1
|
Rawal HC, Ali S, Mondal TK. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int J Biol Macromol 2023; 242:125172. [PMID: 37268077 DOI: 10.1016/j.ijbiomac.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India; School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
2
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
3
|
Duan H, Tiika RJ, Tian F, Lu Y, Zhang Q, Hu Y, Cui G, Yang H. Metabolomics analysis unveils important changes involved in the salt tolerance of Salicornia europaea. FRONTIERS IN PLANT SCIENCE 2023; 13:1097076. [PMID: 36743536 PMCID: PMC9896792 DOI: 10.3389/fpls.2022.1097076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Salicornia europaea is one of the world's salt-tolerant plant species and is recognized as a model plant for studying the metabolism and molecular mechanisms of halophytes under salinity. To investigate the metabolic responses to salinity stress in S. europaea, this study performed a widely targeted metabolomic analysis after analyzing the physiological characteristics of plants exposed to various NaCl treatments. S. europaea exhibited excellent salt tolerance and could withstand extremely high NaCl concentrations, while lower NaCl conditions (50 and 100 mM) significantly promoted growth by increasing tissue succulence and maintaining a relatively stable K+ concentration. A total of 552 metabolites were detected, 500 of which were differently accumulated, mainly consisting of lipids, organic acids, saccharides, alcohols, amino acids, flavonoids, phenolic acids, and alkaloids. Sucrose, glucose, p-proline, quercetin and its derivatives, and kaempferol derivatives represented core metabolites that are responsive to salinity stress. Glycolysis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis were considered as the most important pathways responsible for salt stress response by increasing the osmotic tolerance and antioxidant activities. The high accumulation of some saccharides, flavonoids, and phenolic acids under 50 mM NaCl compared with 300 mM NaCl might contribute to the improved salt tolerance under the 50 mM NaCl treatment. Furthermore, quercetin, quercetin derivatives, and kaempferol derivatives showed varied change patterns in the roots and shoots, while coumaric, caffeic, and ferulic acids increased significantly in the roots, implying that the coping strategies in the shoots and roots varied under salinity stress. These findings lay the foundation for further analysis of the mechanism underlying the response of S. europaea to salinity.
Collapse
Affiliation(s)
- Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Fuping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuan Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu Hu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Limongelli F, Crupi P, Clodoveo ML, Corbo F, Muraglia M. Overview of the Polyphenols in Salicornia: From Recovery to Health-Promoting Effect. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227954. [PMID: 36432054 PMCID: PMC9696959 DOI: 10.3390/molecules27227954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Nowadays, there has been considerable attention paid toward the recovery of waste plant matrices as possible sources of functional compounds with healthy properties. In this regard, we focus our attention on Salicornia, a halophyte plant that grows abundantly on the coasts of the Mediterranean area. Salicornia is used not only as a seasoned vegetable but also in traditional medicine for its beneficial effects in protecting against diseases such as obesity, diabetes, and cancer. In numerous research studies, Salicornia consumption has been highly suggested due to its high level of bioactive molecules, among which, polyphenols are prevalent. The antioxidant and antiradical activity of polyphenols makes Salicornia a functional food candidate with potential beneficial activities for human health. Therefore, this review provides specific and compiled information for optimizing and developing new extraction processes for the recovery of bioactive compounds from Salicornia; focusing particular attention on polyphenols and their health benefits.
Collapse
Affiliation(s)
- Francesco Limongelli
- Dipartimento di Scienze del Suolo e Degli Alimenti, Università degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy
| | - Pasquale Crupi
- Dipartimento Interdisciplinare di Medicina, Università degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Correspondence: or
| | - Maria Lisa Clodoveo
- Dipartimento Interdisciplinare di Medicina, Università degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Filomena Corbo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy
| | - Marilena Muraglia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Chen B, Ding Z, Zhou X, Wang Y, Huang F, Sun J, Chen J, Han W. Integrated Full-Length Transcriptome and MicroRNA Sequencing Approaches Provide Insights Into Salt Tolerance in Mangrove ( Sonneratia apetala Buch.-Ham.). Front Genet 2022; 13:932832. [PMID: 35899202 PMCID: PMC9310009 DOI: 10.3389/fgene.2022.932832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that serve as key players in plant stress responses. Although stress-regulated miRNAs have been explored in various plants, they are not well studied in mangroves. Herein, we combined PacBio isoform sequencing (Iso-Seq) with BGISEQ short-read RNA-seq to probe the role of miRNAs in the salt stress response of the mangrove plant, Sonneratia apetala Buch.-Ham. A total of 1,702,463 circular consensus sequencing reads were generated that produced 295,501 nonredundant full-length transcripts from the leaves of a 1-year-old S. apetala. After sequencing nine small RNA libraries constructed from control and 1- and 28-day 300 mM NaCl treatments, we identified 143 miRNAs (114 known and 29 novel) from a total of >261 million short reads. With the criteria of |log2FC| ≥ 1 and q-value < 0.05, 42 and 70 miRNAs were differentially accumulated after 1- and 28-day salt treatments, respectively. These differential accumulated miRNAs potentially targeted salt-responsive genes encoding transcription factors, ion homeostasis, osmotic protection, and detoxificant-related proteins, reminiscent of their responsibility for salinity adaptation in S. apetala. Particularly, 62 miRNAs were Sonneratia specific under salt stress, of which 34 were co-expressed with their 131 predicted targets, thus producing 140 miRNA-target interactions. Of these, 82 miRNA-target pairs exhibited negative correlations. Eighteen miRNA targets were categorized for the 'environmental information processing' during KEGG analysis and were related to plant hormone signal transduction (ko04075), MAPK signaling pathway-plant (ko04016), and ABC transporters (ko02010). These results underscored miRNAs as possible contributors to mangrove success in severe environments and offer insights into an miRNA-mediated regulatory mechanism of salt response in S. apetala.
