1
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
2
|
Bongianino NF, Steffolani ME, Morales CD, Biasutti CA, León AE. Semi-Arid Environmental Conditions and Agronomic Traits Impact on the Grain Quality of Diverse Maize Genotypes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2482. [PMID: 39273966 PMCID: PMC11397475 DOI: 10.3390/plants13172482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
We assessed the impact of environmental conditions and agronomic traits on maize grain quality parameters. The study was conducted using genotypes with distinct genetic constitutions developed specifically for late sowing in semi-arid environments. We evaluated the agronomic, physical, and chemical characteristics of eight maize open-pollinated varieties, six inbred lines, and three commercial hybrids. The yield of the open-pollinated varieties showed a positive correlation with protein content (r = 0.33), while it exhibited a negative correlation with the carbohydrate percentage (r = -0.36 and -0.42) in conjunction with the inbred lines. The flotation index of the hybrids was influenced primarily by the environmental effect (50.15%), whereas in the inbred lines it was nearly evenly divided between the genotype effect (45.51%) and the environmental effect (43.15%). In the open-pollinated varieties, the genotype effect accounted for 35.09% and the environmental effect for 42.35%. The characteristics of plant structure were associated with grain quality attributes relevant for milling, including hardness and test weight. Inbred lines exhibited significant genotype contributions to grain hardness, protein, and carbohydrate content, distinguishing them from the other two germplasm types. These associations are crucial for specific genotypes and for advancing research and development of cultivars for the food industry.
Collapse
Affiliation(s)
- Nicolás Francisco Bongianino
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Córdoba (UNC), Córdoba 5000, Argentina
- Plant Breeding, College of Agricultural Sciences, National University of Córdoba (UNC), Córdoba 5000, Argentina
| | - María Eugenia Steffolani
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Córdoba (UNC), Córdoba 5000, Argentina
- Biological Chemistry, College of Agricultural Sciences, National University of Córdoba (UNC), Córdoba 5000, Argentina
| | - Claudio David Morales
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Córdoba (UNC), Córdoba 5000, Argentina
| | - Carlos Alberto Biasutti
- Plant Breeding, College of Agricultural Sciences, National University of Córdoba (UNC), Córdoba 5000, Argentina
| | - Alberto Edel León
- Córdoba Food Science and Technology Institute (ICYTAC), National Scientific and Technical, Research Council (CONICET), National University of Córdoba (UNC), Córdoba 5000, Argentina
- Biological Chemistry, College of Agricultural Sciences, National University of Córdoba (UNC), Córdoba 5000, Argentina
| |
Collapse
|
3
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
4
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Xu B, Zheng C, Sun T, Wu Y, He M, Chen W, Zhang P, Jiang H. Beneficial effects of triadimefon in overcoming drought stress in soybean at fluorescence stage. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154015. [PMID: 37301038 DOI: 10.1016/j.jplph.2023.154015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max [L.] Merr.) at fluorescence stage frequently experiences drought stress. Although triadimefon has been observed to improve drought tolerance of plants, reports on its role in drought resistance on leaf photosynthesis and assimilate transport are limited. This study examined the effects of triadimefon on leaf photosynthesis and assimilate transport at fluorescence stage of soybean experiencing drought stress. Results showed that triadimefon application relieved the inhibitory effects of drought stress on photosynthesis and increased RuBPCase activity. Drought increased soluble sugar contents, yet reduced starch content in the leaves by heightening the activities of sucrose phosphate synthase (SPS), fructose-1,6-bisphosphatase (FBP), invertase (INV), and amylolytic enzyme, impeding the translocation of carbon assimilates to roots and reducing plant biomass. Nevertheless, triadimefon elevated starch content and minimized sucrose degradation by augmenting sucrose synthase (SS) activity and restraining the activities of SPS, FBP, INV, and amylolytic enzyme compared with drought alone, regulating the carbohydrate balance of drought-stressed plants. Therefore, triadimefon application could reduce the photosynthesis inhibition and regulate the carbohydrate balance of drought-stressed soybean plants to lessen the impacts of drought on soybean biomass.
