1
|
Muterko A, Kiseleva A, Salina E. A Transcriptome Response of Bread Wheat ( Triticum aestivum L.) to a 5B Chromosome Substitution from Wild Emmer. PLANTS (BASEL, SWITZERLAND) 2024; 13:1514. [PMID: 38891322 PMCID: PMC11174853 DOI: 10.3390/plants13111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Over the years, alien chromosome substitution has attracted the attention of geneticists and breeders as a rich source of remarkable genetic diversity for improvement in narrowly adapted wheat cultivars. One of the problems encountered along this way is the coadaptation and realization of the genome of common wheat against the background of the introduced genes. Here, using RNA-Seq, we assessed a transcriptome response of hexaploid wheat Triticum aestivum L. (cultivar Chinese Spring) to a 5B chromosome substitution with its homolog from wild emmer (tetraploid wheat T. dicoccoides Koern) and discuss how complete the physiological compensation for this alien chromatin introgression is. The main signature of the transcriptome in the substituted line was a sharp significant drop of activity before the beginning of the photoperiod with a gradual increase up to overexpression in the middle of the night. The differential expression altered almost all biological processes and pathways tested. Because in most cases, the differential expression or its fold change were modest, and this was only a small proportion of the expressed transcriptome, the physiological compensation of the 5B chromosome substitution in common wheat seemed overall satisfactory, albeit not completely. No over- or under-representation of differential gene expression was found in specific chromosomes, implying that local structural changes in the genome can trigger a global transcriptome response.
Collapse
Affiliation(s)
- Alexandr Muterko
- Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
2
|
Kiseleva AA, Leonova IN, Ageeva EV, Likhenko IE, Salina EA. Identification of genetic loci for early maturity in spring bread wheat using the association analysis and gene dissection. PeerJ 2023; 11:e16109. [PMID: 37842052 PMCID: PMC10569184 DOI: 10.7717/peerj.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Background Early maturity in spring bread wheat is highly desirable in the regions where it enables the plants to evade high temperatures and plant pathogens at the end of the growing season. Methods To reveal the genetic loci responsible for the maturity time association analysis was carried out based on phenotyping for an 11-year period and high-throughput SNP genotyping of a panel of the varieties contrasting for this trait. The expression of candidate genes was verified using qPCR. The association between the SNP markers and the trait was validated using the biparental F2:3 population. Results Our data showed that under long-day conditions, the period from seedling to maturity is mostly influenced by the time from heading to maturity, rather than the heading time. The QTLs associated with the trait were located on 2A, 3B, 4A, 5B, 7A and 7B chromosomes with the 7BL locus being the most significant and promising for its SNPs accelerated the maturity time by about 9 days. Gene dissection in this locus detected a number of candidates, the best being TraesCS7B02G391800 (bZIP9) and TraesCS7B02G412200 (photosystem II reaction center). The two genes are predominantly expressed in the flag leaf while flowering. The effect of the SNPs was verified in F2:3 population and confirmed the association of the 4A, 5B and 7BL loci with the maturity time.
Collapse
Affiliation(s)
- Antonina A. Kiseleva
- Laboratory of Plant Molecular Genetics and Cytogenetics, The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina N. Leonova
- Laboratory of Plant Molecular Genetics and Cytogenetics, The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena V. Ageeva
- Laboratory of Field Crop Breeding and Seed Industry, Siberian Research Institute of Plant Production and Breeding, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan E. Likhenko
- Laboratory of Field Crop Breeding and Seed Industry, Siberian Research Institute of Plant Production and Breeding, Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena A. Salina
- Laboratory of Plant Molecular Genetics and Cytogenetics, The Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
3
|
Potapova NA, Timoshchuk AN, Tiys ES, Vinichenko NA, Leonova IN, Salina EA, Tsepilov YA. Multivariate Genome-Wide Association Study of Concentrations of Seven Elements in Seeds Reveals Four New Loci in Russian Wheat Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:3019. [PMID: 37687266 PMCID: PMC10489822 DOI: 10.3390/plants12173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Wheat is a cereal grain that plays an important role in the world's food industry. The identification of the loci that change the concentration of elements in wheat seeds is an important challenge nowadays especially for genomic selection and breeding of novel varieties. In this study, we performed a multivariate genome-wide association study (GWAS) of the seven traits-concentrations of Zn, Mg, Mn, Ca, Cu, Fe, and K in grain-of the Russian collection of common wheat Triticum aestivum (N = 149 measured in two years in two different fields). We replicated one known locus associated with the concentration of Zn (IAAV1375). We identified four novel loci-BS00022069_51 (associated with concentrations of Ca and K), RFL_Contig6053_3082 (associated with concentrations of Fe and Mn), Kukri_rep_c70864_329 (associated with concentrations of all elements), and IAAV8416 (associated with concentrations of Fe and Mn)-three of them were located near the genes TraesCS6A02G375400, TraesCS7A02G094800, and TraesCS5B02G325400. Our result adds novel information on the loci involved in wheat grain element contents and may be further used in genomic selection.
