounced if more than one of the academic skills is affected. We compared the task-related electroencephalogram (EEG) power spectral density of children with LDs (n = 23) with a control group of children with good academic achievement (n = 22), during the performance of a WM task. sLoreta was used to estimate the current distribution at the sources, and 18 brain regions of interest (ROIs) were chosen with an extended version of the eigenvector centrality mapping technique. In this way, we lessened some drawbacks of the traditional EEG at the sensor space by an analysis at the brain-sources level over data-driven selected ROIs. Results: The LD group showed fewer correct responses in the WM task, an overall slower EEG with more delta and theta activity, and less high-frequency gamma activity in posterior areas. We explain these EEG patterns in LD children as indices of an inefficient neural resource management related with a delay in neural maturation.
Collapse
|
18
|
Pavlov YG, Kotchoubey B. The electrophysiological underpinnings of variation in verbal working memory capacity. Sci Rep 2020; 10:16090. [PMID: 32999329 PMCID: PMC7527344 DOI: 10.1038/s41598-020-72940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Working memory (WM) consists of short-term storage and executive components. We studied cortical oscillatory correlates of these two components in a large sample of 156 participants to assess separately the contribution of them to individual differences in WM. The participants were presented with WM tasks of above-average complexity. Some of the tasks required only storage in WM, others required storage and mental manipulations. Our data indicate a close relationship between frontal midline theta, central beta activity and the executive components of WM. The oscillatory counterparts of the executive components were associated with individual differences in verbal WM performance. In contrast, alpha activity was not related to the individual differences. The results demonstrate that executive components of WM, rather than short-term storage capacity, play the decisive role in individual WM capacity limits.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
- Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation, 620000.
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
19
|
Slow electroencephalographic oscillations and behavioral measures as predictors of high executive processing in early postmenopausal females: A discriminant analysis approach. Brain Cogn 2020; 145:105613. [PMID: 32911233 DOI: 10.1016/j.bandc.2020.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Decline in cognitive function is frequent in early postmenopause. There are postmenopausal females who show high performance while others display low performance in executive function, modulated by the prefrontal cortex. These differences have led to confusing and inconclusive results, which have not been explained entirely by the decline in estrogens, which affect the prefrontal cortex functions. An analysis of brain function and the application of a discriminant analysis can help to clarify the deficits in executive function shown by some postmenopausal females. The objective was to examine electroencephalographic recording during the performance of an executive function test in early postmenopausal females, ten with a high level of performance and ten with a low level of performance. Absolute power of delta, theta, alpha1, alpha2, beta1 and beta2 and the numbers of completed categories, trials, perseverative errors and overall errors were submitted to stepwise discriminant analysis to identify predictor variables. Four predictors emerged as significant of group membership based on cognitive performance, with the high-performance group characterized by more completed categories, more delta power, less theta power and more alpha1 power. These findings suggest that postmenopausal females classified in the high-performance group displayed appropriate temporary activation in slow oscillations during executive processing.
Collapse
|
20
|
Gredin NV, Broadbent DP, Findon JL, Williams AM, Bishop DT. The impact of task load on the integration of explicit contextual priors and visual information during anticipation. Psychophysiology 2020; 57:e13578. [DOI: 10.1111/psyp.13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/26/2020] [Accepted: 03/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- N. Viktor Gredin
- Division of Sport, Health and Exercise Sciences Department of Life Sciences Brunel University London London United Kingdom
| | - David P. Broadbent
- Division of Sport, Health and Exercise Sciences Department of Life Sciences Brunel University London London United Kingdom
- Centre for Cognitive Neuroscience College of Health and Life Sciences Brunel University London London United Kingdom
| | - James L. Findon
- Department of Psychology Institute of Psychology, Psychiatry and Neuroscience Kings College London London United Kingdom
| | - A. Mark Williams
- Department of Health, Kinesiology, and Recreation University of Utah Salt Lake City UT USA
| | - Daniel T. Bishop
- Division of Sport, Health and Exercise Sciences Department of Life Sciences Brunel University London London United Kingdom
- Centre for Cognitive Neuroscience College of Health and Life Sciences Brunel University London London United Kingdom
| |
Collapse
|
21
|
