1
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
2
|
Li X, Wang H, Sun S, Ji X, Wang X, Wang Z, Shang J, Jiang Y, Gong X, Qi H. Optimization of the morphological, structural, and physicochemical properties of maize starch using straw returning and nitrogen fertilization in Northeast China. Int J Biol Macromol 2024; 265:130791. [PMID: 38479666 DOI: 10.1016/j.ijbiomac.2024.130791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
The combination of straw returning and nitrogen (N) fertilization is a popular tillage mode and essential strategy for achieving stable yield and high quality. However, the optimal combination strategy and the influence of tillage mode on the morphological, crystalline, and molecular structures of maize starch remain unclear. We conducted a long-term field experiment over 7 years in Northeast China using two tillage modes, rotary tillage with straw returning (RTS) and plow tillage with straw returning (PTS), and four N application rates. The relative crystallinity, 1045/1022 cm-1 value, and B2 and B3 chains of maize starch were higher under RTS than under PTS, resulting in increased stability of starch and improvements in gelatinization enthalpy and temperature. The surface of the starch granules induced by N fertilizer was smoother than that under the N0 (0 kg N ha-1) treatment. The proportion of amylose content, solubility, swelling power, and light transmittance increased under N2 (262 kg N ha-1) treatment, along with improvement in starch pasting properties. These results suggest that RTS combined with N2 treatment can regulate the morphological, structural, and physicochemical characteristics of maize starch, providing an essential reference for improving the quality of maize starch from an agronomic point of view.
Collapse
Affiliation(s)
- Xiangyu Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Sitong Sun
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xinjie Ji
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xuelian Wang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Zhengyu Wang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Jiaxin Shang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Ying Jiang
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xiangwei Gong
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Hua Qi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
3
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
4
|
Rozanova IV, Grigoriev YN, Efimov VM, Igoshin AV, Khlestkina EK. Genetic Dissection of Spike Productivity Traits in the Siberian Collection of Spring Barley. Biomolecules 2023; 13:909. [PMID: 37371489 DOI: 10.3390/biom13060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Barley (Hordeum vulgare L.) is one of the most commonly cultivated cereals worldwide. Its local varieties can represent a valuable source of unique genetic variants useful for crop improvement. The aim of this study was to reveal loci contributing to spike productivity traits in Siberian spring barley and to develop diagnostic DNA markers for marker-assisted breeding programs. For this purpose we conducted a genome-wide association study using a panel of 94 barley varieties. In total, 64 SNPs significantly associated with productivity traits were revealed. Twenty-three SNP markers were validated by genotyping in an independent sample set using competitive allele-specific PCR (KASP). Finally, fourteen markers associated with spike productivity traits on chromosomes 2H, 4H and 5H can be suggested for use in breeding programs.
Collapse
Affiliation(s)
- Irina V Rozanova
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, 630090 Novosibirsk, Russia
| | - Yuriy N Grigoriev
- Siberian Research Institute of Plant Cultivation and Breeding-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Krasnoobsk, 630501 Novosibirsk, Russia
| | - Vadim M Efimov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, 630090 Novosibirsk, Russia
| | - Alexander V Igoshin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, 630090 Novosibirsk, Russia
| | - Elena K Khlestkina
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva Ave. 10, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Zhu Y, Deng K, Wu P, Feng K, Zhao S, Li L. Effects of Slow-Release Fertilizer on Lotus Rhizome Yield and Starch Quality under Different Fertilization Periods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1311. [PMID: 36986998 PMCID: PMC10053914 DOI: 10.3390/plants12061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Slow-release fertilizer is an environmentally friendly fertilizer that is widely used in crop cultivation instead of traditional nitrogen fertilizer. However, the optimal application time of slow-release fertilizer and its effect on starch accumulation and rhizome quality of lotus remains unclear. In this study, two slow-release fertilizer applications (sulfur-coated compound fertilizer, SCU, and resin-coated urea, RCU) were fertilized under three fertilization periods (the erect leaf stage, SCU1 and RCU1; the erect leaf completely covering the water stage, SCU2 and RCU2; and the swelling stage of lotus rhizomes, SCU3 and RCU3) to study the effects of different application periods. Compared with CK (0 kg∙ha-1 nitrogen fertilizer), leaf relative chlorophyll content (SPAD) and net photosynthetic rate (Pn) remained at higher levels under SCU1 and RCU1. Further studies showed that SCU1 and RCU1 increased yield, amylose content, amylopectin and total starch, and the number of starch particles in lotus, and also significantly reduced peak viscosity, final viscosity and setback viscosity of lotus rhizome starch. To account for these changes, we measured the activity of key enzymes in starch synthesis and the relative expression levels of related genes. Through analysis, we found that these parameters increased significantly under SCU and RCU treatment, especially under SCU1 and RCU1 treatment. The results of this study showed that the one-time application at the erect leaf stage (SCU1 and RCU1) could improve the physicochemical properties of starch by regulating the key enzymes and related genes of starch synthesis, thus improving the nutritional quality of lotus rhizome. These results provide a technical choice for the one-time application of slow-release fertilizer in lotus rhizome production and cultivation.