Collapse
Affiliation(s)
- Nadezhda A. Potapova
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia
| | - Anna N. Timoshchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny S. Tiys
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia A. Vinichenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina N. Leonova
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yakov A. Tsepilov
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Leonova IN, Ageeva EV. Localization of the quantitative trait loci related to lodging resistance in spring bread wheat (<i>Triticum aestivum</i> L.). Vavilovskii Zhurnal Genet Selektsii 2022; 26:675-683. [DOI: 10.18699/vjgb-22-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- I. N. Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. V. Ageeva
- Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
5
|
Devate NB, Krishna H, Parmeshwarappa SKV, Manjunath KK, Chauhan D, Singh S, Singh JB, Kumar M, Patil R, Khan H, Jain N, Singh GP, Singh PK. Genome-wide association mapping for component traits of drought and heat tolerance in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:943033. [PMID: 36061792 PMCID: PMC9429996 DOI: 10.3389/fpls.2022.943033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 06/01/2023]
Abstract
Identification of marker trait association is a prerequisite for marker-assisted breeding. To find markers linked with traits under heat and drought stress in bread wheat (Triticum aestivum L.), we performed a genome-wide association study (GWAS). GWAS mapping panel used in this study consists of advanced breeding lines from the IARI stress breeding programme produced by pairwise and complex crosses. Phenotyping was done at multi locations namely New Delhi, Karnal, Indore, Jharkhand and Pune with augmented-RCBD design under different moisture and heat stress regimes, namely timely sown irrigated (IR), timely sown restricted irrigated (RI) and late sown (LS) conditions. Yield and its component traits, viz., Days to Heading (DH), Days to Maturity (DM), Normalized Difference Vegetation Index (NDVI), Chlorophyll Content (SPAD), Canopy temperature (CT), Plant Height (PH), Thousand grain weight (TGW), Grain weight per spike (GWPS), Plot Yield (PLTY) and Biomass (BMS) were phenotyped. Analysis of variance and descriptive statistics revealed significant differences among the studied traits. Genotyping was done using the 35k SNP Wheat Breeder's Genotyping Array. Population structure and diversity analysis using filtered 10,546 markers revealed two subpopulations with sufficient diversity. A large whole genome LD block size of 7.15 MB was obtained at half LD decay value. Genome-wide association search identified 57 unique markers associated with various traits across the locations. Twenty-three markers were identified to be stable, among them nine pleiotropic markers were also identified. In silico search of the identified markers against the IWGSC ref genome revealed the presence of a majority of the SNPs at or near the gene coding region. These SNPs can be used for marker-assisted transfer of genes/QTLs after validation to develop climate-resilient cultivars.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jang Bahadur Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Monu Kumar
- Division of Genetics and Plant Breeding, ICAR-Indian Agricultural Research Institute, Gauria Karma, India
| | - Ravindra Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, India
| | - Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Leonova IN, Kiseleva AA, Berezhnaya AA, Stasyuk AI, Likhenko IE, Salina EA. Identification of QTLs for Grain Protein Content in Russian Spring Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2022; 11:437. [PMID: 35161418 PMCID: PMC8840037 DOI: 10.3390/plants11030437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Most modern breeding programs aim to develop wheat (T. aestivum L.) varieties with a high grain protein content (GPC) due to its greater milling and cooking quality, and improved grain price. Here, we used a genome-wide association study (GWAS) to map single nucleotide polymorphisms (SNPs) associated with GPC in 93 spring bread wheat varieties developed by eight Russian Breeding Centers. The varieties were evaluated for GPC, grain weight per spike (GWS), and thousand-kernel weight (TKW) at six environments, and genotyped with 9351 polymorphic SNPs and two SNPs associated with the NAM-A1 gene. GPC varied from 9.8 to 20.0%, depending on the genotype and environment. Nearly 52% of the genotypes had a GPC > 14.5%, which is the threshold value for entry into high-class wheat varieties. Broad-sense heritability for GPC was moderate (0.42), which is due to the significant effect of environment and genotype × environment interactions. GWAS performed on mean GPC evaluated across six environments identified eleven significant marker-trait associations, of which nine were physically mapped on chromosome 6A. Screening of wheat varieties for allelic variants of the NAM-A1 gene indicated that 60% of the varieties contained the NAM-A1c allele, followed by 33% for NAM-A1d, and 5% for NAM-A1a alleles. Varieties with the NAM-A1d allele showed significantly (p < 0.01) smaller GPC than those with NAM-A1c and NAM-A1a. However, no significant differences between NAM-A1 alleles were observed for both GWS and TKW.
