1
|
Bhardwaj E, Pokhriyal E, Jain A, Lal M, Khari M, Jalan K, Das S. The non-canonically organized members of MIR395 gene family in Brassica juncea are associated with developmentally regulated, sulfate-stress responsive bidirectional promoters that exhibit orientation-dependent differential transcriptional activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112214. [PMID: 39127349 DOI: 10.1016/j.plantsci.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Several MICRORNA genes belonging to same family or different families are often found in homologous or non-homologous clusters. Among the various classes, head-to-head arranged genes form one of the largest categories of non-canonically organized genes. Such head-to-head arranged, non-canonically organized genes possibly share cis-regulatory region with the intergenic sequence having the potential to function as bi-directional promoter (BDP). The transcriptional regulation of head-to-head arranged genes, especially with bidirectional promoters, remains an enigma. In the past, bidirectional promoters have been characterized for a small set of protein-coding gene pairs in plants; however, to the best of our knowledge, no such study has been carried so far for MICRORNA genes. The present study thus functionally characterizes bidirectional promoters associated with members of MIR395 family, which is evolutionary conserved and is most frequently occurring cluster across plant kingdom. In Arabidopsis thaliana, the MIR395 gene family contains six members with two head-to-head arranged gene pairs- MIR395A-B and MIR395E-F. This organization was found to be conserved at seven loci for MIR395A-B, and eleven loci for MIR395E-F in five Brassica sps. Sequence analysis of the putative bidirectional promoters revealed variation in length, GC content and distribution of strict TATA-box. Comparatively higher level of conservation at both the ends of the bidirectional promoters, corresponding to ca. 250 bp upstream of 5'end of the respective MIRNA precursor, was observed. These conserved regions harbour several abiotic stress (nutrient, salt, drought) and hormone (ABA, ethylene) responsive cis-motifs. Functional characterization of putative bidirectional promoters associated with MIR395A-B and MIR395E-F from Arabidopsis and their respective orthologs from Brassica juncea (Bj_A08 MIR395A-B, Bj_B03 MIR395A-B, Bj_A07.1 MIR395E-F and Bj_A07.2 MIR395E-F) was carried out using a dual-reporter vector with β-glucuronidase (GUS) and Green Fluorescent Protein (GFP). Analysis of transcriptional regulation of the two reporter genes - GUS and GFP during developmental stages confirmed their bidirectional nature. Orientation-dependent differential reporter activity indicated asymmetric nature of the promoters. Comparison of the reporter activity amongst orthologs, paralogs and homeologs revealed regulatory diversification, an outcome expected in polyploid genomes. Interestingly, reporter gene activities driven by selected bidirectional promoters were also observed in anther and siliques apart vegetative tissues indicating role of miR395 in anther and fruit development. Finally, we evaluated the activity of reporter genes driven under transcriptional regulation of bidirectional promoters under normal and sulfate-deprived conditions which revealed asymmetric inducibility under sulfate-starvation, in agreement with the known role of miR395 in sulfate homeostasis.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Ekta Pokhriyal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Aditi Jain
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Megha Khari
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Komal Jalan
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Huang H, Gong Z. Characterization and differentiation of pollen lipidomes and proteomes from different intrafloral stamens in heterantherous Senna bicapsularis. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:998-1009. [PMID: 35880492 DOI: 10.1111/plb.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Numerous compounds in pollen can affect the foraging decision-making of bees. Clarification of phytochemical components and identification of key substances for bee foraging preference in pollen are essential steps for apiculture and developing a conservation strategy. Senna bicapsularis, a heterantherous plant that possesses three different stamen types in the same flower, among which bees forage selectively, provides us with an ideal research model for identification of potential substances of bee foraging preference. The lipid and protein compositions of pollen from the anthers of different stamens of S. bicapsularis were investigated and compared. The polyunsaturated fatty acids (PUFAs) and monounsaturated FAs (MUFAs) were highest among lipid molecules in pollen from short (S) stamens than from long (L) and medium (M) stamens. This result is consistent with the FA content measurement, showing the highest FAs and UFAs content in S pollen, especially α-linolenic acid. We inferred that α-linolenic acid might be one of the key substances for bee foraging preference in pollen. Moreover, proteomic analysis showed that several differentially expressed proteins involved in lipid biosynthesis were highly accumulated in S pollen, such as choline kinase 2, 3-oxoacyl-ACP synthase-like protein and choline/ethanolamine phosphotransferase 1, in line with the highest FA content of S pollen. Additionally, DEPs involved in 'starch and sucrose metabolism', 'phenylpropanoid biosynthesis' and 'cyanoamino acid metabolism' were more represented in S compared with L and M pollen. The study suggests that differences in proteomic and lipidomic profiling among the three different stamen types might affect foraging decision-making of bumblebees.