Collapse
Affiliation(s)
- Yamei Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Kangming Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (K.D.); (P.W.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Watson-Lazowski A, Raven E, Feike D, Hill L, Barclay JE, Smith AM, Seung D. Loss of PROTEIN TARGETING TO STARCH 2 has variable effects on starch synthesis across organs and species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6367-6379. [PMID: 35716106 PMCID: PMC9578351 DOI: 10.1093/jxb/erac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/15/2022] [Indexed: 05/12/2023]
Abstract
Recent work has identified several proteins involved in starch granule initiation, the first step of starch synthesis. However, the degree of conservation in the granule initiation process remains poorly understood, especially among grass species differing in patterns of carbohydrate turnover in leaves, and granule morphology in the endosperm. We therefore compared mutant phenotypes of Hordeum vulgare (barley), Triticum turgidum (durum wheat), and Brachypodium distachyon defective in PROTEIN TARGETING TO STARCH 2 (PTST2), a key granule initiation protein. We report striking differences across species and organs. Loss of PTST2 from leaves resulted in fewer, larger starch granules per chloroplast and normal starch content in wheat, fewer granules per chloroplast and lower starch content in barley, and almost complete loss of starch in Brachypodium. The loss of starch in Brachypodium leaves was accompanied by high levels of ADP-glucose and detrimental effects on growth and physiology. Additionally, we found that loss of PTST2 increased granule initiation in Brachypodium amyloplasts, resulting in abnormal compound granule formation throughout the seed. These findings suggest that the importance of PTST2 varies greatly with the genetic and developmental background and inform the extent to which the gene can be targeted to improve starch in crops.
Collapse
Affiliation(s)
| | - Emma Raven
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Doreen Feike
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | |
Collapse
|
7
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
8
|
Analysis of synthesis, accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohydr Polym 2021; 273:118570. [PMID: 34560981 DOI: 10.1016/j.carbpol.2021.118570] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Nitrogen fertilizer is a crucial factor affecting the growth and grain quality of Tartary buckwheat. This study was to investigate the synthesis, accumulation, and physicochemical properties of Tartary buckwheat starches under four nitrogen levels (0, 90, 180, 270 kg N ha-1). The results showed that activities of four key enzymes, starch contents all first increased and then decreased with increasing nitrogen levels, and peaked at 180 kg N ha-1. All the starches showed typical A-type, while higher nitrogen levels significantly increased the relative crystallinity. The viscosities significantly decreased, onset, peak, and conclusion first decreased and then increased, while pasting temperature and gelatinization enthalpy increased with increasing nitrogen levels. Nitrogen fertilizer and year had significant effects on the synthesis, accumulation and physicochemical properties of Tartary buckwheat starch, and the nitrogen level of 180 kg N ha-1 was more suitable for planting in the northern area of the Loess Plateau.
Collapse
|
9
|
Wang X, Deng X, Zhu D, Duan W, Zhang J, Yan Y. N-linked glycoproteome analysis reveals central glycosylated proteins involved in wheat early seedling growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:327-337. [PMID: 33906120 DOI: 10.1016/j.plaphy.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Glycosylation is an important protein post-translational modification in eukaryotic organisms. It is involved in many important life processes, such as cell recognition, differentiation, development, signal transduction and immune response. This study carried out the first N-linked glycosylation proteome analysis of wheat seedling leaves using HILIC glycosylation enrichment, chemical deglycosylation, HPLC separation and tandem mass spectrometric identification. In total, we detected 308 glycosylated peptides and 316 glycosylated sites corresponding to 248 unique glycoproteins. The identified glycoproteins were mainly concentrated in plasma membranes (25.6%), cell wall (16.8%) and extracellular area (16%). In terms of molecular function, 65% glycoproteins belonged to various enzymes with catalytic activity such as kinase, carboxypeptidase, peroxidase and phosphatase, and, particularly, 25% of glycoproteins were related to binding functions. These glycoproteins are involved in cell wall reconstruction, biomacromolecular metabolism, signal transduction, endoplasmic reticulum quality control and stress response. Analysis indicated that 57.66% of glycoproteins were highly conserved in other plant species while 42.34% of glycoproteins went unidentified among the conserved glycosylated homologous proteins in other plant species; these may be the new N-linked glycosylated proteins first identified in wheat. The glycosylation sites generally occurred on the random coil, which could play roles in maintaining the structural stability of proteins. PNGase F digestion and glycosylation site mutations further verified the glycosylation modification and glycosylation sites of LRR receptor-like serine/threonine-protein kinase (LRR-RLK) and Beta-D-glucan exohydrolase (β-D-GEH). Our results indicated that N-linked glycosylated proteins could play important roles in the early seedling growth of wheat.
Collapse
Affiliation(s)
- Xueqian Wang
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Wenjing Duan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Junwei Zhang
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
10
|
Li J, Jiao G, Sun Y, Chen J, Zhong Y, Yan L, Jiang D, Ma Y, Xia L. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:937-951. [PMID: 33236499 PMCID: PMC8131058 DOI: 10.1111/pbi.13519] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/16/2020] [Indexed: 05/19/2023]
Abstract
Foods high in amylose content and resistant starch (RS) offer great potential to improve human health and lower the risk of serious noninfectious diseases. Common wheat (Triticum aestivum L.) is a major staple food crop globally. However, the RS contents in the grains of modern wheat varieties are low. Here, we report the generation of high-amylose wheat through targeted mutagenesis of TaSBEIIa in a modern winter wheat cv Zhengmai 7698 (ZM) and a spring wheat cv Bobwhite by CRISPR/Cas9, respectively. We generated a series of transgene-free mutant lines either with partial or triple-null TasbeIIa alleles in ZM and Bobwhite, respectively. Analyses of starch composition, structure and properties revealed that the effects of partial or triple-null alleles were dosage dependent with triple-null lines demonstrated more profound impacts on starch composition, fine structures of amylopectin and physiochemical and nutritional properties. The flours of triple-null lines possessed significantly increased amylose, RS, protein and soluble pentosan contents which benefit human health. Baking quality analyses indicated that the high-amylose flours may be used as additives or for making cookies. Collectively, we successfully modified the starch composition, structure and properties through targeted mutagenesis of TaSBEIIa by CRISPR/Cas9 in both winter and spring wheat varieties and generated transgene-free high-amylose wheat. Our finding provides deep insights on the role of TaSBEIIa in determining starch composition, structure, properties and end-use quality in different genetic backgrounds and improving RS content with multiple breeding and end-use applications in cereal crop species through genome editing for health benefits.