Collapse
Affiliation(s)
- Bingjie Xu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Chonglan Zheng
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China; Liangshan Yi Aotonomous Prefecture Academy of Forestry and Grassland Sciences, 615000, PR China
| | - Ting Sun
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingjie He
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiping Chen
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Pei Zhang
- Jiangsu Meteorological Bureau, Nanjing, 210008, PR China.
| | - Haidong Jiang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
6
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
|
8
|
Wu L, Meng X, Huang H, Liu Y, Jiang W, Su X, Wang Z, Meng F, Wang L, Peng D, Xing S. Comparative Proteome and Phosphoproteome Analyses Reveal Different Molecular Mechanism Between Stone Planting Under the Forest and Greenhouse Planting of Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:937392. [PMID: 35873990 PMCID: PMC9301318 DOI: 10.3389/fpls.2022.937392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The highly esteemed Chinese herb, Dendrobium huoshanense, whose major metabolites are polysaccharides and alkaloids, is on the verge of extinction. The stone planting under the forest (SPUF) and greenhouse planting (GP) of D. huoshanense are two different cultivation methods of pharmaceutical Dendrobium with significantly differences in morphology, metabolites content and composition, and medication efficacy. Here, we conducted proteomics and phosphoproteomics analyses to reveal differences in molecular mechanisms between SPUF and GP. We identified 237 differentially expressed proteins (DEPs) between the two proteomes, and 291 modification sites belonging to 215 phosphoproteins with a phosphorylation level significantly changed (PLSC) were observed. GO, KEGG pathway, protein domain, and cluster analyses revealed that these DEPs were mainly localized in the chloroplast; involved in processes such as posttranslational modification, carbohydrate transport and metabolism, and secondary metabolite biosynthesis; and enriched in pathways mainly including linoleic acid metabolism, plant-pathogen interactions, and phenylpropanoid, cutin, suberin, and wax biosynthesis. PLSC phosphoproteins were mainly located in the chloroplast, and highly enriched in responses to different stresses and signal transduction mechanisms through protein kinase and phosphotransferase activities. Significant differences between SPUF and GP were observed by mapping the DEPs and phosphorylated proteins to photosynthesis and polysaccharide and alkaloid biosynthesis pathways. Phosphorylation characteristics and kinase categories in D. huoshanense were also clarified in this study. We analyzed different molecular mechanisms between SPUF and GP at proteomic and phosphoproteomic levels, providing valuable information for the development and utilization of D. huoshanense.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Huizhen Huang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
10
|
Crofts N, Domon A, Miura S, Hosaka Y, Oitome NF, Itoh A, Noge K, Fujita N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. PLANT MOLECULAR BIOLOGY 2022; 108:379-398. [PMID: 34671919 DOI: 10.1007/s11103-021-01197-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 05/21/2023]
Abstract
High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Asaka Domon
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Ayaka Itoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
11
|
Plasma membrane N-glycoproteome analysis of wheat seedling leaves under drought stress. Int J Biol Macromol 2021; 193:1541-1550. [PMID: 34740685 DOI: 10.1016/j.ijbiomac.2021.10.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023]
Abstract
Protein glycosylation is one of the ubiquitous post-translational modifications in eukaryotic cells, which play important roles in plant growth and adverse response. In this study, we performed the first comprehensive wheat plasma membrane N-glycoproteome analysis under drought stress via glycopeptide HILIC enrichment and LC-MS/MS identification. In total, 414 glycosylated sites corresponding to 407 glycopeptides and 312 unique glycoproteins were identified, of which 173 plasma membrane glycoproteins with 215 N-glycosylation sites were significantly regulated by drought stress. Functional enrichment analysis reveals that the significantly regulated N-glycosylation proteins were particularly related to protein kinase activity involved in the reception and transduction of extracellular signal and plant cell wall remolding. The motifs and sequence structures analysis showed that the significantly regulated N-glycosylation sites were concentrated within [NxT] motif, and 79.5% of them were located on the random coil that is always on the protein surface and flexible regions, which could facilitate protein glycosylated modification and enhance protein structural stability via reducing protein flexibility. PNGase F enzyme digestion and glycosylation site mutation further indicated that N-glycosylated modification could increase protein stability. Therefore, N-glycosylated modification is involved in plant adaptation to drought stress by improving the stability of cell wall remodeling related plasma membrane proteins.