Collapse
Affiliation(s)
- H Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Z Gong
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, China
| |
Collapse
|
3
|
Wang X, Liu X, Hu Z, Bao S, Xia H, Feng B, Ma L, Zhao G, Zhang D, Hu Y. Essentiality for rice fertility and alternative splicing of OsSUT1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111065. [PMID: 34895534 DOI: 10.1016/j.plantsci.2021.111065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
Sucrose-proton symporters play important roles in carbohydrate transport during plant growth and development. Their physiological functions have only been partly characterized and their regulation mechanism is largely unclear. Here we report that the knockout of a sucrose transporter gene, OsSUT1, by CRISPR-Cas9 mediated gene editing resulted in a slightly dwarf size and complete infertility of the gene's homozygous mutants. Observation of caryopsis development revealed that the endosperm of OsSUT1 mutants failed to cellularize and did not show any sign of seed-filling. Consistently, OsSUT1 was identified to express strongly in developing caryopsis of wild-type rice, particularly in the nucellar epidermis and aleurone which are critical for the uptake of nutrients into the endosperm. These results indicate that OsSUT1 is indispensable during the rice reproductive stage particularly for caryopsis development. Interestingly, OsSUT1 possesses at least 6 alternative splicing transcripts, including the 4 transcripts deposited previously and the other two identified by us. The differences among these transcripts primarily lie in their coding region of the 3' end and 3' UTR region. Real-time PCR showed that 4 of the 6 transcripts had different expressional patterns during rice vegetative and reproductive growth stages. Given the versatility of the gene, addressing its alternative splicing mechanism may expand our understanding of SUT's function substantially.
Collapse
Affiliation(s)
- Xiaowen Wang
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuli Liu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhui Bao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihuang Xia
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Feng
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lai Ma
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gengmao Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dechun Zhang
- Bio-technology Research Center, China Three Gorges University, Yichang, 443002, China
| | - Yibing Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Plasma membrane N-glycoproteome analysis of wheat seedling leaves under drought stress. Int J Biol Macromol 2021; 193:1541-1550. [PMID: 34740685 DOI: 10.1016/j.ijbiomac.2021.10.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023]
Abstract
Protein glycosylation is one of the ubiquitous post-translational modifications in eukaryotic cells, which play important roles in plant growth and adverse response. In this study, we performed the first comprehensive wheat plasma membrane N-glycoproteome analysis under drought stress via glycopeptide HILIC enrichment and LC-MS/MS identification. In total, 414 glycosylated sites corresponding to 407 glycopeptides and 312 unique glycoproteins were identified, of which 173 plasma membrane glycoproteins with 215 N-glycosylation sites were significantly regulated by drought stress. Functional enrichment analysis reveals that the significantly regulated N-glycosylation proteins were particularly related to protein kinase activity involved in the reception and transduction of extracellular signal and plant cell wall remolding. The motifs and sequence structures analysis showed that the significantly regulated N-glycosylation sites were concentrated within [NxT] motif, and 79.5% of them were located on the random coil that is always on the protein surface and flexible regions, which could facilitate protein glycosylated modification and enhance protein structural stability via reducing protein flexibility. PNGase F enzyme digestion and glycosylation site mutation further indicated that N-glycosylated modification could increase protein stability. Therefore, N-glycosylated modification is involved in plant adaptation to drought stress by improving the stability of cell wall remodeling related plasma membrane proteins.
Collapse
|
5
|
Wang H, Qi X, Chen S, Feng J, Chen H, Qin Z, Deng Y. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing. J Proteomics 2021; 249:104380. [PMID: 34517123 DOI: 10.1016/j.jprot.2021.104380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023]
Abstract
Jasmine (Jasminum sambac Aiton, Oleaceae) flowers are widely consumed in many countries for their tea-making, medicinal and ornamental properties. To improve the quality and yield of flowers, it is very important to carry out cross-breeding between different petal types of jasmine. However, because of the difficulty of sexual reproduction, there is no report on the success of jasmine crosses. In this paper, single- and double-petal jasmine plants were crossed artificially. The stigmas of single-petal plants post pollination, including those at 0 h after pollination (CK), 1 h after pollination (T1) and 6 h after pollination (T2), were sequenced by transcriptomic combined with proteomic analyses. A total of 178,098 gene products were assembled. Simultaneously, a total of 2337 protein species were identified. Some regulatory gene products and functional protein species were identified that may be involved in the process of pollen-pistil interactions. These findings suggest that the identified differentially expressed gene products and differentially accumulated protein species may play vital roles in jasmine plants in response to pollen-pistil interactions, providing important genetic resources for further functional dissection of the molecular mechanisms of these interactions. SIGNIFICANCE: These results have important scientific significance to take effective measures to overcome pre-fertilization barriers and to guide the cross breeding of jasmine. Further, they can also be used for reference in other plant breeding with the same fertilization barriers.