Collapse
Affiliation(s)
- Jingying Li
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Guiai Jiao
- China National Rice Research InstituteHangzhouChina
| | - Yongwei Sun
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jun Chen
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yingxin Zhong
- National Technology Innovation Center for Regional Wheat ProductionMinistry of Chinese Agriculture and Rural AffairsNanjing Agricultural UniversityNanjingChina
| | - Lei Yan
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat ProductionMinistry of Chinese Agriculture and Rural AffairsNanjing Agricultural UniversityNanjingChina
| | - Youzhi Ma
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lanqin Xia
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
11
|
Kim MS, Yang JY, Yu JK, Lee Y, Park YJ, Kang KK, Cho YG. Breeding of High Cooking and Eating Quality in Rice by Marker-Assisted Backcrossing (MABc) Using KASP Markers. PLANTS 2021; 10:plants10040804. [PMID: 33921910 PMCID: PMC8073074 DOI: 10.3390/plants10040804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022]
Abstract
The primary goals of rice breeding programs are grain quality and yield potential improvement. With the high demand for rice varieties of premium cooking and eating quality, we developed low-amylose content breeding lines crossed with Samgwang and Milkyqueen through the marker-assisted backcross (MABc) breeding program. Trait markers of the SSIIIa gene referring to low-amylose content were identified through an SNP mapping activity, and the markers were applied to select favorable lines for a foreground selection. To rapidly recover the genetic background of Samgwang (recurrent parent genome, RPG), 386 genome-wide markers were used to select BC1F1 and BC2F1 individuals. Seven BC2F1 lines with targeted traits were selected, and the genetic background recovery range varied within 97.4–99.1% of RPG. The amylose content of the selected BC2F2 grains ranged from 12.4–16.8%. We demonstrated the MABc using a trait and genome-wide markers, allowing us to efficiently select lines of a target trait and reduce the breeding cycle effectively. In addition, the BC2F2 lines confirmed by molecular markers in this study can be utilized as parental lines for subsequent breeding programs of high-quality rice for cooking and eating.
Collapse
Affiliation(s)
- Me-Sun Kim
- College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (J.-Y.Y.); (Y.L.)
| | - Ju-Young Yang
- College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (J.-Y.Y.); (Y.L.)
| | - Ju-Kyung Yu
- Syngenta Crop Protection LLC, Seeds Research, 9 Davis Dr. Research Triangle Park, Durham, NC 27709, USA;
| | - Yi Lee
- College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (J.-Y.Y.); (Y.L.)
| | - Yong-Jin Park
- College of Industrial Science, Kongju National University, Yesan 32439, Korea;
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea
- Correspondence: (K.-K.K.); (Y.-G.C.)
| | - Yong-Gu Cho
- College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea; (M.-S.K.); (J.-Y.Y.); (Y.L.)
- Correspondence: (K.-K.K.); (Y.-G.C.)
| |
Collapse
|
12
|
Bain M, van de Meene A, Costa R, Doblin MS. Characterisation of Cellulose Synthase Like F6 ( CslF6) Mutants Shows Altered Carbon Metabolism in β-D-(1,3;1,4)-Glucan Deficient Grain in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2021; 11:602850. [PMID: 33505412 PMCID: PMC7829222 DOI: 10.3389/fpls.2020.602850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Brachypodium distachyon is a small, fast growing grass species in the Pooideae subfamily that has become established as a model for other temperate cereals of agricultural significance, such as barley (Hordeum vulgare) and wheat (Triticum aestivum). The unusually high content in whole grains of β-D-(1,3;1,4)-glucan or mixed linkage glucan (MLG), considered a valuable dietary fibre due to its increased solubility in water compared with cellulose, makes B. distachyon an attractive model for these polysaccharides. The carbohydrate composition of grain in B. distachyon is interesting not only in understanding the synthesis of MLG, but more broadly in the mechanism(s) of carbon partitioning in cereal grains. Several mutants in the major MLG synthase, cellulose synthase like (CSL) F6, were identified in a screen of a TILLING population that show a loss of function in vitro. Surprisingly, loss of cslf6 synthase capacity appears to have a severe impact on survival, growth, and development in B. distachyon in contrast to equivalent mutants in barley and rice. One mutant, A656T, which showed milder growth impacts in heterozygotes shows a 21% (w/w) reduction in average grain MLG and more than doubling of starch compared with wildtype. The endosperm architecture of grains with the A656T mutation is altered, with a reduction in wall thickness and increased deposition of starch in larger granules than typical of wildtype B. distachyon. Together these changes demonstrate an alteration in the carbon storage of cslf6 mutant grains in response to reduced MLG synthase capacity and a possible cross-regulation with starch synthesis which should be a focus in future work in composition of these grains. The consequences of these findings for the use of B. distachyon as a model species for understanding MLG synthesis, and more broadly the implications for improving the nutritional value of cereal grains through alteration of soluble dietary fibre content are discussed.