Collapse
Affiliation(s)
- Beibei Chen
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Zeyi Ding
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiang Zhou
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Fei Huang
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxin Sun
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Weidong Han
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
6
|
Behairi S, Baha N, Barakat M, Ortet P, Achouak W, Heulin T, Kaci Y. Bacterial diversity and community structure in the rhizosphere of the halophyte Halocnemum strobilaceum in an Algerian arid saline soil. Extremophiles 2022; 26:18. [PMID: 35652980 DOI: 10.1007/s00792-022-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.
Collapse
Affiliation(s)
- Sabrina Behairi
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Nassima Baha
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Mohamed Barakat
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Philippe Ortet
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Yahia Kaci
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
7
|
Zhang H, Zong R, He H, Huang T. Effects of hydrogen peroxide on Scenedesmus obliquus: Cell growth, antioxidant enzyme activity and intracellular protein fingerprinting. CHEMOSPHERE 2022; 287:132185. [PMID: 34500328 DOI: 10.1016/j.chemosphere.2021.132185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is an environmental-friendly algicide and it is widely used to control algal blooms in aquatic ecosystems. However, the response of algal cell metabolic characteristics and intracellular protein profile under H2O2 stress is still not well understood. In the present study, the green alga Scenedesmus obliquus was exposed to different concentrations of H2O2 (0, 2, 6, 8 and 10 mg L-1) to evaluate the changes in algal morphological, physiological, and proteomic features to H2O2 exposure. The results showed that 8 mg L-1 of H2O2 could effectively inhibit the cell growth and photosynthetic activity of S. obliquus including chlorophyll-a content and chlorophyll fluorescence parameters. The increased activities of superoxide dismutase (SOD) and catalase (CAT) observed in this study indicate that cells exposure to H2O2 caused oxidative stress. The metabolic activity of S. obliquus was significantly decreased by H2O2 treatment. In terms of proteomic analysis, 251 differentially expressed proteins (DEPs) were successfully identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed significant protein enrichment in the metabolic pathways, photosynthesis, ascorbic acid, and alginate metabolism and phenylpropane biosynthesis of S. obliquus. The analysis of protein-protein interaction system shows that the pathways of photosynthesis and metabolic pathways of S. obliquus were essential to resist oxidative stress. Taking together, these results shed new lights on exploring the cell physiological metabolism and intracellular protein mechanisms of H2O2 inhibition on algal blooms.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rongrong Zong
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiyan He
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. PLANT CELL REPORTS 2021; 40:1617-1630. [PMID: 34159416 DOI: 10.1007/s00299-021-02736-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 05/06/2023]
Abstract
One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Jia W, Lin K, Lou T, Feng J, Lv S, Jiang P, Yi Z, Zhang X, Wang D, Guo Z, Tang Y, Qiu R, Li Y. Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. PLANTA 2021; 254:16. [PMID: 34185181 DOI: 10.1007/s00425-021-03669-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Key miRNAs including sbi-miR169p/q, sbi-miR171g/j, sbi-miR172a/c/d, sbi-miR172e, sbi-miR319a/b, sbi-miR396a/b, miR408, sbi-miR5384, sbi-miR5565e and nov_23 were identified to function in the regulation of Cd accumulation and tolerance. As an energy plant, sweet sorghum shows great potential in the phytoremediation of Cd-contaminated soils. However, few studies have focused on the regulatory roles of miRNAs and their targets under Cd stress. In this study, comparative analysis of sRNAs, degradome and transcriptomics was conducted in high-Cd accumulation (H18) and low-Cd accumulation (L69) genotypes of sweet sorghum. A total of 38 conserved and 23 novel miRNAs with differential expressions were identified under Cd stress or between H18 and L69, and 114 target genes of 41 miRNAs were validated. Furthermore, 25 miRNA-mRNA pairs exhibited negatively correlated expression profiles and sbi-miR172e together with its target might participate in the distinct Cd tolerance between H18 and L69 as well as sbi-miR172a/c/d. Additionally, two groups of them: miR169p/q-nov_23 and miR408 were focused through the co-expression analysis, which might be involved in Cd uptake and tolerance by regulating their targets associated with transmembrane transportation, cytoskeleton activity, cell wall construction and ROS (reactive oxygen species) homeostasis. Further experiments exhibited that cell wall components of H18 and L69 were different when exposed to cadmium, which might be regulated by miR169p/q, miR171g/j, miR319a/b, miR396a/b, miR5384 and miR5565e through their targets. Through this study, we aim to reveal the potential miRNAs involved in sweet sorghum in response to Cd stress and provide references for developing high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum that can be used in phytoremediation.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yetao Tang
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Rongliang Qiu
- Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
10
|
Chandra T, Mishra S, Panda BB, Sahu G, Dash SK, Shaw BP. Study of expressions of miRNAs in the spikelets based on their spatial location on panicle in rice cultivars provided insight into their influence on grain development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:244-256. [PMID: 33388659 DOI: 10.1016/j.plaphy.2020.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Development of rice cultivars bearing numerous spikelets by breeding approach to increase the yearly production of rice to approximately 800 million metric tons to feed the ever increasing population of the world accompanies poor grain filling in the inferior spikelets preventing achievement of the yield potential. As the initial stages of caryopses development are of much importance for grain filling, spatio-temporal expressions of the miRNAs were studied during these periods in the spikelets of a compact-panicle rice cultivar, Oryza sativa cv. Mahalaxmi, bearing numerous spikelets per panicle to understand the reason of poor grain filling at the level of the initial biochemical events. Differential expression of several known miRNAs between the superior and inferior spikelets suggested great difference in metabolism related to grain filling in the spikelets based on their spatial location on compact panicle. Expressions of five known and four novel miRNAs were validated by Northern. Their targets included the enzymes directly involved in starch biosynthesis like sucrose synthase, starch synthase and pullulanase, besides others. Spatio-temporal expression studies of these miRNAs in the spikelets of Mahalaxmi revealed a pattern of mostly a greater expression in the inferior spikelets compared with the superior ones concomitant with an inverse expression of the target genes, which was not observed in the lax-panicle cultivar Upahar. The study thus revealed that the grain filling in rice is greatly regulated by miRNAs, and these miRNAs or their target genes could be considered for biotechnological interventions for improving grain filling in the rice cultivars of interest.