Collapse
|
12
|
Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato ( Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics. Int J Mol Sci 2021; 22:ijms222111782. [PMID: 34769214 PMCID: PMC8584006 DOI: 10.3390/ijms222111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
The tomato is a research model for fruit-ripening, however, its fruit-ripening mechanism still needs more extensive and in-depth exploration. Here, using TMT and LC-MS, the proteome and phosphoproteome of AC++ (wild type) and rin (ripening-inhibitor) mutant fruits were studied to investigate the translation and post-translational regulation mechanisms of tomato fruit-ripening. A total of 6141 proteins and 4011 phosphorylation sites contained quantitative information. One-hundred proteins were identified in both omics’ profiles, which were mainly found in ethylene biosynthesis and signal transduction, photosynthesis regulation, carotenoid and flavonoid biosynthesis, chlorophyll degradation, ribosomal subunit expression changes, MAPK pathway, transcription factors and kinases. The affected protein levels were correlated with their corresponding gene transcript levels, such as NAC-NOR, MADS-RIN, IMA, TAGL1, MADS-MC and TDR4. Changes in the phosphorylation levels of NAC-NOR and IMA were involved in the regulation of tomato fruit-ripening. Although photosynthesis was inhibited, there were diverse primary and secondary metabolic pathways, such as glycolysis, fatty acid metabolism, vitamin metabolism and isoprenoid biosynthesis, regulated by phosphorylation. These data constitute a map of protein—protein phosphorylation in the regulation of tomato fruit-ripening, which lays the foundation for future in-depth study of the sophisticated molecular mechanisms of fruit-ripening and provide guidance for molecular breeding.
Collapse
|
13
|
Comparative Phosphoproteomic Analysis Reveals the Response of Starch Metabolism to High-Temperature Stress in Rice Endosperm. Int J Mol Sci 2021; 22:ijms221910546. [PMID: 34638888 PMCID: PMC8508931 DOI: 10.3390/ijms221910546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
High-temperature stress severely affects rice grain quality. While extensive research has been conducted at the physiological, transcriptional, and protein levels, it is still unknown how protein phosphorylation regulates seed development in high-temperature environments. Here, we explore the impact of high-temperature stress on the phosphoproteome of developing grains from two indica rice varieties, 9311 and Guangluai4 (GLA4), with different starch qualities. A total of 9994 phosphosites from 3216 phosphoproteins were identified in all endosperm samples. We identified several consensus phosphorylation motifs ([sP], [LxRxxs], [Rxxs], [tP]) induced by high-temperature treatment and revealed a core set of protein kinases, splicing factors, and regulatory factors in response to high-temperature stress, especially those involved in starch metabolism. A detailed phosphorylation scenario in the regulation of starch biosynthesis (AGPase, GBSSI, SSIIa, SSIIIa, BEI, BEIIb, ISA1, PUL, PHO1, PTST) in rice endosperm was proposed. Furthermore, the dynamic changes in phosphorylated enzymes related to starch synthesis (SSIIIa-Ser94, BEI-Ser562, BEI-Ser620, BEI-Ser821, BEIIb-Ser685, BEIIb-Ser715) were confirmed by Western blot analysis, which revealed that phosphorylation might play specific roles in amylopectin biosynthesis in response to high-temperature stress. The link between phosphorylation-mediated regulation and starch metabolism will provide new insights into the mechanism underlying grain quality development in response to high-temperature stress.