Collapse
Affiliation(s)
- Melissa Bain
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, The School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Allison van de Meene
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, The School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rafael Costa
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique (CNRS), L’Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Univ Evry, Université Paris-Saclay, Orsay, France
- Centre National de la Recherche Scientifique (CNRS), L’Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, Orsay, France
| | - Monika S. Doblin
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, The School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal Plant and Soil Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol 2020; 164:3739-3750. [DOI: 10.1016/j.ijbiomac.2020.08.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
14
|
Chen X, Chen M, Lin G, Yang Y, Yu X, Wu Y, Xiong F. Structural development and physicochemical properties of starch in caryopsis of super rice with different types of panicle. BMC PLANT BIOLOGY 2019; 19:482. [PMID: 31703691 PMCID: PMC6839170 DOI: 10.1186/s12870-019-2101-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/28/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Starch is the main storage substance in rice caryopsis and its properties will determine the quality of rice. Super rice has been extensively studied due to its high-yield characteristics, but the knowledge of amyloplast development and starch quality in caryopsis of super rice especially with large panicle is limited. RESULTS To address this, large panicle typed and normal panicle typed super rice cultivar Yongyou2640 (YY2640) and Nangeng9108 (NG9108) were investigated in this study. The development of amyloplast in YY2640 caryopsis was better than NG9108, showing faster degradation rate of pericarp amyloplast and better filling degree of endosperm amyloplast. Meanwhile, the starch granule of YY2640 presented as polyhedral shape with smooth surface and the granule size was slightly larger than NG9108. The starch of YY2640 exhibited the lower amylose content, ratio of amylose to amylopectin and the higher level of amylopectin short and long branch-chains compared with NG9108, but there was no significant difference in amylopectin branching degree between them. Two rice starches both showed the characteristics of A-type crystal, and the relative crystallinity and external ordered degree of YY2640 starch were higher than those of NG9108. Furthermore, YY2640 starch showed better pasting properties with lower pasting temperature, shorter pasting time, higher peak viscosity, trough viscosity, breakdown value and lower setback value because of lower apparent amylose content. CONCLUSIONS Overall, the development and filling of amyloplast in YY2640 caryopsis were better than those of NG9108, thus leading to better starch quality of YY2640.
Collapse
Affiliation(s)
- Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Mingxin Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Guoqiang Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Yang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 China
| |
Collapse
|
15
|
Zhang S, Guo H, Irshad A, Xie Y, Zhao L, Xiong H, Gu J, Zhao S, Ding Y, Liu L. The synergistic effects of TaAGP.L-B1 and TaSSIVb-D mutations in wheat lead to alterations of gene expression patterns and starch content in grain development. PLoS One 2019; 14:e0223783. [PMID: 31603940 PMCID: PMC6788705 DOI: 10.1371/journal.pone.0223783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022] Open
Abstract
Starch is synthesized from a series of reactions catalyzed by enzymes. ADP-glucose pyrophosphorylase (AGPase) initiates the synthesis pathway and synthesizes ADP-glucose, the substrate of starch synthase (SS), of which SSIV is an isoform. Mutations of the AGPase subunit and SSIV-coding genes affect starch content and cause variation in the number of granules. Here, we pyramided the functional mutation alleles of the AGPase subunit gene TaAGP.L-B1 and the SSIV-coding gene TaSSIVb-D to elucidate their synergistic effects on other key starch biosynthesis genes and their impact on starch content. Both the TaAGP.L-B1 and TaSSIVb-D genes were expressed in wheat grain development, and the expression level of TaAGP.L-B1 was higher than that of TaSSIVb-D. The TaAGP.L-B1 gene was downregulated in the agp.L-B1 single and agp.L-B1/ssIV-D double mutants at 12 to 18 days after flowering (DAF). TaSSIVb-D expression was significantly reduced at 6 DAF in both ssIV-D single and double mutants. In the agp.L-B1/ssIV-D double mutant, TaGBSSII was upregulated, while TaAGPSS, TaSSI, and TaSBEII were downregulated. Under the interaction of these genes, the total starch and amylopectin contents were significantly decreased in agp.L-B1 and agp.L-B1/ssIV-D mutants. The results suggested that the mutations of TaAGP.L-B1 and TaSSIVb-D genes resulted in variation in the expression patterns of the other four starch synthetic genes and led to a reduction in starch and amylopectin contents. These mutants could be used further as germplasm for resistant starch analysis.
Collapse
Affiliation(s)
- Shunlin Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Ahsan Irshad
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Zhu J, Wang G, Li C, Li Q, Gao Y, Chen F, Xia G. Maize Sep15-like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. PLANT, CELL & ENVIRONMENT 2019; 42:1486-1502. [PMID: 30577086 DOI: 10.1111/pce.13507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 05/21/2023]
Abstract
In animals, the Sep15 protein participates in disease resistance, growth, and development, but the function of its plant homologues remains unclear. Here, the function of maize Sep15 was analysed by characterization of two independent Sep15-like loss-of-function mutants. In the absence of ZmSep15-like, seedling tolerance to both water and salinity stress was compromised. The mutants experienced a heightened level of endoplasmic reticulum stress, and over-accumulated reactive oxygen species, resulting in leaf necrosis. Characterization of Arabidopsis thaliana atsep15 mutant as well as like with ectopic expression of ZmSep15-like indicated that ZmSep15-like contributed to tolerance of both osmotic and salinity stress. ZmSep15-like interacted physically with UDP-glucose: glycoprotein glucosyltransferase1 (UGGT1). When the interaction was disrupted, the response to both osmotic and salinity stresses was impaired in maize or Arabidopsis. Co-expressing ZmUGGT1 and ZmUGGT2 enhanced the tolerance of A. thaliana to both stressors, indicating a functional interaction between them. Together, the data indicated that plants Sep15-like proteins promote osmotic and salinity stress resistance by influencing endoplasmic reticulum stress response and reactive oxygen species level.