Collapse
Affiliation(s)
- Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Sagarika Mishra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Binay Bhushan Panda
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Sushanta Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (formerly Central Rice Research Institute), Cuttack, Odisha, India.
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Xu T, Zhang L, Yang Z, Wei Y, Dong T. Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:665439. [PMID: 34220888 PMCID: PMC8247772 DOI: 10.3389/fpls.2021.665439] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Abstract
Salinity, as a major environmental stressor, limits plant growth, development, and crop yield remarkably. However, plants evolve their own defense systems in response to salt stress. Recently, microRNA (miRNA) has been broadly studied and considered to be an important regulator of the plant salt-stress response at the post-transcription level. In this review, we have summarized the recent research progress on the identification, functional characterization, and regulatory mechanism of miRNA involved in salt stress, have discussed the emerging manipulation of miRNA to improve crop salt resistance, and have provided future direction for plant miRNA study under salt stress, suggesting that the salinity resistance of crops could be improved by the manipulation of microRNA.
Collapse
Affiliation(s)
- Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Tao Xu,
| | - Long Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhengmei Yang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Tingting Dong,
| |
Collapse
|
12
|
Boulc'h PN, Caullireau E, Faucher E, Gouerou M, Guérin A, Miray R, Couée I. Abiotic stress signalling in extremophile land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5771-5785. [PMID: 32687568 DOI: 10.1093/jxb/eraa336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.
Collapse
Affiliation(s)
- Pierre-Nicolas Boulc'h
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Emma Caullireau
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Elvina Faucher
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Maverick Gouerou
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Amandine Guérin
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Romane Miray
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| | - Ivan Couée
- University of Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
- University of Rennes 1, CNRS, ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR, Campus de Beaulieu, avenue du Général Leclerc, Rennes, France
| |
Collapse
|
13
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|
15
|
RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress. BMC Genomics 2019; 20:724. [PMID: 31601194 PMCID: PMC6785863 DOI: 10.1186/s12864-019-6098-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/11/2019] [Indexed: 01/29/2023] Open
Abstract
Background Clerodendrum inerme (L.) Gaertn, a halophyte, usually grows on coastal beaches as an important mangrove plant. The salt-tolerant mechanisms and related genes of this species that respond to short-term salinity stress are unknown for us. The de novo transcriptome of C. inerme roots was analyzed using next-generation sequencing technology to identify genes involved in salt tolerance and to better understand the response mechanisms of C. inerme to salt stress. Results Illumina RNA-sequencing was performed on root samples treated with 400 mM NaCl for 0 h, 6 h, 24 h, and 72 h to investigate changes in C. inerme in response to salt stress. The de novo assembly identified 98,968 unigenes. Among these unigenes, 46,085 unigenes were annotated in the NCBI non-redundant protein sequences (NR) database, 34,756 sequences in the Swiss-Prot database and 43,113 unigenes in the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) database. 52 Gene Ontology (GO) terms and 31 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were matched to those unigenes. Most differentially expressed genes (DEGs) related to the GO terms “single-organism process”, “membrane” and “catalytic activity” were significantly enriched while numerous DEGs related to the plant hormone signal transduction pathway were also significantly enriched. The detection of relative expression levels of 9 candidate DEGs by qRT-PCR were basically consistent with fold changes in RNA sequencing analysis, demonstrating that transcriptome data can accurately reflect the response of C. inerme roots to salt stress. Conclusions This work revealed that the response of C. inerme roots to saline condition included significant alteration in response of the genes related to plant hormone signaling. Besides, our findings provide numerous salt-tolerant genes for further research to improve the salt tolerance of functional plants and will enhance research on salt-tolerant mechanisms of halophytes.
Collapse
|
16
|
Chen L, Meng J, He XL, Zhang M, Luan YS. Solanum lycopersicum microRNA1916 targets multiple target genes and negatively regulates the immune response in tomato. PLANT, CELL & ENVIRONMENT 2019; 42:1393-1407. [PMID: 30362126 DOI: 10.1111/pce.13468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
MicroRNA1916 (miR1916) is one of the nonconserved miRNAs that respond to various stresses in plants, but little has been known at present about its mechanisms in biotic stresses. In this study, the expression of Solanum lycopersicum (sly)-miR1916 in tomato was found to be down-regulated after infection with Phytophthora infestans or Botrytis cinerea. Tomato plants that overexpressed sly-miR1916 displayed significant enhancement in susceptibility to P. infestans and B. cinerea infection, as well as increased tendency to produce reactive oxygen species. Silencing of sly-miR1916 by short tandem target mimic and artificial microRNA strategies caused the tomato plants to become more tolerant to adverse conditions. In addition, lower sly-miR1916 expression could up-regulate the expression of strictosidine synthase (STR-2), UDP-glycosyltransferases (UGTs), late blight resistance protein homolog R1B-16, disease resistance protein RPP13-like, and MYB transcription factor (MYB12), which ultimately resulted in the accumulation of α-tomatine and anthocyanins via STR-2, UGT, and MYB12. Furthermore, ectopic expression of sly-miR1916/STR-2 significantly changed the tolerance of tobacco to B. cinerea. Taken together, the results demonstrated that sly-miR1916 might regulate the expression of STR-2, UGT, and MYB12 in tomato plant, conferring sensitivity to biotic stress via modulating α-tomatine and anthocyanins.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Li He
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Min Zhang
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yu Shi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
18
|
Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. The role of miRNA in somatic embryogenesis. Genomics 2018; 111:1026-1033. [PMID: 30476555 DOI: 10.1016/j.ygeno.2018.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 02/04/2023]
Abstract
Somatic embryogenesis (SEG) is one of the best techniques for mass production of economically important plants. It is also used for the study of morphology, anatomy, physiology, genetics and molecular mechanism of embryo development. Somatic Embryos (SE) are bipolar structures that develop from a cell other than a gamete or zygote. SEG reflects the unique developmental potential of plant somatic cells, resulting in the transition of the differentiated somatic cells to embryogenic cells to follow the zygotic embryo stages. There are several biochemical and physiological processes that transformed a single somatic cell to a whole plant. SE studies provide insight into cell mechanisms governing the totipotency process in plants. Previously, in vitro studies have suggested the role of various regulatory genes in embryogenic transition that are triggered by plant hormones in response to stress. The omic studies identify the specific genes, transcripts, and proteins required for somatic embryogenesis development. MicroRNAs (miRNAs) are small, 19-24 nucleotides (nt), non-coding small RNA regulatory molecules controlling a large number of biological processes. In addition to their role in SEG, miRNAs play vital role in plant development, secondary metabolite synthesis and metabolism of macromolecules, hormone signal transduction, and tolerance of plants to biotic and abiotic stresses. During last decade several types of miRNAs involved in SEG have been reported. Among these miRNAs, miR156, miR162, miR166a, miR167, miR168, miR171a/b, miR171c, miR393, miR397 and miR398 played very active role during various stages of SEG. In this review, we highlighted the role of these as well as other miRNAs in some economically important plants.