Collapse
Affiliation(s)
- Irina N. Leonova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.A.K.); (A.A.B.); (A.I.S.); (E.A.S.)
| | - Antonina A. Kiseleva
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.A.K.); (A.A.B.); (A.I.S.); (E.A.S.)
| | - Alina A. Berezhnaya
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.A.K.); (A.A.B.); (A.I.S.); (E.A.S.)
| | - Anatoly I. Stasyuk
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.A.K.); (A.A.B.); (A.I.S.); (E.A.S.)
| | - Ivan E. Likhenko
- Siberian Research Institute of Plant Production and Breeding—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
| | - Elena A. Salina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.A.K.); (A.A.B.); (A.I.S.); (E.A.S.)
| |
Collapse
|
7
|
Perfil'ev RN, Shcherban AB, Salina EA. Development of a marker panel for genotyping of domestic soybean cultivars for genes controlling the duration of vegetation and response to photoperiod. Vavilovskii Zhurnal Genet Selektsii 2021; 25:761-769. [PMID: 34964019 PMCID: PMC8654678 DOI: 10.18699/vj21.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Soybean, Glycine max L., is one of the most important agricultural crops grown in a wide range of latitude. In this regard, in soybean breeding, it is necessary to pay attention to the set of genes that control the transition to the f lowering stage, which will make it possible to adapt genotypes to local growing conditions as accurately as possible. The possibilities of soybean breeding for this trait have now signif icantly expanded due to identif ication of the main genes (E1–E4, GmFT2a, GmFT5a) that control the processes of f lowering and maturation in soybean, depending on the day length. The aim of this work was to develop a panel of markers for these genes, which could be used for a rapid and eff icient genotyping of domestic soybean cultivars and selection of plant material based on sensitivity to photoperiod and the duration of vegetation. Combinations of 10 primers, both previously developed and our own, were tested to identify different alleles of the E1–E4, GmFT2a, and GmFT5a genes using 10 soybean cultivars from different maturity groups. As a result, 5 combinations of dominant and recessive alleles for the E1–E4 genes were identif ied: (1) e1-nl(e1-as)/
e2-ns/e3-tr(e3-fs)/e4; (2) e1-as/e2-ns/e3-tr/E4; (3) e1-as/e2-ns/E3-Ha/e4; (4) E1/e2-ns/e3-tr/E4; (5) e1-nl/e2-ns/E3-Ha/E4. The studied cultivars contained the most common alleles of the GmFT2a and GmFT5a genes, with the exception of the ‘Cassidi’ cultivar having a rare dominant allele GmFT5a-H4. The degree of earliness of cultivars positively correlated with the number of recessive genes E1–E4, which is consistent with the data of foreign authors on different sets of cultivars from Japan and North China. Thus, the developed panel of markers can be successfully used in the selection
of soybean for earliness and sensitivity to photoperiod.
Collapse
Affiliation(s)
- R N Perfil'ev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A B Shcherban
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Salina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Targeting the B1 Gene and Analysis of Its Polymorphism Associated with Awned/Awnless Trait in Russian Germplasm Collections of Common Wheat. PLANTS 2021; 10:plants10112285. [PMID: 34834646 PMCID: PMC8621087 DOI: 10.3390/plants10112285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022]
Abstract
The presence of awns on the ear is associated with a number of important plant properties, such as drought resistance, quality of the grain mass during processing, etc. The main manifestations of this trait are controlled by the B1 gene, which has recently been identified and encodes the C2H2 zinc finger transcription factor. Based on the previously identified SNPs in the promoter region of this gene, we constructed markers for dominant and recessive alleles which determine awnless and awned phenotypes, respectively. The markers were successful for use in targeting the respective alleles of the B1 gene in 176 varieties of common wheat, accessions of T. spelta L., as well as on F2/F3 hybrids from crosses between awned and awnless forms of T. aestivum. We first identified a new allele, b1mite, which has both an insert of a miniature Stowaway-like transposon, 261 bp in length, and 33 novel SNPs in the promoter region. Despite these changes, this allele had no effect on the awned phenotype. The possible mechanisms of the influence of the analyzed gene on phenotype are discussed.