Gorantla VR, Bond V, Dorsey J, Tedesco S, Kaur T, Simpson M, Pemminati S, Millis RM. qEEG Measures of Attentional and Memory Network Functions in Medical Students: Novel Targets for Pharmacopuncture to Improve Cognition and Academic Performance. J Pharmacopuncture 2019; 22:166-170. [PMID: 31673447 PMCID: PMC6820472 DOI: 10.3831/kpi.2019.22.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022] Open
Abstract
Objectives Attentional and memory functions are important aspects of neural plasticity that, theoretically, should be amenable to pharmacopuncture treatments. A previous study from our laboratory suggested that quantitative electroencephalographic (qEEG) measurements of theta/beta ratio (TBR), an index of attentional control, may be indicative of academic performance in a first-semester medical school course. The present study expands our prior report by extracting and analyzing data on frontal theta and beta asymmetries. We test the hypothesis that the amount of frontal theta and beta asymmetries (fTA, fBA), are correlated with TBR and academic performance, thereby providing novel targets for pharmacopuncture treatments to improve cognitive performance. Methods Ten healthy male volunteers were subjected to 5–10 min of qEEG measurements under eyes-closed conditions. The qEEG measurements were performed 3 days before each of first two block examinations in anatomy-physiology, separated by five weeks. Amplitudes of the theta and beta waveforms, expressed in μV, were used to compute TBR, fTA and fBA. Significance of changes in theta and beta EEG wave amplitude was assessed by ANOVA with post-hoc t-testing. Correlations between TBR, fTA, fBA and the raw examination scores were evaluated by Pearson’s product-moment coefficients and linear regression analysis. Results fTA and fBA were found to be negatively correlated with TBR (P<0.03, P<0.05, respectively) and were positively correlated with the second examination score (P<0.03, P=0.1, respectively). Conclusion Smaller fTA and fBA were associated with lower academic performance in the second of two first-semester medical school anatomy-physiology block examination. Future studies should determine whether these qEEG metrics are useful for monitoring changes associated with the brain’s cognitive adaptations to academic challenges, for predicting academic performance and for targeting phamacopuncture treatments to improve cognitive performance.
Collapse
Affiliation(s)
- Vasavi R Gorantla
- Department of Behavioural Sciences and Neuroscience, AUA College of Medicine, Antigua and Barbuda
| | - Vernon Bond
- Department of Recreation, Human Performance & Leisure Studies and Exercise Science & Human Nutrition Laboratory, Howard University Cancer Centre, Washington, DC 20060, United States of America
| | - James Dorsey
- Department of Recreation, Human Performance & Leisure Studies and Exercise Science & Human Nutrition Laboratory, Howard University Cancer Centre, Washington, DC 20060, United States of America
| | | | | | | | - Sudhakar Pemminati
- Department of Medical Pharmacology, AUA College of Medicine, Antigua and Barbuda
| | - Richard M Millis
- Department of Behavioural Sciences and Neuroscience, AUA College of Medicine, Antigua and Barbuda
| |
Collapse
|
22
|
Posada-Quintero HF, Reljin N, Bolkhovsky JB, Orjuela-Cañón AD, Chon KH. Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation. Front Neurosci 2019; 13:1001. [PMID: 31607847 PMCID: PMC6761229 DOI: 10.3389/fnins.2019.01001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/04/2019] [Indexed: 11/13/2022] Open
Abstract
We studied the correlation between oscillatory brain activity and performance in healthy subjects performing the error awareness task (EAT) every 2 h, for 24 h. In the EAT, subjects were shown on a screen the names of colors and were asked to press a key if the name of the color and the color it was shown in matched, and the screen was not a duplicate of the one before (“Go” trials). In the event of a duplicate screen (“Repeat No-Go” trial) or a color mismatch (“Stroop No-Go” trial), the subjects were asked to withhold from pressing the key. We assessed subjects’ (N = 10) response inhibition by measuring accuracy of the “Stroop No-Go” (SNGacc) and “Repeat No-Go” trials (RNGacc). We assessed their reactivity by measuring reaction time in the “Go” trials (GRT). Simultaneously, nine electroencephalographic (EEG) channels were recorded (Fp2, F7, F8, O1, Oz, Pz, O2, T7, and T8). The correlation between reactivity and response inhibition measures to brain activity was tested using quantitative measures of brain activity based on the relative power of gamma, beta, alpha, theta, and delta waves. In general, response inhibition and reactivity reached a steady level between 6 and 16 h of sleep deprivation, which was followed by sustained impairment after 18 h. Channels F7 and Fp2 had the highest correlation to the indices of performance. Measures of response inhibition (RNGacc and SNGacc) were correlated to the alpha and theta waves’ power for most of the channels, especially in the F7 channel (r = 0.82 and 0.84, respectively). The reactivity (GRT) exhibited the highest correlation to the power of gamma waves in channel Fp2 (0.76). We conclude that quantitative measures of EEG provide information that can help us to better understand changes in subjects’ performance and could be used as an indicator to prevent the adverse consequences of sleep deprivation.