Collapse
Affiliation(s)
- Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, JLN Marg, New Delhi 110002, India
| | - Mohammad Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
19
|
Yepes L, Chelbi N, Vivo JM, Franco M, Agudelo A, Carvajal M, Martínez-Ballesta MDC. Analysis of physiological traits in the response of Chenopodiaceae, Amaranthaceae, and Brassicaceae plants to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:145-155. [PMID: 30189418 DOI: 10.1016/j.plaphy.2018.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 05/27/2023]
Abstract
Soil salinity is one of the main factors affecting plant growth. Dissection of plant response to salinity into physiological traits may result a simple approximation than the overall response that may influence many aspects of the plant. In the present study two factors were considered to evaluate the correlation of different physiological variables in the plant response to salinity. The first factor was the species, with four levels (Atriplex halimus, Salicornia fruticosa, Cakile maritima, and Brassica rapa), and the second was the salinity (0, 100, 200, and 300 mM NaCl). Thus, the interrelationships of distinct physiological traits - leaf succulence, minerals (micronutrients and macronutrients), plant water relations (osmotic potential, water potential, and hydraulic conductivity), protein content, catalase, and unsaturated fatty acids - were analyzed by Discriminant Canonical Analysis (DCA). Additional information supplied by the interaction between the variables provided a multivariate response pattern in which the two factors (species x salinity) influenced the relationship between responses rather than affecting a single response. Such analysis allows to establish whether the selected trait was associated to each other for helping to define the best set of parameters in relation to the response of new genotypes to salinity. Thus, plant growth was influenced by leaf succulence adaptation to salt stress whereas it was not determined by water relations. The Na ion prevailed over K as the element with the highest variability in the response to salinity in A. halimus and S. fruticosa, whereas in C. maritima and B. rapa, Ca, S, and P stood out more. Patterns of ion accumulation together with the protein and unsaturated fatty acid ratios could be used in discriminating plant response to salt stress may be positioned in interrelated groups. The results highlight new evidences in the response to salt stress associated to a specific interrelationship of a set of physiological parameters.
Collapse
Affiliation(s)
- Lucia Yepes
- Plant Nutrition Department, CEBAS-CSIC, Campus de Espinardo, 30100, Murcia, Spain
| | - Najla Chelbi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Spain
| | - Juana-María Vivo
- Department of Statistics and Operations Research, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Manuel Franco
- Department of Statistics and Operations Research, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Agatha Agudelo
- Sakata Seed Ibérica S.L, Pl. Poeta Vicente Gaos, 6 bajo, Valencia, Spain; Universidad Politécnica de Valencia, UPV, Camino de Vera s/n, 46022, Valencia, Spain
| | - Micaela Carvajal
- Plant Nutrition Department, CEBAS-CSIC, Campus de Espinardo, 30100, Murcia, Spain
| | | |
Collapse
|
20
|
Zunongwangia flava sp. nov., belonging to the family Flavobacteriaceae, isolated from Salicornia europaea. J Microbiol 2018; 56:868-873. [PMID: 30361977 DOI: 10.1007/s12275-018-8231-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20‒37°C (optimum, 25‒30°C), at pH 6.0‒10.0 (optimum, 7.0‒8.0), and with 0.5‒15.0% (w/v) NaCl (optimum, 2.0‒5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).
Collapse
|
21
|
Szymańska S, Borruso L, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K. Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25420-25431. [PMID: 29951760 PMCID: PMC6133108 DOI: 10.1007/s11356-018-2530-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/11/2018] [Indexed: 05/26/2023]
Abstract
The halophytes have evolved several strategies to survive in saline environments; however, an additional support from their associated microbiota helps combat adverse conditions. Hence, our driving interests to investigate the endophytic bacterial community richness, diversity, and composition associated to roots of Salicornia europaea from two test sites with different origins of soil salinity. We assumed that salinity will have a negative effect on the diversity of endophytes but simultaneously will permit the high occurrence of halophylic bacteria. Further, to establish the role of the host and its external environment in determining the endophytic diversity, we analyzed the physico-chemical parameters of root zone soil and the concentration of salt ions in the plant roots. The results based on the Miseq Illumina sequencing approach revealed a higher number of endophytic bacterial OTUs at naturally saline test site with a higher level of soil salinity. Proteobacteria and Bacteriodetes were the dominant endophytic phyla at both analyzed sites; additionally, the high occurrence of Planctomycetes and Acidobacteria at more saline site and the occurrence of Firmicutes, Actinobacteria, and Chloroflexi at less saline site were recorded. The salinity in the root zone soil was crucial in structuring the endophytic community of S. europaea, and the significant prevalence of representatives from the phyla Deltaproteobacteria, Acidobacteria, Caldithrix, Fibrobacteres, and Verrucomicrobia at the more saline test site suggest domination of halophylic bacteria with potential role in mitigation of salt stress of halophytes.