Collapse
Affiliation(s)
- Huadi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
| | - Yanming Deng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
6
|
Ohara T, Takeuchi H, Sato J, Nakamura A, Ichikawa H, Yokoyama R, Nishitani K, Minami E, Satoh S, Iwai H. Structural Alteration of Rice Pectin Affects Cell Wall Mechanical Strength and Pathogenicity of the Rice Blast Fungus Under Weak Light Conditions. PLANT & CELL PHYSIOLOGY 2021; 62:641-649. [PMID: 33543762 DOI: 10.1093/pcp/pcab019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
Pectin, a component of the plant cell wall, is involved in cell adhesion and environmental adaptations. We generated OsPG-FOX rice lines with little pectin due to overexpression of the gene encoding a pectin-degrading enzyme [polygalacturonase (PG)]. Overexpression of OsPG2 in rice under weak light conditions increased the activity of PG, which increased the degradation of pectin in the cell wall, thereby reducing adhesion. Under weak light conditions, the overexpression of OsPG decreased the pectin content and cell adhesion, resulting in abnormally large intercellular gaps and facilitating invasion by the rice blast fungus. OsPG2-FOX plants had weaker mechanical properties and greater sensitivity to biotic stresses than wild-type (WT) plants. However, the expression levels of disease resistance genes in non-infected leaves of OsPG2-FOX were more than twice as high as those of the WT and the intensity of disease symptoms was reduced, compared with the WT. Under normal light conditions, overexpression of OsPG2 decreased the pectin content, but did not affect cell adhesion and sensitivity to biotic stresses. Therefore, PG plays a role in regulating intercellular adhesion and the response to biotic stresses in rice.
Collapse
Affiliation(s)
- Takashi Ohara
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Haruki Takeuchi
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Junya Sato
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Atsuko Nakamura
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Ibaraki 305, 8634Japan
| | | | - Kazuhiko Nishitani
- Faculty of Science, Department of Biological Sciences, Kanagawa UniversityHiratsuka,Japan
| | - Eiichi Minami
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Ibaraki 305, 8634Japan
| | - Shinobu Satoh
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Hiroaki Iwai
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| |
Collapse
|
7
|
Chen W, Jia PF, Yang WC, Li HJ. Plasma membrane H + -ATPases-mediated cytosolic proton gradient regulates pollen tube growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1817-1822. [PMID: 32520397 DOI: 10.1111/jipb.12981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 05/27/2023]
Abstract
The polar growth of pollen tubes is essential for the delivery of sperm cells during fertilization in angiosperms. How this polar growth is regulated has been a long-standing question. An in vitro pharmacological assay previously implicated proton flux in pollen tube growth, although genetic and cellular supporting evidence was lacking. Here, we report that protons form a gradient from the pollen tube tip to the shank region and this gradient is generated by three members of Arabidopsis H+ -ATPases (AHAs). Genetic analysis suggested that these AHAs are essential for pollen tube growth, thus providing new insight into the regulation of polar growth.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
8
|
Moon S, Jung KH. First Steps in the Successful Fertilization of Rice and Arabidopsis: Pollen Longevity, Adhesion and Hydration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E956. [PMID: 32751098 PMCID: PMC7465243 DOI: 10.3390/plants9080956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/04/2023]
Abstract
Understanding the behavior of pollen during pollination is important for food security in the future. The elucidation of pollen development and growth regulation largely relies on the study of the dicotyledonous model plant Arabidopsis thaliana. However, rice (Oryza sativa) pollen exhibits different characteristics to that of Arabidopsis. The latter undergoes programmed dehydration and withstands adverse environmental conditions, whereas rice pollen is sensitive to desiccation. Moreover, the short longevity of rice pollen significantly hampers hybrid seed production. Although the "omics" data for mature rice pollen have been accumulated, few genes that control pollination and pollen hydration have been identified. Therefore, to facilitate future studies, it is necessary to summarize the developmental processes involved in pollen production in rice and to consolidate the underlying mechanisms discovered in previous studies. In this review, we describe the pollen developmental processes and introduce gametophytic mutants, which form defective pollen in Arabidopsis and rice. In addition, we discuss the perspectives on the research on pollen longevity, adhesion and hydration.