Collapse
Affiliation(s)
- Hugo F Posada-Quintero
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Natasa Reljin
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Jeffrey B Bolkhovsky
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Alvaro D Orjuela-Cañón
- Facultad de Ingeniería Mecánica, Electrónica y Biomédica, Universidad Antonio Nariño, Bogota, Colombia
| | - Ki H Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Cespón J, Rodella C, Miniussi C, Pellicciari MC. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer's disease patients: A pilot study. Clin Neurophysiol 2019; 130:2038-2052. [PMID: 31541981 DOI: 10.1016/j.clinph.2019.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/28/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether anodal and cathodal transcranial direct current stimulation (tDCS) can modify cognitive performance and neural activity in healthy elderly and Alzheimer's disease (AD) patients. METHODS Fourteen healthy elderly and twelve AD patients performed a working memory task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex. Behavioural performance, event-related potentials (P200, P300) and evoked cortical oscillations were studied as correlates of working memory. RESULTS Anodal tDCS increased P200 and P300 amplitudes in healthy elderly. Cathodal tDCS increased P200 amplitude and frontal theta activity between 150 and 300 ms in AD patients. Improved working memory after anodal tDCS correlated with increased P300 in healthy elderly. In AD patients, slight tendencies between enhanced working memory and increased P200 after cathodal tDCS were observed. CONCLUSIONS Functional neural modulations were promoted by anodal tDCS in healthy elderly and by cathodal tDCS in AD patients. SIGNIFICANCE Interaction between tDCS polarity and the neural state (e.g., hyper-excitability exhibited by AD patients) suggests that appropriate tDCS parameters (in terms of tDCS polarity) to induce behavioural improvements should be chosen based on the participant's characteristics. Future studies using higher sample sizes should confirm and extend the present findings.
Collapse
Affiliation(s)
- J Cespón
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; BCBL, Basque Center on Cognition, Brain, and Language, Donostia/San Sebastián, Spain.
| | - C Rodella
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - C Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M C Pellicciari
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
24
|
Erickson MA, Smith D, Albrecht MA, Silverstein S. Alpha‐band desynchronization reflects memory‐specific processes during visual change detection. Psychophysiology 2019; 56:e13442. [DOI: 10.1111/psyp.13442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Molly A. Erickson
- Department of Psychiatry and University Behavioral Health Care Rutgers University Piscataway New Jersey
| | - Dillon Smith
- Department of Psychiatry and University Behavioral Health Care Rutgers University Piscataway New Jersey
| | | | - Steven Silverstein
- Department of Psychiatry and University Behavioral Health Care Rutgers University Piscataway New Jersey
| |
Collapse
|
25
|
Bohle H, Rimpel J, Schauenburg G, Gebel A, Stelzel C, Heinzel S, Rapp M, Granacher U. Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults. Neural Plast 2019; 2019:9478656. [PMID: 31582967 PMCID: PMC6748191 DOI: 10.1155/2019/9478656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/14/2019] [Accepted: 06/09/2019] [Indexed: 12/14/2022] Open
Abstract
The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Task-dependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity.
Collapse
Affiliation(s)
- Hannah Bohle
- University of Potsdam, Research Focus Cognitive Sciences, Division of Social and Preventive Medicine, Am Neuen Palais 10, 14469 Potsdam, Germany
- International Psychoanalytic University, Stromstraße 3b, 10555 Berlin, Germany
| | - Jérôme Rimpel
- University of Potsdam, Research Focus Cognitive Sciences, Division of Training and Movement Science, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Gesche Schauenburg
- University of Potsdam, Research Focus Cognitive Sciences, Division of Training and Movement Science, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Arnd Gebel
- University of Potsdam, Research Focus Cognitive Sciences, Division of Training and Movement Science, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Christine Stelzel
- International Psychoanalytic University, Stromstraße 3b, 10555 Berlin, Germany
| | - Stephan Heinzel
- Freie Universität Berlin, Clinical Psychology and Psychotherapy, Habelschwerdter Allee 45, 14195 Berlin, Germany
| | - Michael Rapp
- University of Potsdam, Research Focus Cognitive Sciences, Division of Social and Preventive Medicine, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Urs Granacher
- University of Potsdam, Research Focus Cognitive Sciences, Division of Training and Movement Science, Am Neuen Palais 10, 14469 Potsdam, Germany
| |
Collapse
|
26
|
Takase R, Boasen J, Yokosawa K. Different roles for theta- and alpha-band brain rhythms during sequential memory. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:1713-1716. [PMID: 31946227 DOI: 10.1109/embc.2019.8856816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous studies have demonstrated that brain rhythms are modulated according to memory performance or memory processing. In sequential memory tasks, memory performance can be reduced by shortening the intervals between memory item presentations. To clarify the neurophysiological mechanism underlying this, we recorded magnetoencephalograms in 33 healthy volunteers performing two sequential memory tasks with either short or long intervals between memory items (hereafter, fast and slow conditions, respectively). Memory accuracy, and theta- and alpha-band activities originating from occipital and frontal brain areas were analyzed. Memory performance was significantly lower for the fast condition than the slow condition. Meanwhile, occipital and frontal theta activities were significantly lower for the fast condition than the slow condition. Increased occipital-alpha, a sign of active inhibition of task-irrelevant visual input, occurred regardless of condition. However, memory processing related to occipital- and frontal-theta activities had some temporal limitations. Namely, the shorter intervals of the fast condition attenuated theta activity, likely disrupting working memory processing, thereby leading to the observed decline in memory performance.