Collapse
Affiliation(s)
- Jiantang Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Guangling Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Cuiling Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Qingqing Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yankun Gao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Fanguo Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
17
|
|
18
|
Luo F, Deng X, Liu Y, Yan Y. Identification of phosphorylation proteins in response to water deficit during wheat flag leaf and grain development. BOTANICAL STUDIES 2018; 59:28. [PMID: 30535879 PMCID: PMC6286713 DOI: 10.1186/s40529-018-0245-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) serves as important grain crop widely cultivated in the world, which is often suffered by drought stress in natural conditions. As one of the most important post translation modifications, protein phosphorylation widely participates in plant abiotic stress regulation. In this study, we performed the first comparative analysis of phosphorylated protein characterization in flag leaves and developing grains of elite Chinese bread wheat cultivar Zhongmai 175 under water deficit by combining with proteomic approach and Pro-Q Diamond gel staining. RESULTS Field experiment showed that water deficit caused significant reduction of plant height, tiller number, ear length and grain yield. 2-DE and Pro-Q Diamond gel staining analysis showed that 58 proteins were phosphorylated among 112 differentially accumulated proteins in response to water deficit, including 20 in the flag leaves and 38 in the developing grains. The phosphorylated proteins from flag leaves mainly involved in photosynthesis, carbohydrate and energy metabolism, while those from developing grains were closely related with detoxification and defense, protein, carbohydrate and energy metabolism. Particularly, water deficit resulted in significant downregulation of phosphorylated modification level in the flag leaves, which could affect photosynthesis and grain yield. However, some important phosphorylated proteins involved in stress defense, energy metabolism and starch biosynthesis were upregulated under water deficit, which could benefit drought tolerance, accelerate grain filling and shorten grain developing time. CONCLUSIONS The modification level of those identified proteins from flag leaves and grains had great changes when wheat was suffered from water deficit, indicating that phosphoproteins played a key role in response to drought stress. Our results provide new insights into the molecular mechanisms how phosphoproteins respond to drought stress and thus reduce production.
Collapse
Affiliation(s)
- Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yue Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
19
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
20
|
Liu N, Zhang Z, Xue Y, Meng S, Huang Y, Li W, Huang J, Tang J. Identification of Quantitative Trait Loci and Candidate Genes for Maize Starch Granule Size through Association Mapping. Sci Rep 2018; 8:14236. [PMID: 30250035 PMCID: PMC6155146 DOI: 10.1038/s41598-018-31863-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Starch is an important nutrient component of maize kernels, and starch granule size largely determines kernel waxiness, viscosity, and other physiochemical and processing properties. To explore the genetic basis of maize starch granule size, 266 tropical, subtropical, and temperate inbred lines were subjected to genome-wide association analyses with an array of 56,110 random single nucleotide polymorphisms (SNPs). In the present panel, the kernel starch granule size ranged from 7–15.8 µm long and 6.8–14.3 µm wide. Fourteen significant SNPs were identified as being associated with the length of starch granules and 9 with their width. One linkage disequilibrium block flanking both sides of a significant SNP was defined as a quantitative trait locus (QTL) interval, and seven QTLs were mapped for both granule length and width. A total of 79 and 88 candidate genes associated with starch length and width, respectively, were identified as being distributed on QTL genomic regions. Among these candidate genes, six with high scores were predicted to be associated with maize starch granule size. A candidate gene association analysis identified significant SNPs within genes GRMZM2G419655 and GRMZM2G511067, which could be used as functional markers in screening starch granule size for different commercial uses.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,College of Biological engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhanhui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Xue
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shujun Meng
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Weihua Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihong Huang
- College of Biological engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
21
|
Scholthof KBG, Irigoyen S, Catalan P, Mandadi KK. Brachypodium: A Monocot Grass Model Genus for Plant Biology. THE PLANT CELL 2018; 30:1673-1694. [PMID: 29997238 PMCID: PMC6139682 DOI: 10.1105/tpc.18.00083] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 05/21/2023]
Abstract
The genus Brachypodium represents a model system that is advancing our knowledge of the biology of grasses, including small grains, in the postgenomics era. The most widely used species, Brachypodium distachyon, is a C3 plant that is distributed worldwide. B. distachyon has a small genome, short life cycle, and small stature and is amenable to genetic transformation. Due to the intensive and thoughtful development of this grass as a model organism, it is well-suited for laboratory and field experimentation. The intent of this review is to introduce this model system genus and describe some key outcomes of nearly a decade of research since the first draft genome sequence of the flagship species, B. distachyon, was completed. We discuss characteristics and features of B. distachyon and its congeners that make the genus a valuable model system for studies in ecology, evolution, genetics, and genomics in the grasses, review current hot topics in Brachypodium research, and highlight the potential for future analysis using this system in the coming years.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| | - Pilar Catalan
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071 Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
- Institute of Biology, Tomsk State University, Tomsk 634050, Russia
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Texas A&M AgriLife Research and Extension Center, Weslaco, Texas 78596
| |
Collapse
|
22
|
Zhu GR, Yan X, Zhu D, Deng X, Wu JS, Xia J, Yan YM. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J Proteomics 2018; 185:8-24. [DOI: 10.1016/j.jprot.2018.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
|
23
|
Zhu J, Fang L, Yu J, Zhao Y, Chen F, Xia G. 5-Azacytidine treatment and TaPBF-D over-expression increases glutenin accumulation within the wheat grain by hypomethylating the Glu-1 promoters. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:735-746. [PMID: 29214328 DOI: 10.1007/s00122-017-3032-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 12/01/2017] [Indexed: 05/12/2023]
Abstract
5-azaC treatment and TaPBF - D over-expression decrease C-methylation status of three Glu - 1 gene promoters, and aid in enhancing the expression of the Glu - 1 genes. The wheat glutenins exert a strong influence over dough elasticity, but the regulation of their encoding genes has not been firmly established. Following treatment with 5-azacytidine (5-azaC), both the weight and glutenin content of the developing and mature grains were significantly increased. The abundance of transcript produced by the Glu-1 genes (encoding high-molecular-weight glutenin subunits), as well as those encoding demethylases and transcriptional factors associated with prolamin synthesis was higher than in grain of non-treated plants. These grains also contained an enhanced content of the prolamin box binding factor (PBF) protein. Bisulfite sequencing indicated that the Glu-1 promoters were less strongly C-methylated in the developing grain than in the flag leaf, while in the developing grain of 5-azaC treated plants, the C-methylation level was lower than in equivalent grains of non-treated plants. Both Glu-1 transcript abundance and glutenin content were higher in the grain set by three independent over-expressors of the D genome homoeolog of TaPBF than in the grain set by wild type plants. When assessed 10 days after flowering, the Glu-1 promoters' methylation level was lower in the developing grains set by the TaPBF-D over-expressor than in the wild type control. An electrophoretic mobility shift assay showed that PBF-D was able to bind in vitro to the P-box of Glu-1By8 and -1Dx2, while a ChIP-qPCR analysis revealed that a lower level of C-methylation in the Glu-1By8 and -1Dx2 promoters improved the TaPBF binding. We suggest that promoter DNA C-methylation is a key determinant of Glu-1 transcription.
