Ceder MM, Magnusson KA, Weman HM, Henriksson K, Andréasson L, Lindström T, Wiggins O, Lagerström MC. The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice.
Mol Cell Neurosci 2024;
131:103976. [PMID:
39580061 DOI:
10.1016/j.mcn.2024.103976]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
Glycine receptors are ligand-gated chloride-selective channels that control excitability in the central nervous system (CNS). Herein, we have investigated the mRNA expression of the glycine receptor alpha 1 (Glra1), alpha 2 (Glra2), alpha 4 (Glra4) and the beta (Glrb) subunits, in adult female and male mice. Single-cell RNA sequencing data re-analysis of the Zeisel et al. (2018) dataset indicated widespread expression of Glra1, Glra2 and Glrb in the CNS, while only a few cells in the cortex, striatum, thalamus, midbrain and the spinal cord expressed Glra4. Highest occurrence of Glra1, Glra2 and Glrb were found in the brainstem. Moreover, Glra1 and Glrb were revealed to have the highest occurrences in the spinal cord of the investigated subunits. However, both Glra2 and Glrb had a more widespread expression in the CNS compared with Glra1 and Glra4. Bulk quantitative real-time-PCR (qRT-PCR) analysis revealed Glra1 expression in the hypothalamus, thalamus, brainstem and the spinal cord, and widespread, but low, Glra2 and Glrb expression in the CNS. Moreover, Glrb could be detected in a few visceral organs. Additionally, females and males were found to express Glra1, Glra2 and Glrb differently in certain brain areas such as the brainstem. Expression levels of Glra4 were too low to be detected using qRT-PCR. Lastly, RNAscope spatially validated the expression of Glra1, Glra2 and Glrb in the areas indicated by the single-cell and bulk analyses, and further revealed that Glra4 can be detected in the cortex, amygdala, hypothalamus, thalamus, brainstem, especially the cochlear nucleus, and in the spinal cord.
Collapse