Collapse
|
27
|
Mohamed Z, El Halaby M, Said T, Shawky D, Badawi A. Characterizing Focused Attention and Working Memory Using EEG. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3743. [PMID: 30400215 PMCID: PMC6263653 DOI: 10.3390/s18113743] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Detecting the cognitive profiles of learners is an important step towards personalized and adaptive learning. Electroencephalograms (EEG) have been used to detect the subject's emotional and cognitive states. In this paper, an approach for detecting two cognitive skills, focused attention and working memory, using EEG signals is proposed. The proposed approach consists of the following main steps: first, subjects undergo a scientifically-validated cognitive assessment test that stimulates and measures their full cognitive profile while putting on a 14-channel wearable EEG headset. Second, the scores of focused attention and working memory are extracted and encoded for a classification problem. Third, the collected EEG data are analyzed and a total of 280 time- and frequency-domain features are extracted. Fourth, several classifiers were trained to correctly classify and predict three levels (low, average, and high) of the two cognitive skills. The classification accuracies that were obtained on 86 subjects were 84% and 81% for the focused attention and working memory, respectively. In comparison with similar approaches, the obtained results indicate the generalizability and suitability of the proposed approach for the detection of these two skills. Thus, the presented approach can be used as a step towards adaptive learning where real-time adaptation is to be done according to the predicted levels of the measured cognitive skills.
Collapse
Affiliation(s)
- Zainab Mohamed
- Center for Learning Technologies, University of Science and Technology, Zewail City, Giza 12578, Egypt.
| | - Mohamed El Halaby
- Mathematics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Tamer Said
- Center for Learning Technologies, University of Science and Technology, Zewail City, Giza 12578, Egypt.
| | - Doaa Shawky
- Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt.
| | - Ashraf Badawi
- Center for Learning Technologies, University of Science and Technology, Zewail City, Giza 12578, Egypt.
| |
Collapse
|
28
|
Proskovec AL, Heinrichs-Graham E, Wilson TW. Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. Neuroimage 2018; 184:256-265. [PMID: 30213775 DOI: 10.1016/j.neuroimage.2018.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022] Open
Abstract
A network of predominantly left-lateralized brain regions has been linked to verbal working memory (VWM) performance. However, the impact of memory load on the oscillatory dynamics serving VWM is far less understood. To further investigate this, we had 26 healthy adults perform a high-load (6 letter) and low-load (4 letter) variant of a VWM task while undergoing magnetoencephalography (MEG). MEG data were evaluated in the time-frequency domain and significant oscillatory responses spanning the encoding and maintenance phases were reconstructed using a beamformer. To determine the impact of load on the neural dynamics, the resulting images were examined using paired-samples t-tests and virtual sensor analyses. Our results indicated stronger increases in frontal theta activity in the high- relative to low-load condition during early encoding. Stronger decreases in alpha/beta activity were also observed during encoding in bilateral posterior cortices during the high-load condition, and the strength of these load effects increased as encoding progressed. During maintenance, stronger decreases in alpha activity in the left inferior frontal gyrus, middle temporal gyrus, supramarginal gyrus, and inferior parietal cortices were detected during high- relative to low-load performance, with the strength of these load effects remaining largely static throughout maintenance. Finally, stronger increases in occipital alpha activity were observed during maintenance in the high-load condition, and the strength of these effects grew stronger with time during the first half of maintenance, before dissipating during the latter half of maintenance. Notably, this was the first study to utilize a whole-brain approach to statistically evaluate the temporal dynamics of load-related oscillatory differences during encoding and maintenance processes, and our results highlight the importance of spatial, temporal, and spectral specificity in this regard.
Collapse
Affiliation(s)
- Amy L Proskovec
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA.
| |
Collapse
|