Collapse
|
9
|
Leonova IN, Skolotneva ES, Salina EA. Genome-wide association study of leaf rust resistance in Russian spring wheat varieties. BMC PLANT BIOLOGY 2020; 20:135. [PMID: 33050873 PMCID: PMC7557001 DOI: 10.1186/s12870-020-02333-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Leaf rust (Puccinia triticina Eriks.) is one of the most dangerous diseases of common wheat worldwide. Three approaches: genome-wide association study (GWAS), marker-assisted selection (MAS) and phytopathological evaluation in field, were used for assessment of the genetic diversity of Russian spring wheat varieties on leaf rust resistance loci and for identification of associated molecular markers. RESULTS The collection, consisting of 100 Russian varieties of spring wheat, was evaluated over three seasons for resistance to the native population of leaf rust specific to the West Siberian region of Russia. The results indicated that most cultivars showed high susceptibility to P. triticina, with severity ratings (SR) of 60S-90S, however some cultivars showed a high level of leaf rust resistance (SR < 20MR-R). Based on the results of genome-wide association studies (GWAS) performed using the wheat 15 K genotyping array, 20 SNPs located on chromosomes 6D, 6A, 6B, 5A, 1B, 2A, 2B and 7A were revealed to be associated with leaf rust resistance. Genotyping with markers developed for known leaf rust resistance genes showed that most of the varieties contain genes Lr1, Lr3a, Lr9, Lr10, Lr17a, Lr20, Lr26 and Lr34, which are not currently effective against the pathogen. In the genome of three wheat varieties, gene Lr6Ai = 2 inherited from Th. intermedium was detected, which provides complete protection against the rust pathogen. It has been suggested that the QTL mapped to the chromosome 5AS of wheat cultivar Tulaikovskaya-zolotistaya, Tulaikovskaya-10, Samsar, and Volgouralskaya may be a new, previously undescribed locus conferring resistance to leaf rust. Obtained results also indicate that chromosome 1BL of the varieties Sonata, Otrada-Sibiri, Tertsiya, Omskaya-23, Tulaikovskaya-1, Obskaya-14, and Sirena may contain an unknown locus that provides a resistance response to local population. CONCLUSIONS This study provides new insights into the genetic basis of resistance to leaf rust in Russian spring wheat varieties. The SNPs significantly associated with leaf rust resistance can be used for the development and application of diagnostic markers in marker-assisted selection schemes.
Collapse
Affiliation(s)
- Irina N. Leonova
- The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - Ekaterina S. Skolotneva
- The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - Elena A. Salina
- Kurchatov Genomics Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090 Russia
| |
Collapse
|
10
|
Li Z, Lhundrup N, Guo G, Dol K, Chen P, Gao L, Chemi W, Zhang J, Wang J, Nyema T, Dawa D, Li H. Characterization of Genetic Diversity and Genome-Wide Association Mapping of Three Agronomic Traits in Qingke Barley ( Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Front Genet 2020; 11:638. [PMID: 32719715 PMCID: PMC7351530 DOI: 10.3389/fgene.2020.00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crops worldwide. In the Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or “nas” in Tibetan, is produced mainly in Tibet. The complexity of the environment in the Qinghai-Tibet Plateau has provided unique opportunities for research on the breeding and adaptability of qingke barley. However, the genetic architecture of many important agronomic traits for qingke barley remains elusive. Heading date (HD), plant height (PH), and spike length (SL) are three prominent agronomic traits in barley. Here, we used genome-wide association (GWAS) mapping and GWAS with eigenvector decomposition (EigenGWAS) to detect quantitative trait loci (QTL) and selective signatures for HD, PH, and SL in a collection of 308 qingke barley accessions. The accessions were genotyped using a newly-developed, proprietary genotyping-by-sequencing (tGBS) technology, that yielded 14,970 high quality single nucleotide polymorphisms (SNPs). We found that the number of SNPs was higher in the varieties than in the landraces, which suggested that Tibetan varieties and varieties in the Tibetan area may have originated from different landraces in different areas. We have identified 62 QTLs associated with three important traits, and the observed phenotypic variation is well-explained by the identified QTLs. We mapped 114 known genes that include, but are not limited to, vernalization, and photoperiod genes. We found that 83.87% of the identified QTLs are located in the non-coding regulatory regions of annotated barley genes. Forty-eight of the QTLs are first reported here, 28 QTLs have pleotropic effects, and three QTL are located in the regions of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. EigenGWAS analysis revealed that multiple heading-date-related loci bear signatures of selection. Our results confirm that the barley panel used in this study is highly diverse, and showed a great promise for identifying the genetic basis of adaptive traits. This study should increase our understanding of complex traits in qingke barley, and should facilitate genome-assisted breeding for qingke barley improvement.