Collapse
Affiliation(s)
- Sonia Szymańska
- Department of Microbiology, Faculty of Biology and Environmental Protection, N. Copernicus University in Torun, Lwowska 1, Toruń, Poland
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen - Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen - Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Piotr Hulisz
- Department of Soil Science and Landscape Management, Faculty of Earth Sciences, N. Copernicus University in Torun, Lwowska 1, Toruń, Poland
| | - Bliss Furtado
- Department of Microbiology, Faculty of Biology and Environmental Protection, N. Copernicus University in Torun, Lwowska 1, Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, N. Copernicus University in Torun, Lwowska 1, Toruń, Poland.
| |
Collapse
|
22
|
Mondal TK, Panda AK, Rawal HC, Sharma TR. Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci Rep 2018; 8:570. [PMID: 29330361 PMCID: PMC5766505 DOI: 10.1038/s41598-017-18206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Oryza glaberrima is the second edible rice in the genus Oryza. It is grown in the African countries. miRNAs are regulatory molecules that are involved in every domains of gene expression including salinity stress response. Although several miRNAs have been reported from various species of Oryza, yet none of them are from this species. Salt treated (200 mM NaCl for 48 h) and control smallRNA libraries of RAM-100, a salt tolerant genotype, each with 2 replications generated 150 conserve and 348 novel miRNAs. We also used smallRNAseq data of NCBI of O. glaberrima to discover additional 246 known miRNAs. Totally, 29 known and 32 novel miRNAs were differentially regulated under salinity stress. Gene ontology and KEGG analysis indicated several targets were involved in vital biological pathways of salinity stress tolerance. Expression of selected miRNAs as indicated by Illumina data were found to be coherent with real time-PCR analysis. However, target gene expression was inversely correlated with their corresponding miRNAs. Finally based upon present results as well as existing knowledge of literature, we proposed the miRNA-target modules that were induced by salinity stress. Therefore, the present findings provide valuable information about miRNA-target networks in salinity adaption of O. glaberrima.
Collapse
Affiliation(s)
- Tapan Kumar Mondal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, L.B.S. Building, IARI Campus, New Delhi, 110012, India.
| | - Alok Kumar Panda
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
- ICAR-National Research Centre on Plant Biotechnology, L.B.S. Building, IARI Campus, New Delhi, 110012, India
| | - Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, L.B.S. Building, IARI Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, L.B.S. Building, IARI Campus, New Delhi, 110012, India
| |
Collapse
|
23
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Nikalje G, Nikam T, Suprasanna P. Looking at Halophytic Adaptation to High Salinity Through Genomics Landscape. Curr Genomics 2017; 18:542-552. [PMID: 29204082 PMCID: PMC5684652 DOI: 10.2174/1389202918666170228143007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022] Open
Abstract
Soil salinity is an important stress factor that limits plant growth and productivity. For a given plant species, it is critical to sense and respond to salt stimuli followed by activation of multitude of mechanisms for plants to survive. Halophytes, the wonders of saline soils, have demonstrated ability to withstand and reproduce in at least 200 mM NaCl concentration, which makes them an ideal system to study mechanism of salt adaptation for imparting salt tolerance in glycophytes. Halophytes and salt sensitive glycophytes adapt different defense strategies towards salinity stress. These responses in halophytes are modulated by a well orchestrated network of signaling pathways, including calcium signaling, reactive oxygen species and phytohormones. Moreover, constitutive expression of salt stress response related genes, which is only salt inducible in glycophytes, maintains salt tolerance traits in halophytes. The focus of this review is on the adaptive considerations of halophytes through the genomics approaches from the point of view of sensing and signaling components involved in mediating plant responses to salinity.
Collapse
Affiliation(s)
- G.C. Nikalje
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - T.D. Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, India
| | - P. Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
25
|
Li J, Yue L, Shen Y, Sheng Y, Zhan X, Xu G, Xing B. Phenanthrene-responsive microRNAs and their targets in wheat roots. CHEMOSPHERE 2017; 186:588-598. [PMID: 28818587 DOI: 10.1016/j.chemosphere.2017.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) play key roles in plant growth, development and responses to abiotic stress. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. However, it is yet unknown how miRNAs work during PAH uptake by plant roots. Thus, in this study we ascertain phenanthrene (a model PAH)-responsive miRNAs using small RNA high-throughput deep sequencing and their target genes in wheat roots. We identified 108 conserved and non-conserved miRNA members belonging to 82 miRNA families and found 11 differentially expressed miRNAs, among which four miRNAs (miR156, miR164, miR171a and miR9678-3p) were up-regulated and the other seven miRNAs (miR398, miR531, miR1121, miR5048-5p, miR9653b, miR9773 and miR9778) were down-regulated. ABC-transporter-related Gene CA704421 and CA697226 did not respond to phenanthrene exposure. miR156 and miR164 might regulate directly the growth and development of wheat roots by targeting SPL and NAC, respectively. miR398 and miR1121 could regulate oxidative reactions to respond to phenanthrene stress. Additionally, miR9773 might involve phenanthrene metabolism through acting on CYP450. Therefore, it is concluded that phenanthrene triggers variation in miRNA expression, which is associated with uptake of and response to phenanthrene. These findings are of significance for further understanding miRNA regulation mechanisms on PAH uptake, and providing guidance for screening of resistant cultivars in crop production and phytoremediation of PAH-contaminated soils or water at genetic level.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yu Sheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
26
|
Wang L, Wang HL, Yin L, Tian CY. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination. BMC Genomics 2017; 18:806. [PMID: 29052505 PMCID: PMC5649071 DOI: 10.1186/s12864-017-4209-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dimorphic seeds from Suaeda aralocaspica exhibit different germination behaviors that are thought to be a bet-hedging strategy advantageous in harsh and unpredictable environments. To understand the molecular mechanisms of Suaeda aralocaspica dimorphic seed germination, we applied RNA sequencing and small RNA sequencing for samples collected at three germination stages. RESULTS A total of 79,414 transcripts were assembled using Trinity, of which 57.67% were functionally annotated. KEGG enrichment unveiled that photosynthesis and flavonol biosynthesis pathways were activated earlier in brown seed compared with black seed. Gene expression analysis revealed that nine candidate unigenes in gibberellic acid and abscisic acid signal transduction and 23 unigenes in circadian rhythm-plant pathway showed distinct expression profiles to promote dimorphic seed germination. 194 conserved miRNAs comprising 40 families and 21 novel miRNAs belonging to 20 families in Suaeda aralocaspica were identified using miRDeep-P and Mfold. The expression of miRNAs in black seed was suppressed at imbibition stage. Among the identified miRNAs, 59 conserved and 13 novel miRNAs differentially expressed during seed germination. Of which, 43 conserved and nine novel miRNAs showed distinct expression patterns between black and brown seed. Using TAPIR, 208 unigenes were predicted as putative targets of 35 conserved miRNA families and 17 novel miRNA families. Among functionally annotated targets, genes participated in transcription regulation constituted the dominant category, followed by genes involved in signaling and stress response. Seven of the predicted targets were validated using 5' rapid amplification of cDNA ends or real-time quantitative reverse transcription-PCR. CONCLUSIONS Our results indicate that specific genes and miRNAs are regulated differently between black and brown seed during germination, which may contribute to the different germination behaviors of Suaeda aralocaspica dimorphic seeds in unpredictable variable environments. Our results lay a solid foundation for further studying the roles of candidate genes and miRNAs in Suaeda aralocaspica dimorphic seed germination.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Hong-Ling Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Lan Yin
- ABLife, Inc., Optics Valley International Biomedical Park, Building 18, East Lake High-Tech Development Zone, 858 Gaoxin Boulevard, Wuhan, 430075, China.