Collapse
Affiliation(s)
- Jiantang Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Linlin Fang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jiaqi Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Ying Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Fanguo Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
24
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
25
|
Chen GX, Zhen SM, Liu YL, Yan X, Zhang M, Yan YM. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response. BMC PLANT BIOLOGY 2017; 17:168. [PMID: 29058608 PMCID: PMC5651632 DOI: 10.1186/s12870-017-1118-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. RESULTS Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. CONCLUSIONS Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.
Collapse
Affiliation(s)
- Guan-Xing Chen
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Shou-Min Zhen
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Yan-Lin Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Xing Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Ming Zhang
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048 Beijing, People’s Republic of China
- Hubei Collaborative Innovation Center for Grain Industry/Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
26
|
Chen XY, Yang Y, Ran LP, Dong ZD, Zhang EJ, Yu XR, Xiong F. Novel Insights into miRNA Regulation of Storage Protein Biosynthesis during Wheat Caryopsis Development under Drought Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1707. [PMID: 29046684 PMCID: PMC5632728 DOI: 10.3389/fpls.2017.01707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/19/2017] [Indexed: 05/02/2023]
Abstract
Drought stress is a significant abiotic stress factor that affects wheat yield and quality. MicroRNA (miRNA) plays an important role in regulating caryopsis development in response to drought stress. However, little is known about the expression characteristics of miRNAs and how they regulate protein accumulation in wheat caryopsis under drought stress. To address this, two small RNA libraries of wheat caryopsis under control and drought stress conditions were constructed and sequenced. A total of 125 miRNAs were identified in the two samples, of which 110 were known and 15 were novel. A total of 1,981 miRNA target genes were predicted and functional annotations were obtained from various databases for 1,641 of them. Four miRNAs were identified as differential expression under drought stress, and the expression patterns of three of them were consistent with results obtained by reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, three miRNA-target pairs showed negative regulation tendency, as revealed by RT-qPCR. Functional enrichment and pathway analysis revealed that four pathways might be involved in storage protein biosynthesis. Furthermore, drought stress significantly increased the accumulation of protein bodies and protein content in wheat endosperm. In summary, our findings suggest that drought stress may enhance storage protein by regulating the expression of miRNAs and their target genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. J Proteomics 2017; 170:1-13. [PMID: 28986270 DOI: 10.1016/j.jprot.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Drought stress, a major abiotic stress, commonly occurs in metal-contaminated environments and affects crop growth and yield. In this study, we performed the first integrated phenotypic, physiological, and proteomic analysis of Brachypodium distachyon L. seedling leaves under polyethylene glycol (PEG) mock osmotic stress, cadmium (Cd2+), and their combined stresses. Combined osmotic and Cd2+ stress had more significant effects than each individual stress on seedling growth, and the physiological traits and ultrastructures of leaves. Totally 117 differentially accumulated protein (DAP) spots detected by two-dimensional difference gel electrophoresis (2D-DIGE) were identified, and representing 89 unique proteins under individual and combined stresses. These DAPs were involved in photosynthesis/respiration (34%), energy and carbon metabolism (21%), stress/defense/detoxification (13%), protein folding and degradation (12%), and amino acid metabolism (7%). Principal component analysis (PCA) revealed that DAPs from the Cd2+ and combined stresses grouped much closer than those from osmotic stress, indicating Cd2+ and combined stresses resulted in more changes to the leaf proteome than osmotic stress alone. Protein-protein interaction analyses showed that a 14-3-3 centered sub-network could play important roles in responses to abiotic stresses. An overview pathway of proteome metabolic changes in Bd21 seedling leaves under combined stresses is proposed, representing a synergistic responsive network and underlying response and defense mechanisms. SIGNIFICANCE Drought stress is one of the major abiotic stresses, which commonly occurs in metal-contaminated environments, and affects crop growth and yield performance. We performed the first integrated phenotypic, physiological and proteomic analysis of Brachypodium distachyon L. seedling leaves under drought (PEG), cadmium (Cd2+) and their combined stresses.
Collapse
|
28
|
Subburaj S, Zhu D, Li X, Hu Y, Yan Y. Molecular Characterization and Expression Profiling of Brachypodium distachyon L. Cystatin Genes Reveal High Evolutionary Conservation and Functional Divergence in Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:743. [PMID: 28536593 PMCID: PMC5423411 DOI: 10.3389/fpls.2017.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 05/26/2023]
Abstract
Cystatin is a class of proteins mainly involved in cysteine protease inhibition and plant growth and development, as well as tolerance under various abiotic stresses. In this study, we performed the first comprehensive analysis of the molecular characterization and expression profiling in response to various abiotic stresses of the cystatin gene family in Brachypodium distachyon, a novel model plant for Triticum species with huge genomes. Comprehensive searches of the Brachypodium genome database identified 25 B. distachyon cystatin (BdC) genes that are distributed unevenly on chromosomes; of these, nine and two were involved in tandem and segmental duplication events, respectively. All BdC genes had similar exon/intron structural organization, with three conserved motifs similar to those from other plant species, indicating their high evolutionary conservation. Expression profiling of 10 typical BdC genes revealed ubiquitous expression in different organs at varying expression levels. BdC gene expression in seedling leaves was particularly highly induced by various abiotic stresses, including the plant hormone abscisic acid and various environmental cues (cold, H2O2, CdCl2, salt, and drought). Interestingly, most BdC genes were significantly upregulated under multiple abiotic stresses, including BdC15 under all stresses, BdC7-2 and BdC10 under five stresses, and BdC7-1, BdC2-1, BdC14, and BdC12 under four stresses. The putative metabolic pathways of cytastin genes in response to various abiotic stresses mainly involve the aberrant protein degradation pathway and reactive oxygen species (ROS)-triggered programmed cell death signaling pathways. These observations provide a better understanding of the structural and functional characteristics of the plant cystatin gene family.