Collapse
Affiliation(s)
- Zhiyong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Namgyal Lhundrup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kar Dol
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Panpan Chen
- Tibet Agricultural and Animal Husbandry College, Nyingchi, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Wangmo Chemi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tashi Nyema
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Dondrup Dawa
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agriculture and Animal Sciences, Lhasa, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
11
|
Leonova IN, Skolotneva ES, Orlova EA, Orlovskaya OA, Salina EA. Detection of Genomic Regions Associated with Resistance to Stem Rust in Russian Spring Wheat Varieties and Breeding Germplasm. Int J Mol Sci 2020; 21:E4706. [PMID: 32630293 PMCID: PMC7369787 DOI: 10.3390/ijms21134706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022] Open
Abstract
Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is a dangerous disease of common wheat worldwide. Development and cultivation of the varieties with genetic resistance is one of the most effective and environmentally important ways for protection of wheat against fungal pathogens. Field phytopathological screening and genome-wide association study (GWAS) were used for assessment of the genetic diversity of a collection of spring wheat genotypes on stem rust resistance loci. The collection consisting of Russian varieties of spring wheat and introgression lines with alien genetic materials was evaluated over three seasons (2016, 2017 and 2018) for resistance to the native population of stem rust specific to the West Siberian region of Russia. The results indicate that most varieties displayed from moderate to high levels of susceptibility to P. graminis; 16% of genotypes had resistance or immune response. In total, 13,006 single-nucleotide polymorphism (SNP) markers obtained from the Infinium 15K array were used to perform genome-wide association analysis. GWAS detected 35 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1A, 2A, 2B, 3B, 5A, 5B, 6A, 7A and 7B. The most significant associations were found on chromosomes 7A and 6A where known resistance genes Sr25 and Sr6Ai = 2 originated from Thinopyrum ssp. are located. Common wheat lines containing introgressed fragments from Triticum timopheevii and Triticum kiharae were found to carry Sr36 gene on 2B chromosome. It has been suggested that the quantitative trait loci (QTL) mapped to the chromosome 5BL may be new loci inherited from the T. timopheevii. It can be inferred that a number of Russian wheat varieties may contain the Sr17 gene, which does not currently provide effective protection against pathogen. This is the first report describing the results of analysis of the genetic factors conferring resistance of Russian spring wheat varieties to stem rust.
Collapse
Affiliation(s)
- Irina N. Leonova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| | - Ekaterina S. Skolotneva
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| | - Elena A. Orlova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| | - Olga A. Orlovskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Elena A. Salina
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (E.S.S.); (E.A.O.); (E.A.S.)
| |
Collapse
|
12
|
Terletskaya NV, Shcherban AB, Nesterov MA, Perfil’ev RN, Salina EA, Altayeva NA, Blavachinskaya IV. Drought Stress Tolerance and Photosynthetic Activity of Alloplasmic Lines T. dicoccum x T. aestivum. Int J Mol Sci 2020; 21:E3356. [PMID: 32397492 PMCID: PMC7246993 DOI: 10.3390/ijms21093356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/29/2022] Open
Abstract
Tetraploid species T. dicoccum Shuebl is a potential source of drought tolerance for cultivated wheat, including common wheat. This paper describes the genotyping of nine stable allolines isolated in the offspring from crossing of T. dicoccum x T. aestivum L. using 21 microsatellite (simple sequence repeats-SSR) markers and two cytoplasmic mitochondrial markers to orf256, rps19-p genes; evaluation of drought tolerance of allolines at different stages of ontogenesis (growth parameters, relative water content, quantum efficiency of Photosystem II, electron transport rate, energy dissipated in Photosystem II); and the study of drought tolerance regulator gene Dreb-1 with allele-specific PCR (AS-MARKER) and partial sequence analysis. Most allolines differ in genomic composition and T. dicoccum introgressions. Four allolines-D-b-05, D-d-05, D-d-05b, and D-41-05-revealed signs of drought tolerance of varying degrees. The more drought tolerant D-41-05 line was also characterized by Dreb-B1 allele introgression from T. dicoccum. A number of non-specific patterns and significant differences in allolines in regulation of physiological parameters in drought conditions is identified. Changes in photosynthetic activity in stress-drought are shown to reflect the level of drought tolerance of the forms studied. The contribution of different combinations of nuclear/cytoplasmic genome and alleles of Dreb-1 gene in allolines to the formation of stress tolerance and photosynthetic activity is discussed.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan;
- Institute of Plant Biology and Biotechnology, Timiryazev str. 45, Almaty 050040, Kazakhstan;
| | - Andrey B. Shcherban
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.A.N.); (R.N.P.); (E.A.S.)