Collapse
|
14
|
Adegoke TV, Wang Y, Chen L, Wang H, Liu W, Liu X, Cheng YC, Tong X, Ying J, Zhang J. Posttranslational Modification of Waxy to Genetically Improve Starch Quality in Rice Grain. Int J Mol Sci 2021; 22:4845. [PMID: 34063649 PMCID: PMC8124582 DOI: 10.3390/ijms22094845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
The waxy (Wx) gene, encoding the granule-bound starch synthase (GBSS), is responsible for amylose biosynthesis and plays a crucial role in defining eating and cooking quality. The waxy locus controls both the non-waxy and waxy rice phenotypes. Rice starch can be altered into various forms by either reducing or increasing the amylose content, depending on consumer preference and region. Low-amylose rice is preferred by consumers because of its softness and sticky appearance. A better way of improving crops other than downregulation and overexpression of a gene or genes may be achieved through the posttranslational modification of sites or regulatory enzymes that regulate them because of their significance. The impact of posttranslational GBSSI modifications on extra-long unit chains (ELCs) remains largely unknown. Numerous studies have been reported on different crops, such as wheat, maize, and barley, but the rice starch granule proteome remains largely unknown. There is a need to improve the yield of low-amylose rice by employing posttranslational modification of Wx, since the market demand is increasing every day in order to meet the market demand for low-amylose rice in the regional area that prefers low-amylose rice, particularly in China. In this review, we have conducted an in-depth review of waxy rice, starch properties, starch biosynthesis, and posttranslational modification of waxy protein to genetically improve starch quality in rice grains.
Collapse
Affiliation(s)
- Tosin Victor Adegoke
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Lijuan Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Xingyong Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Yi-Chen Cheng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| |
Collapse
|
15
|
Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. THE NEW PHYTOLOGIST 2020; 228:1490-1504. [PMID: 32767769 DOI: 10.1111/nph.16858] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
16
|
Liu Z, Lv J, Liu Y, Wang J, Zhang Z, Chen W, Song J, Yang B, Tan F, Zou X, Ou L. Comprehensive Phosphoproteomic Analysis of Pepper Fruit Development Provides Insight into Plant Signaling Transduction. Int J Mol Sci 2020; 21:ijms21061962. [PMID: 32183026 PMCID: PMC7139842 DOI: 10.3390/ijms21061962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Limited knowledge is available for phosphorylation modifications in pepper (Capsicum annuum L.), especially in pepper fruit development. In this study, we conducted the first comprehensive phosphoproteomic analysis of pepper fruit at four development stage by Tandem Mass Tag proteomic approaches. A total of 2639 unique phosphopeptides spanning 1566 proteins with 4150 nonredundant sites of phosphorylation were identified, among which 2327 peptides in 1413 proteins were accurately quantified at four different stages. Mature Green (MG) to breaker stage showed the largest number of differentially expressed phosphoproteins and the number of downregulated phosphoproteins was significantly higher than that of upregulated after MG stage. Twenty seven phosphorylation motifs, including 22 pSer motifs and five pThr motifs and 85 kinase including 28 serine/threonine kinases, 14 receptor protein kinases, six mitogen-activated protein kinases, seven calcium-dependent protein kinases, two casein kinases, and some other kinases were quantified. Then the dynamic changes of phosphorylated proteins in ethylene and abscisic acid signaling transduction pathways during fruit development were analyzed. Our results provide a cascade of phosphoproteins and a regulatory network of phosphorylation signals, which help to further understand the mechanism of phosphorylation in pepper fruit development.
Collapse
Affiliation(s)
- Zhoubin Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
| | - Junheng Lv
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Yuhua Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Jing Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China; (Z.Z.); (W.C.)
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China; (Z.Z.); (W.C.)
| | - Jingshuang Song
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.L.); (Y.L.); (J.W.); (J.S.)
| | - Bozhi Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
| | - Fangjun Tan
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China; (Z.Z.); (W.C.)
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
- Correspondence: (X.Z.); (L.O.); Tel.: +86-0731-84692619 (L.O.)
| | - Lijun Ou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Z.L.)