| | - Chang-Yan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
27
|
Cho ES, Cha IT, Park JM, Choi HJ, Lee JH, Roh SW, Cho EA, Kweon MH, Nam YD, Seo MJ. Flavimarina flava sp. nov., isolated from Salicornia herbacea. Int J Syst Evol Microbiol 2017; 67:4240-4245. [PMID: 28920849 DOI: 10.1099/ijsem.0.002292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile-by-gliding, aerobic, non-spore-forming, rod-shaped and yellow-pigmented bacterium was isolated from Salicornia herbacea in the Yellow Sea and designated as strain MBLN091T. It belonged to the family Flavobacteriaceae. The 16S rRNA gene sequence of this isolated strain was similar to that of Flavimarina pacifica IDSW-73T with 94.8 % similarity, and with 92.3-92.8 % similarities to those of other closely related species of the genus Leeuwenhoekiella. The similarities of the RNA polymerase subunit B gene between this strain and F. pacifica KCTC 32466T and Leeuwenhoekiella marinoflava DSM 3653T were 80.5 and 80.2 %, respectively. Growth of strain MBLN091T was observed in the presence of 0.5‒15.0 % (w/v) NaCl at 4‒35 °C and pH 6.0-8.0, with optimal growth in the presence of 2.5‒5.0 % (w/v) NaCl at 20‒25 °C and pH 7.0. This isolate was able to hydrolyse gelatin. The only respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. Major fatty acids of the isolate were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C17 : 0 3-OH and iso-C15 : 1 G. The genomic DNA G+C content was 39.6 mol%. The physiological features were closely related to F. pacifica. Therefore, strain MBLN091T is considered to represent a novel species within the genus Flavimarina, for which the name Flavimarina flava sp. nov. is proposed. The type strain is MBLN091T (=KCTC 52527T=JCM 31731T).
Collapse
Affiliation(s)
- Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
| | - In-Tae Cha
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jung-Min Park
- Korean Culture Center of Microorganisms, Seoul 03641, Republic of Korea
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, CHA University, Sungnam 13488, Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Eun-Ah Cho
- Research Center, Phyto Corporation, Seoul 08826, Republic of Korea
| | - Mee-Hyang Kweon
- Research Center, Phyto Corporation, Seoul 08826, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Seongnam 13539, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea.,Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
28
|
Tai F, Lv S, Jiang P, Wang J, Feng J, Li Y. Establishment of a gene function analysis system for the euhalophyte Salicornia europaea L. PLANT CELL REPORTS 2017; 36:1251-1261. [PMID: 28466186 DOI: 10.1007/s00299-017-2150-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
A Salicornia europaea L. in vitro cell transformation system was developed and further applied to SeNHX1 function investigation. The exploration of salt-tolerant genes from halophyte has seriously been limited by the lack of self-dependent transformation system. Here, an Agrobacterium tumefaciens-mediated in vitro cell transformation system of euhalophyte Salicornia europaea L. was developed. Calli derived from hypocotyl of S. europaea were co-cultured for 3 days with Agrobacterium at OD600 ranging from 1.0 to 1.5 and then selected with 25 mg/L hygromycin (Hyg). The transformed cells were identified from Hyg positive calli by GUS assay and qRT-PCR, and the transformation efficiency was up to 74.4%. The practicality of this system was further tested via genetic manipulation of S. europaea Na+/H+ antiporter 1 (SeNHX1) gene by creating the overexpressing, silencing, and empty vector cells. Survival ratio and Na+ distribution under salt treatment showed obvious differences in SeNHX1-overexpressing, -silencing, and empty vector cells, indicating the feasibility of this system to analyze gene function. This investigation is enlightening for studies in other non-model plants lacking of self-dependent transformation system.