| | - Michail A. Nesterov
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.A.N.); (R.N.P.); (E.A.S.)
| | - Roman N. Perfil’ev
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.A.N.); (R.N.P.); (E.A.S.)
| | - Elena A. Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia; (A.B.S.); (M.A.N.); (R.N.P.); (E.A.S.)
| | - Nazira A. Altayeva
- Institute of Plant Biology and Biotechnology, Timiryazev str. 45, Almaty 050040, Kazakhstan;
| | - Irina V. Blavachinskaya
- Department of Biodiversity and Biological Resources, Faculty of Biology and Biotechnology Al-Farabi Kazakh National University, Al-Farabi av., 71, Almaty 050040, Kazakhstan;
- Central Laboratory for Biocontrol, Certification and Preclinical Trials, Al-Farabi av., 93, Almaty 050040, Kazakhstan
| |
Collapse
|
13
|
Sari E, Cabral AL, Polley B, Tan Y, Hsueh E, Konkin DJ, Knox RE, Ruan Y, Fobert PR. Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. BMC Genomics 2019; 20:925. [PMID: 31795948 PMCID: PMC6891979 DOI: 10.1186/s12864-019-6161-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. RESULTS Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. CONCLUSIONS Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.
Collapse
Affiliation(s)
- Ehsan Sari
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada.
| | - Adrian L Cabral
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Brittany Polley
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Yifang Tan
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Emma Hsueh
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - David J Konkin
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Ron E Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Pierre R Fobert
- Aquatic and Crop Resource Development Centre, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Chernook AG, Kroupin PY, Bespalova LA, Panchenko VV, Kovtunenko VY, Bazhenov MS, Nazarova LA, Karlov GI, Kroupina AY, Divashuk MG. Phenotypic effects of the dwarfing gene Rht-17 in spring durum wheat under two climatic conditions. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alleles of the genes, conferring a dwarfing phenotype, play a crucial role in wheat breeding, as they not only reduce plant height, ensuring their resistance to lodging, but also have a number of positive and negative pleiotropic effects on plant productivity. Durum wheat carries only two subgenomes (A and B), which limits the use of the D-subgenome genes and requires the expansion of the arsenal of dwarfing alleles and the study of their effects on height and agronomically important traits. We studied the effect of the gibberellin-insensitive allele Rht-B1p in the B2F2:3 families, developed by crossing Chris Mutant /#517//LD222 in a field experiment in Moscow and Krasnodar. In our experiments, plants homozygous for Rht-B1p were shorter than those homozygous for the wild-type allele Rht-B1a by 36.3 cm (40 %) in Moscow and 49.5 cm (48 %) in Krasnodar. In the field experiment in Krasnodar, each plant with Rht-B1p had one less internode than any plant with Rht-B1a, which additionally contributed to the decrease in plant height. Grain weight per main spike was lower in plants with Rht-B1p than in plants with Rht-B1a by 12 % in Moscow and by 23 % in Krasnodar due to a decrease in 1000 grain weight in both regions of the field experiment. The number of grains per main spike in plants with Rht-B1p was higher in comparison to that with Rht-B1a by 6.5 % in Moscow due to an increase in spikelet number per main spike and by 11 % in Krasnodar due to an increase in grain number per spikelet. The onset of heading in plants with Rht-B1p in comparison with the plants with the wild-type allele Rht-B1a was 7 days later in Krasnodar. The possibility and prospects for the use of Rht-B1p in the breeding of durum wheat are discussed.