Collapse
Affiliation(s)
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea;
| |
Collapse
|
9
|
Kim YJ, Zhang D, Jung KH. Molecular Basis of Pollen Germination in Cereals. TRENDS IN PLANT SCIENCE 2019; 24:1126-1136. [PMID: 31610991 DOI: 10.1016/j.tplants.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Understanding the molecular basis of pollen germination in cereals holds great potential to improve yield. Pollen, a highly specialized haploid male gametophyte, transports sperm cells through a pollen tube to the female ovule for fertilization, directly determining grain yield in cereal crops. Although insights into the regulation of pollen germination and gamete interaction have advanced rapidly in the model Arabidopsis thaliana (arabidopsis), the molecular mechanisms in monocot cereals remain largely unknown. Recently, pollen-specific genome-wide and mutant analyses in rice and maize have extended our understanding of monocot regulatory components. We highlight conserved and diverse mechanisms underlying pollen hydration, germination, and tube growth in cereals that provide ideas for translating this research from arabidopsis. Recent developments in gene-editing systems may facilitate further functional genetic research.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Dabing Zhang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
10
|
Zeng R, Farooq MU, Wang L, Su Y, Zheng T, Ye X, Jia X, Zhu J. Study on Differential Protein Expression in Natural Selenium-Enriched and Non-Selenium-Enriched Rice Based on iTRAQ Quantitative Proteomics. Biomolecules 2019; 9:biom9040130. [PMID: 30935009 PMCID: PMC6523350 DOI: 10.3390/biom9040130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
This work was designated to scrutinize the protein differential expression in natural selenium-enriched and non-selenium-enriched rice using the Isobaric-tags for relative and absolute quantification (iTRAQ) proteomics approach. The extracted proteins were subjected to enzyme digestion, desalting, and identified by iTRAQ coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology. High pH C18 separation analysis was performed, and the data were then analyzed by Protein PilotTM (V4.5) search engine. Protein differential expression was searched out by comparing relatively quantified proteins. The analysis was conducted using gene ontology (GO), cluster of orthologous groups of proteins (COG) and Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathways. A total of 3235 proteins were detected and 3161 proteins were quantified, of which 401 were differential proteins. 208 down-regulated and 193 up-regulated proteins were unveiled. 77 targeted significant differentially expressed proteins were screened out for further analysis, and were classified into 10 categories: oxidoreductases, transferases, isomerases, heat shock proteins, lyases, hydrolases, ligases, synthetases, tubulin, and actin. The results indicated that the anti-stress, anti-oxidation, active oxygen metabolism, carbohydrate and amino acid metabolism of natural selenium-enriched rice was higher than that of non-selenium rice. The activation of the starch synthesis pathway was found to be bounteous in non-selenium-enriched rice. Cysteine synthase (CYS) and methyltransferase (metE) might be the two key proteins that cause amino acid differences. OsAPx02, CatC, riPHGPX, HSP70 and HSP90 might be the key enzymes regulating antioxidant and anti-stress effect differences in two types of rice. This study provides basic information about deviations in protein mechanism and secondary metabolites in selenium-enriched and non-selenium-enriched rice.
Collapse
Affiliation(s)
- Rui Zeng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Dujiangyan Agricultural and Rural Bureau, Dujiangyan 611830, Sichuan, China.
| | - Muhammad Umer Farooq
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Wang
- Meishan Vocational & Technical College, Meishan 62000, Sichuan, China.
| | - Yang Su
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Tengda Zheng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
11
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the Single-Cell Level. TRENDS IN PLANT SCIENCE 2017; 22:949-960. [PMID: 28970001 DOI: 10.1016/j.tplants.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system.
Collapse
Affiliation(s)
- Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Yang N, Han B, Liu L, Yang H, Wang T. Plasma Membrane Preparation from Lilium davidii and Oryza sativa Mature and Germinated Pollen. Bio Protoc 2017; 7:e2297. [PMID: 34541066 DOI: 10.21769/bioprotoc.2297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/02/2022] Open
Abstract
Pollen germination is an excellent process to study cell polarity establishment. During this process, the tip-growing pollen tube will start elongating. The plasma membrane as the selectively permeable barrier that separates the inner and outer cell environment plays crucial roles in this process. This protocol described an efficient aqueous polymer two-phase system followed by alkaline solution washing to prepare Lilium davidii or Oryza sativa plasma membrane with high purity.
Collapse
Affiliation(s)
- Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Yang N, Han B, Wang T. Protein Isolation from Plasma Membrane, Digestion and Processing for Strong Cation Exchange Fractionation. Bio Protoc 2017; 7:e2298. [DOI: 10.21769/bioprotoc.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 04/19/2017] [Indexed: 11/02/2022] Open
|