Collapse
Affiliation(s)
- Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
29
|
Zhang H, Yin L, Wang H, Wang G, Ma X, Li M, Wu H, Fu Q, Zhang Y, Yi H. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development. PLoS One 2017; 12:e0180600. [PMID: 28742088 PMCID: PMC5524408 DOI: 10.1371/journal.pone.0180600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, "transcription, DNA-dependent", "rRNA processing", "oxidation reduction", "signal transduction", "regulation of transcription, DNA-dependent", and "metabolic process" were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5' RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Lan Yin
- ABLife, Inc., Wuhan, Hubei, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xinli Ma
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qiushi Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhang
- ABLife, Inc., Wuhan, Hubei, China
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
30
|
Zhang J, Xue B, Gai M, Song S, Jia N, Sun H. Small RNA and Transcriptome Sequencing Reveal a Potential miRNA-Mediated Interaction Network That Functions during Somatic Embryogenesis in Lilium pumilum DC. Fisch. FRONTIERS IN PLANT SCIENCE 2017; 8:566. [PMID: 28473835 PMCID: PMC5397531 DOI: 10.3389/fpls.2017.00566] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/29/2017] [Indexed: 05/23/2023]
Abstract
Plant somatic embryos are widely used in the fields of germplasm conservation, breeding for genetic engineering and artificial seed production. MicroRNAs (miRNAs) play pivotal roles in somatic embryogenesis (SE) regulation. However, their regulatory roles during various stages of SE remain unclear. In this study, six types of embryogenic samples of Lilium pumilum DC. Fisch., including organogenic callus, embryogenic callus induced for 4 weeks, embryogenic callus induced for 6 weeks, globular embryos, torpedo embryos and cotyledon embryos, were prepared for small RNA sequencing. The results revealed a total of 2,378,760 small RNA reads, among which the most common size was 24 nt. Four hundred and fifty-two known miRNAs, belonging to more than 86 families, 57 novel miRNAs and 40 miRNA*s were identified. The 86 known miRNA families were sorted according to an alignment with their homologs across 24 land plants into the following four categories: 23 highly conserved, 4 moderately conserved, 15 less conserved and 44 species-specific miRNAs. Differentially expressed known miRNAs were identified during various stages of SE. Subsequently, the expression levels of 12 differentially expressed miRNAs and 4 targets were validated using qRT-PCR. In addition, six samples were mixed in equal amounts for transcript sequencing, and the sequencing data were used as transcripts for miRNA target prediction. A total of 66,422 unigenes with an average length of 800 bp were assembled from 56,258,974 raw reads. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that 38,004 and 15,497 unigenes were successfully assigned to GO terms and KEGG pathways, respectively. Among the unigenes, 2,182 transcripts were predicted to be targets for 396 known miRNAs. The potential targets of the identified miRNAs were mostly classified into the following GO terms: cell, binding and metabolic process. Enriched KEGG analysis demonstrated that carbohydrate metabolism was the predominant pathway in Lilium SE. Thus, we performed systemic characterization, homology comparisons and profiling of miRNA expression, and we constructed an miRNA-target network during Lilium SE for the first time. Our findings establish a foundation for the further exploration of critical genes and elucidation of SE in Lilium.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| |
Collapse
|
31
|
Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, Reddy M, Cherif A, Tsiamis G, Borin S, Daffonchio D. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth. Front Microbiol 2016; 7:1286. [PMID: 27597846 PMCID: PMC4992691 DOI: 10.3389/fmicb.2016.01286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 11/24/2022] Open
Abstract
Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Paola Bariselli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Muppala Reddy
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
- Greenhouse Laboratory, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet, BVBGR-LR11ES31, Manouba University, ArianaTunisia
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Panepistimioupoli PatronGreece
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| |
Collapse
|
32
|
Chiang CP, Yim WC, Sun YH, Ohnishi M, Mimura T, Cushman JC, Yen HE. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1143. [PMID: 27555850 PMCID: PMC4977306 DOI: 10.3389/fpls.2016.01143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/18/2016] [Indexed: 05/03/2023]
Abstract
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na(+), we found that ice plant roots respond to an increased flux of Na(+) by either secreting or storing Na(+) in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na(+) distribution, ice plant likely responds to increased salinity by using Na(+) as an osmoticum for cell expansion and guard cell opening. Excessive Na(+) could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.
Collapse
Affiliation(s)
- Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing UniversityTaichung, Taiwan
| | - Miwa Ohnishi
- Graduate School of Science, Kobe UniversityKobe, Japan
| | | | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Hungchen E. Yen
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
33
|
Wu Y, Guo J, Cai Y, Gong X, Xiong X, Qi W, Pang Q, Wang X, Wang Y. Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance. PHYSIOLOGIA PLANTARUM 2016; 157:453-68. [PMID: 26806325 DOI: 10.1111/ppl.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 05/23/2023]
Abstract
Eutrema salsugineum, a close relative of Arabidopsis thaliana, is a valuable halophytic model plant that has extreme tolerance to salinity. As posttranscriptional gene regulators, microRNAs (miRNAs) control gene expression and a variety of biological processes, including plant-stress responses. To identify salt-stress responsive miRNAs in E. salsugineum and reveal their possible roles in the adaptive response to salt stress, we chose the Solexa sequencing platform to screen the miRNAs in 4-week-old E. salsugineum seedlings under salt treatment. A total of 82 conserved miRNAs belonging to 27 miRNA families and 17 novel miRNAs were identified and 11 conserved miRNA families and 4 novel miRNAs showed a significant response to salt stress. To investigate the possible biological roles of miRNAs, 1060 potential targets were predicted. Moreover, 35 gene ontology (GO) categories and 1 pathway, including a few terms that were directly and indirectly related to salt stress, were significantly enriched in the salt-stress-responsive miRNAs targets. The relative expression analysis of six target genes was analyzed using quantitative real-time polymerase chain reaction (PCR) and showed a negative correlation with their corresponding miRNAs. Many stress regulatory and phytohormone regulatory cis-regulatory elements were widely present in the promoter region of the salt-responsive miRNA precursors. This study describes the large-scale characterization of E. salsugineum miRNAs and provides a useful resource for further understanding of miRNA functions in the regulation of the E. salsugineum salt-stress response.