Collapse
Affiliation(s)
- A. G. Chernook
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | - P. Yu. Kroupin
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | | | | | | | - M. S. Bazhenov
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | - L. A. Nazarova
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding
| | - G. I. Karlov
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | - A. Yu. Kroupina
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding
| | - M. G. Divashuk
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| |
Collapse
|
15
|
|
16
|
Salina EA, Nesterov MA, Frenkel Z, Kiseleva AA, Timonova EM, Magni F, Vrána J, Šafář J, Šimková H, Doležel J, Korol A, Sergeeva EM. Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genomics 2018; 19:80. [PMID: 29504906 PMCID: PMC5836826 DOI: 10.1186/s12864-018-4470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Mikhail A Nesterov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Antonina A Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina M Timonova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Ekaterina M Sergeeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
B Shcherban A, A Salina E. Dataset of the HOX1 gene sequences of the wheat polyploids and their diploid relatives. Data Brief 2017; 16:147-153. [PMID: 29201982 PMCID: PMC5699892 DOI: 10.1016/j.dib.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 10/31/2022] Open
Abstract
The TaHOX-1 gene of common wheat Triticum aestivum L. (BAD-genome) encodes transcription factor (HD-Zip I) which is characterized by the presence of a DNA-binding homeodomain (HD) with an adjacent Leucine zipper (LZ) motif. This gene can play a role in adapting plant to a variety of abiotic stresses, such as drought, cold, salinity etc., which strongly affect wheat production. However, it's both functional role in stress resistance and divergence during wheat evolution has not yet been elucidated. This data in brief article is associated with the research paper "Structural and functional divergence of homoeologous copies of the TaHOX-1 gene in polyploid wheats and their diploid ancestors". The data set represents a recent survey of the primary HOX-1 gene sequences isolated from the first wheat allotetraploids (BA-genome) and their corresponding Triticum and Aegilops diploid relatives. Specifically, we provide detailed information about the HOX-1 nucleotide sequences of the promoter region and both nucleotide and amino acid sequences of the gene. The sequencing data used here is available at DDBJ/EMBL/GenBank under the accession numbers MG000630-MG000698.
Collapse
Affiliation(s)
- Andrey B Shcherban
- The Federal Research Center "The Institute of Cytology and Genetics SB RAS", Russian Federation
| | - Elena A Salina
- The Federal Research Center "The Institute of Cytology and Genetics SB RAS", Russian Federation
| |
Collapse
|
18
|
Kiseleva AA, Potokina EK, Salina EA. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC PLANT BIOLOGY 2017; 17:172. [PMID: 29143607 PMCID: PMC5688470 DOI: 10.1186/s12870-017-1126-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. RESULTS In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". CONCLUSIONS We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a copy number variation but also distinct regulatory elements.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation, 630090.
| | - Elena K Potokina
- N.I. Vavilov Research Institute of Plant Genetic Resources, B.Morskaya Street 42-44, St. Petersburg, Russian Federation, 190000
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
19
|
Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, Blanco A, Simeone R, Colasuonno P. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Int J Mol Sci 2017. [PMID: 28635630 PMCID: PMC5486150 DOI: 10.3390/ijms18061329] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-density genetic linkage maps of crop species are particularly useful in detecting qualitative and quantitative trait loci for important agronomic traits and in improving the power of classical approaches to identify candidate genes. The aim of this study was to develop a high-density genetic linkage map in a durum wheat recombinant inbred lines population (RIL) derived from two elite wheat cultivars and to identify, characterize and correlate Quantitative Trait Loci (QTL) for β-glucan, protein content, grain yield per spike and heading time. A dense map constructed by genotyping the RIL population with the wheat 90K iSelect array included 5444 single nucleotide polymorphism (SNP) markers distributed in 36 linkage groups. Data for β-glucan and protein content, grain yield per spike and heading time were obtained from replicated trials conducted at two locations in southern Italy. A total of 19 QTL were detected in different chromosome regions. In particular, three QTL for β-glucan content were detected on chromosomes 2A and 2B (two loci); eight QTL controlling grain protein content were detected on chromosomes 1B, 2B, 3B (two loci), 4A, 5A, 7A and 7B; seven QTL for grain yield per spike were identified on chromosomes 1A, 2B, 3A (two loci), 3B (two loci) and 6B; and one marker-trait association was detected on chromosome 2A for heading time. The last was co-located with a β-glucan QTL, and the two QTL appeared to be negatively correlated. A genome scan for genomic regions controlling the traits and SNP annotated sequences identified five putative candidate genes involved in different biosynthesis pathways (β-glucosidase, GLU1a; APETALA2, TaAP2; gigantea 3, TaGI3; 14-3-3 protein, Ta14A; and photoperiod sensitivity, Ppd-A1). This study provides additional information on QTL for important agronomic traits that could be useful for marker-assisted breeding to obtain new genotypes with commercial and nutritional relevance.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Giacomo Mangini