Collapse
|
29
|
Yu X, Chen X, Wang L, Yang Y, Zhu X, Shao S, Cui W, Xiong F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2259-2274. [PMID: 28472326 DOI: 10.1093/jxb/erx108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular and cytological mechanisms concerning the effects of nitrogen on wheat (Triticum aestivum L.) storage protein biosynthesis and protein body development remain largely elusive. We used transcriptome sequencing, proteomics techniques, and light microscopy to investigate these issues. In total, 2585 differentially expressed genes (DEGs) and 57 differentially expressed proteins (DEPs) were found 7 days after anthesis (DAA), and 2456 DEGs and 64 DEPs were detected 18 DAA after nitrogen treatment. Gene ontology terms related to protein biosynthesis processes enriched these numbers by 678 and 582 DEGs at 7 and 18 DAA, respectively. Further, 25 Kyoto Encyclopedia of Genes and Genomes pathways were involved in protein biosynthesis at both 7 and 18 DAA. DEPs related to storage protein biosynthesis contained gliadin and glutenin subunits, most of which were up-regulated after nitrogen treatment. Quantitative real-time PCR analysis indicated that some gliadin and glutenin subunit encoding genes were differentially expressed at 18 DAA. Structural observation revealed that wheat endosperm accumulated more and larger protein bodies after nitrogen treatment. Collectively, our findings suggest that nitrogen treatment enhances storage protein content, endosperm protein body quantity, and partial processing quality by altering the expression levels of certain genes involved in protein biosynthesis pathways and storage protein expression at the proteomics level.
Collapse
Affiliation(s)
- Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Leilei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Shao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wenxue Cui
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Zhen S, Deng X, Zhang M, Zhu G, Lv D, Wang Y, Zhu D, Yan Y. Comparative Phosphoproteomic Analysis under High-Nitrogen Fertilizer Reveals Central Phosphoproteins Promoting Wheat Grain Starch and Protein Synthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:67. [PMID: 28194157 PMCID: PMC5277015 DOI: 10.3389/fpls.2017.00067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/12/2017] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is a macronutrient important for plant growth and development. It also strongly influences starch and protein synthesis, closely related to grain yield and quality. We performed the first comparative phosphoproteomic analysis of developing wheat grains in response to high-N fertilizer. Physiological and biochemical analyses showed that application of high-N fertilizer resulted in significant increases in leaf length and area, chlorophyll content, the activity of key enzymes in leaves such as nitrate reductase (NR), and in grains such as sucrose phosphate synthase (SPS), sucrose synthase (SuSy), and ADP glucose pyrophosphorylase (AGPase). This enhanced enzyme activity led to significant improvements in starch content, grain yield, and ultimately, bread making quality. Comparative phosphoproteomic analysis of developing grains under the application of high-N fertilizer performed 15 and 25 days post-anthesis identified 2470 phosphosites among 1372 phosphoproteins, of which 411 unique proteins displayed significant changes in phosphorylation level (>2-fold or <0.5-fold). These phosphoproteins are involved mainly in signaling transduction, starch synthesis, energy metabolism. Pro-Q diamond staining and Western blotting confirmed our phosphoproteomic results. We propose a putative pathway to elucidate the important roles of the central phosphoproteins regulating grain starch and protein synthesis. Our results provide new insights into the molecular mechanisms of protein phosphorylation modifications involved in grain development, yield and quality formation.
Collapse
Affiliation(s)
- Shoumin Zhen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Ming Zhang
- College of Life Science, Capital Normal UniversityBeijing, China
- College of Life Science, Heze UniversityShandong, China
| | - Gengrui Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Dongwen Lv
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yaping Wang
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Dong Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal UniversityBeijing, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
- *Correspondence: Yueming Yan
| |
Collapse
|
31
|
Xing S, Meng X, Zhou L, Mujahid H, Zhao C, Zhang Y, Wang C, Peng Z. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm. PLoS One 2016; 11:e0168467. [PMID: 27992503 PMCID: PMC5167393 DOI: 10.1371/journal.pone.0168467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/01/2016] [Indexed: 01/16/2023] Open
Abstract
Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins.