Collapse
Affiliation(s)
- Ying Wu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jing Guo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
| | - Yimei Cai
- CAS Key Laboratory of Genome Sciences and Information, BeGenomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xiaolin Gong
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
| | - Xuemei Xiong
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
| | - Wenwen Qi
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, BeGenomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yang Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, 150040, China
| |
Collapse
|
34
|
Gharat SA, Shaw BP. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. BMC PLANT BIOLOGY 2015; 15:301. [PMID: 26714456 PMCID: PMC4696257 DOI: 10.1186/s12870-015-0682-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/13/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although miRNAs are reportedly involved in the salt stress tolerance of plants, miRNA profiling in plants has largely remained restricted to glycophytes, including certain crop species that do not exhibit any tolerance to salinity. Hence, this manuscript describes the results from the miRNA profiling of the halophyte Suaeda maritima, which is used worldwide to study salt tolerance in plants. RESULTS A total of 134 conserved miRNAs were identified from unique sRNA reads, with 126 identified using miRBase 21.0 and an additional eight identified using the Plant Non-coding RNA Database. The presence of the precursors of seven conserved miRNAs was validated in S. maritima. In addition, 13 novel miRNAs were predicted using the ESTs of two mangrove plants, Rhizophora mangle and Heritiera littoralis, and the precursors of seven miRNAs were found in S. maritima. Most of the miRNAs considered for characterization were responsive to NaCl application, indicating their importance in the regulation of metabolic activities in plants exposed to salinity. An expression study of the novel miRNAs in plants of diverse ecological and taxonomic groups revealed that two of the miRNAs, sma-miR6 and sma-miR7, were also expressed in Oryza sativa, whereas another two, sma-miR2 and sma-miR5, were only expressed in plants growing under the influence of seawater, similar to S. maritima. CONCLUSION The distribution of conserved miRNAs among only 25 families indicated the possibility of identifying a greater number of miRNAs with increase in knowledge of the genomes of more halophytes. The expression of two novel miRNAs, sma-miR2 and sma-miR5, only in plants growing under the influence of seawater suggested their metabolic regulatory roles specific to saline environments, and such behavior might be mediated by alterations in the expression of certain genes, modifications of proteins leading to changes in their activity and production of secondary metabolites as revealed by the miRNA target predictions. Moreover, the auxin responsive factor targeted by sma-miR7 could also be involved in salt tolerance because the target is conserved between species. This study also indicated that the transcriptome of one species can be successfully used to computationally predict the miRNAs in other species, especially those that have similar metabolism, even if they are taxonomically separated.
Collapse
Affiliation(s)
- Sachin Ashruba Gharat
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
35
|
Mondal TK, Ganie SA, Debnath AB. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice. PLoS One 2015; 10:e0140675. [PMID: 26506249 PMCID: PMC4623511 DOI: 10.1371/journal.pone.0140675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/29/2015] [Indexed: 01/25/2023] Open
Abstract
Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.
Collapse
Affiliation(s)
- Tapan Kumar Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| | - Showkat Ahmad Ganie
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| | - Ananda Bhusan Debnath
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| |
Collapse
|
36
|
Mou W, Li D, Luo Z, Mao L, Ying T. Transcriptomic Analysis Reveals Possible Influences of ABA on Secondary Metabolism of Pigments, Flavonoids and Antioxidants in Tomato Fruit during Ripening. PLoS One 2015; 10:e0129598. [PMID: 26053166 PMCID: PMC4460000 DOI: 10.1371/journal.pone.0129598] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/11/2015] [Indexed: 12/18/2022] Open
Abstract
Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes. Exogenous ABA was found to enhance the transcription of genes involved in pigments metabolism, including carotenoids biosynthesis and chlorophyll degradation, whereas NDGA treatment inhibited these processes. The results also revealed the crucial role of ABA in flavonoids synthesis and regulation of antioxidant system. Intriguingly, we also found that an inhibition of endogenous ABA significantly enhanced the transcriptional abundance of genes involved in photosynthesis. Our results highlighted the significance of ABA in regulating tomato ripening, which provided insight into the regulatory mechanism of fruit maturation and senescence process.
Collapse
Affiliation(s)
- Wangshu Mou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Dongdong Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
37
|
Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC PLANT BIOLOGY 2015; 15:63. [PMID: 25848810 PMCID: PMC4349674 DOI: 10.1186/s12870-015-0451-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/06/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are implicated in plant development processes and play pivotal roles in plant adaptation to environmental stresses. Salicornia europaea, a salt mash euhalophyte, is a suitable model plant to study salt adaptation mechanisms. S. europaea is also a vegetable, forage, and oilseed that can be used for saline land reclamation and biofuel precursor production on marginal lands. Despite its importance, no miRNA has been identified from S. europaea thus far. RESULTS Deep sequencing was performed to investigate small RNA transcriptome of S. europaea. Two hundred and ten conserved miRNAs comprising 51 families and 31 novel miRNAs (including seven miRNA star sequences) belonging to 30 families were identified. About half (13 out of 31) of the novel miRNAs were only detected in salt-treated samples. The expression of 43 conserved and 13 novel miRNAs significantly changed in response to salinity. In addition, 53 conserved and 13 novel miRNAs were differentially expressed between the shoots and roots. Furthermore, 306 and 195 S. europaea unigenes were predicted to be targets of 41 conserved and 29 novel miRNA families, respectively. These targets encoded a wide range of proteins, and genes involved in transcription regulation constituted the largest category. Four of these genes encoding laccase, F-box family protein, SAC3/GANP family protein, and NADPH cytochrome P-450 reductase were validated using 5'-RACE. CONCLUSIONS Our results indicate that specific miRNAs are tightly regulated by salinity in the shoots and/or roots of S. europaea, which may play important roles in salt tolerance of this euhalophyte. The S. europaea salt-responsive miRNAs and miRNAs that target transcription factors, nucleotide binding site-leucine-rich repeat proteins and enzymes involved in lignin biosynthesis as well as carbon and nitrogen metabolism may be applied in genetic engineering of crops with high stress tolerance, and genetic modification of biofuel crops with high biomass and regulatable lignin biosynthesis.
Collapse
Affiliation(s)
- Juanjuan Feng
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Jinhui Wang
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Pengxiang Fan
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
- />Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson road, East Lansing, MI 48824 USA
| | - Weitao Jia
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lingling Nie
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Ping Jiang
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Xianyang Chen
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sulian Lv
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lichuan Wan
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| | - Sandra Chang
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Shizhong Li
- />Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084 China
- />Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 China
| | - Yinxin Li
- />Institute of Botany, Key Laboratory of Plant Molecular Physiology, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|