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Antonio Massimo Signorile
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Silvana Addolorata Zacheo
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
20
|
Shcherban AB, Schichkina AA, Salina EA. The occurrence of spring forms in tetraploid Timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene. BMC PLANT BIOLOGY 2016; 16:236. [PMID: 28105942 PMCID: PMC5123382 DOI: 10.1186/s12870-016-0925-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Triticum araraticum and Triticum timopheevii are tetraploid species of the Timopheevi group. The former includes both winter and spring forms with a predominance of winter forms, whereas T. timopheevii is considered a spring species. In order to clarify the origin of the spring growth habit in T. timopheevii, allelic variability of the VRN-1 gene was investigated in a set of accessions of both tetraploid species, together with the diploid species Ae. speltoides, presumed donor of the G genome to these tetraploids. RESULTS The promoter region of the VRN-A1 locus in all studied tetraploid accessions of both T. araraticum and T. timopheevii represents the previously described allele VRN-A1f with a 50 bp deletion near the start codon. Three additional alleles were identified namely, VRN-A1f-del, VRN-A1f-ins and VRN-A1f-del/ins, which contained large mutations in the first (1st) intron of VRN-A1. The first allele, carrying a deletion of 2.7 kb in a central part of intron 1, occurred in a few accessions of T. araraticum and no accessions of T. timopheevii. The VRN-A1f-ins allele, containing the insertion of a 0.4 kb MITE element about 0.4 kb upstream from the start of intron 1, and allele VRN-A1f-del/ins having this insertion coupled with a deletion of 2.7 kb are characteristic only for T. timopheevii. Allelic variation at the VRN-G1 locus includes the previously described allele VRN-G1a (with the insertion of a 0.2 kb MITE in the promoter) found in a few accessions of both tetraploid species. We showed that alleles VRN-A1f-del and VRN-G1a have no association with the spring growth habit, while in all accessions of T. timopheevii this habit was associated with the dominant VRN-A1f-ins and VRN-A1f-del/ins alleles. None of the Ae. speltoides accessions included in this study had changes in the promoter or 1st intron regions of VRN-1 which might confer a spring growth habit. The VRN-1 promoter sequences analyzed herein and downloaded from databases have been used to construct a phylogram to assess the time of divergence of Ae. speltoides in relation to other wheat species. CONCLUSIONS Among accessions of T. araraticum, the preferentially winter predecessor of T. timopheevii, two large mutations were found in both VRN-A1 and VRN-G1 loci (VRN-A1f-del and VRN-G1a) that were found to have no effect on vernalization requirements. Spring tetraploid T. timopheevii had one VRN-1 allele in common for two species (VRN-G1a), and two that were specific (VRN-A1f-ins, VRN-A1f-del/ins). The latter alleles include mutations in the 1st intron of VRN-A1 and also share a 0.4 kb MITE insertion near the start of intron 1. We suggested that this insertion resulted in a spring growth habit in a progenitor of T. timopheevii which has probably been selected during subsequent domestication. The phylogram constructed on the basis of the VRN-1 promoter sequences confirmed the early divergence (~3.5 MYA) of the ancestor(s) of the B/G genomes from Ae. speltoides.
Collapse
Affiliation(s)
- Andrey Borisovich Shcherban
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Lavrentiev ave. 10, Novosibirsk, 630090, Russia.
| | | | - Elena Artemovna Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Lavrentiev ave. 10, Novosibirsk, 630090, Russia
| |
Collapse
|
21
|
Khlestkina EK, Shumny VK. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. RUSS J GENET+ 2016. [DOI: 10.1134/s102279541607005x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Diversification of the Homoeologous Lr34 Sequences in Polyploid Wheat Species and Their Diploid Progenitors. J Mol Evol 2016; 82:291-302. [PMID: 27300207 DOI: 10.1007/s00239-016-9748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Allopolyploidization induces a multiple processes of genomic reorganization, including the structurally functional diversification of the homoeologous genes. An example of such diversification is the appearance of the Lr34 gene on chromosome 7D of bread wheat T. aestivum (BAD), the gene conferring durable, race non-specific protection against three fungal pathogens. In this study, we focused on the variability of a functionally critical region between exons 10-12 of Lr34 among diploid progenitors of wheat genomes and their respective polyploids. In the diploid A-genome species, two basic forms of the studied region have been revealed: (1) non-functional forms containing stop codons, or/and frameshifts (T. monococcum/T. urartu) and (2) forms with no such a mutations (T. boeoticum). The Lr34 sequence of T. urartu containing a TGA stop codon was inherited by the first tetraploid T. dicoccoides (BA), and then reorganized in some accessions of this species due to the insertion of an LTR retroelement in exon 10. Besides T. boeoticum, the second form of the Lr34 sequence is also characteristic of A. speltoides, which presumably donated this form to all polyploid descendants bearing B-genome. No differences were found between the D-genome-specific Lr34 sequences studied here and downloaded from databases, implying the highest level of conservation of the Lr34 predecessor throughout evolution. The sequence data were later used to construct phylograms, and apparent peculiarities in the evolution of the studied region of Lr34 genes discussed.
Collapse
|