Collapse
Affiliation(s)
- Shihai Xing
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lihui Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Chunfang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing, Jiangsu, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi, United States of America
| |
Collapse
|
32
|
Chen GX, Zhou JW, Liu YL, Lu XB, Han CX, Zhang WY, Xu YH, Yan YM. Biosynthesis and Regulation of Wheat Amylose and Amylopectin from Proteomic and Phosphoproteomic Characterization of Granule-binding Proteins. Sci Rep 2016; 6:33111. [PMID: 27604546 PMCID: PMC5015113 DOI: 10.1038/srep33111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/14/2016] [Indexed: 11/09/2022] Open
Abstract
Waxy starch has an important influence on the qualities of breads. Generally, grain weight and yield in waxy wheat (Triticum aestivum L.) are significantly lower than in bread wheat. In this study, we performed the first proteomic and phosphoproteomic analyses of starch granule-binding proteins by comparing the waxy wheat cultivar Shannong 119 and the bread wheat cultivar Nongda 5181. These results indicate that reduced amylose content does not affect amylopectin synthesis, but it causes significant reduction of total starch biosynthesis, grain size, weight and grain yield. Two-dimensional differential in-gel electrophoresis identified 40 differentially expressed protein (DEP) spots in waxy and non-waxy wheats, which belonged mainly to starch synthase (SS) I, SS IIa and granule-bound SS I. Most DEPs involved in amylopectin synthesis showed a similar expression pattern during grain development, suggesting relatively independent amylose and amylopectin synthesis pathways. Phosphoproteome analysis of starch granule-binding proteins, using TiO2 microcolumns and LC-MS/MS, showed that the total number of phosphoproteins and their phosphorylation levels in ND5181 were significantly higher than in SN119, but proteins controlling amylopectin synthesis had similar phosphorylation levels. Our results revealed the lack of amylose did not affect the expression and phosphorylation of the starch granule-binding proteins involved in amylopectin biosynthesis.
Collapse
Affiliation(s)
- Guan-Xing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Jian-Wen Zhou
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Lin Liu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiao-Bing Lu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Cai-Xia Han
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Wen-Ying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, 434025 Jingzhou, China
| | - Yan-Hao Xu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, 434025 Jingzhou, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, 434025 Jingzhou, China
| |
Collapse
|
33
|
Zhen S, Dong K, Deng X, Zhou J, Xu X, Han C, Zhang W, Xu Y, Wang Z, Yan Y. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3731-3740. [PMID: 26676564 DOI: 10.1002/jsfa.7561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. RESULTS In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. CONCLUSION The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shoumin Zhen
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Kun Dong
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Jiaxing Zhou
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xuexin Xu
- College of Agricultural and Biotechnology, China Agricultural University, 100091, Beijing, China
| | - Caixia Han
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China
| | - Zhimin Wang
- College of Agricultural and Biotechnology, China Agricultural University, 100091, Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China
| |
Collapse
|
34
|
Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors. PLoS One 2016; 11:e0154241. [PMID: 27119343 PMCID: PMC4847875 DOI: 10.1371/journal.pone.0154241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Speciation and allopolyploidization in cereals may be accompanied by dramatic changes in abundance of centromeric repeated transposable elements. Here we demonstrate that the reverse transcriptase part of Ty3/gypsy centromeric retrotransposon (RT-CR) is highly conservative in the segmental hexaploid Thinopyrum intermedium (JrJvsSt) and its possible diploid progenitors Th. bessarabicum (Jb), Pseudoroegneria spicata (St) and Dasypyrum villosum (V) but the abundance of the repeats varied to a large extent. Fluorescence in situ hybridization (FISH) showed hybridization signals in centromeric region of all chromosomes in the studied species, although the intensity of the signals drastically differed. In Th. intermedium, the strongest signal of RT-CR probe was detected on the chromosomes of Jv, intermediate on Jr and faint on Js and St subgenome suggesting different abundance of RT-CR on the individual chromosomes rather than the sequence specificity of RT-CRs of the subgenomes. RT-CR quantification using real-time PCR revealed that its content per genome in Th. bessarabicum is ~ 2 times and P. spicata is ~ 1,5 times higher than in genome of D. villosum. The possible burst of Ty3/gypsy centromeric retrotransposon in Th. intermedium during allopolyploidization and its role in proper mitotic and meiotic chromosome behavior in a nascent allopolyploid is discussed.
Collapse
|
35
|
Cornejo-Ramírez YI, Ramírez-Reyes F, Cinco-Moroyoqui FJ, Rosas-Burgos EC, Martínez-Cruz O, Carvajal-Millán E, Cárdenas-López JL, Torres-Chavez PI, Osuna-Amarillas PS, Borboa-Flores J, Wong-Corral FJ. Starch Debranching Enzyme Activity and Its Effects on Some Starch Physicochemical Characteristics in Developing Substituted and Complete Triticales (XTriticosecaleWittmack). Cereal Chem 2016. [DOI: 10.1094/cchem-02-15-0034-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yaeel I. Cornejo-Ramírez
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Francisco Ramírez-Reyes
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Francisco J. Cinco-Moroyoqui
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Ema C. Rosas-Burgos
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Oliviert Martínez-Cruz
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Elizabeth Carvajal-Millán
- Centro de Investigación en Alimentos y Desarrollo, Carretera a La Victoria km 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - José L. Cárdenas-López
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Patricia I. Torres-Chavez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Pablo S. Osuna-Amarillas
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Universidad Estatal de Sonora, Unidad Académica Navojoa, Carretera Navojoa-Huatabampo km 5, Navojoa, Sonora, C.P. 85874, Mexico
| | - Jesús Borboa-Flores
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Francisco J. Wong-Corral
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| |
Collapse
|
36
|
Dong K, Zhen S, Cheng Z, Cao H, Ge P, Yan Y. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1017. [PMID: 26635843 PMCID: PMC4649031 DOI: 10.3389/fpls.2015.01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.
Collapse
Affiliation(s)
- Kun Dong
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Shoumin Zhen
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Zhiwei Cheng
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Hui Cao
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Pei Ge
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Yueming Yan
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
| |
Collapse
|
37
|
Yu X, Li B, Wang L, Chen X, Wang W, Wang Z, Xiong F. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development. PLoS One 2015; 10:e0138228. [PMID: 26394305 PMCID: PMC4578966 DOI: 10.1371/journal.pone.0138228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development.
Collapse
Affiliation(s)
- Xurun Yu
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Bo Li
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, China
| | - Leilei Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenjun Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhong Wang
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Fei Xiong
- Jiangsu Key laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- * E-mail:
| |
Collapse
|