- Correspondence: (X.Z.); (L.O.); Tel.: +86-0731-84692619 (L.O.)
| |
Collapse
|
17
|
Xia J, Zhu D, Chang H, Yan X, Yan Y. Effects of water-deficit and high-nitrogen treatments on wheat resistant starch crystalline structure and physicochemical properties. Carbohydr Polym 2020; 234:115905. [PMID: 32070524 DOI: 10.1016/j.carbpol.2020.115905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/07/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023]
Abstract
This work investigated the effects of water-deficit and high-nitrogen (N) treatments on wheat resistant starch (RS) formation, molecular structure, and physicochemical properties. The results of consecutive 2-year field experiments revealed that water deficit significantly reduced starch granule number and diameter, amylose, RS content, RS particle size distribution, and physicochemical properties, including peak and trough viscosities, oil absorption capacity, and freeze-thaw stability. Water deficit also altered the long- and short-range structures of RS. In contrast, high-N fertilizer application significantly improved the RS content, long- and short-range structures, and physicochemical properties. Pearson correlation analysis revealed that RS content was positively correlated with total starch, amylose, rapidly digesting starch, 90th percentile of RS particle size, relative crystallinity, infrared 1047/1022 cm-1 ratio, peak and breakdown viscosities, oil absorption capacity, and freeze-thaw stability, and was negatively correlated with slowly digestible starch content, 1022/995 cm-1 ratio, and final viscosity.
Collapse
Affiliation(s)
- Jian Xia
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Hongmiao Chang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xing Yan
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025 Jingzhou, China.
| |
Collapse
|
18
|
Activities of starch synthetic enzymes and contents of endogenous hormones in waxy maize grains subjected to post-silking water deficit. Sci Rep 2019; 9:7059. [PMID: 31065011 PMCID: PMC6505039 DOI: 10.1038/s41598-019-43484-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Rainfed maize in Southern China and frequently suffer water deficit at later plant growth periods. A pot trial in 2014–2015 was conducted to study the effects of drought stress (the relative soil moisture contents are 70–80% and 50–60% under control and water deficit conditions, respectively) after pollination on grain filling and starch accumulation, activities of starch synthetic enzymes, and contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), with Suyunuo5 as test material. The grain fresh weight, volume, and dry weight were not affected by drought before 10 days after pollination but were restricted thereafter. The reduction at maturity was reduced by 33.3%, 40.0%, and 32.3% in 2014 and by 21.7%, 24.3%, and 18.3% in 2015. The grain filling rate was suppressed by water deficit, whereas grain moisture and starch content were slightly affected. The starch accumulation was decreased by 33.5% and 20.0% at maturity in 2014 and 2015, respectively. The activities of starch synthetic enzymes (sucrose phosphate synthase, sucrose synthase, ADP-glucose pyrophosphorylase, soluble starch synthase, and starch branching enzyme) were downregulated by post-silking drought. The ABA content was increased, whereas IAA content was decreased when plants suffered water deficit during grain filling. In conclusion, post-silking water deficit increased ABA content, decreased IAA content, and weakened the activities of starch synthetic enzymes, which suppressed grain development and ultimately reduced grain weight.
Collapse
|
19
|
Luo F, Deng X, Liu Y, Yan Y. Identification of phosphorylation proteins in response to water deficit during wheat flag leaf and grain development. BOTANICAL STUDIES 2018; 59:28. [PMID: 30535879 PMCID: PMC6286713 DOI: 10.1186/s40529-018-0245-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) serves as important grain crop widely cultivated in the world, which is often suffered by drought stress in natural conditions. As one of the most important post translation modifications, protein phosphorylation widely participates in plant abiotic stress regulation. In this study, we performed the first comparative analysis of phosphorylated protein characterization in flag leaves and developing grains of elite Chinese bread wheat cultivar Zhongmai 175 under water deficit by combining with proteomic approach and Pro-Q Diamond gel staining. RESULTS Field experiment showed that water deficit caused significant reduction of plant height, tiller number, ear length and grain yield. 2-DE and Pro-Q Diamond gel staining analysis showed that 58 proteins were phosphorylated among 112 differentially accumulated proteins in response to water deficit, including 20 in the flag leaves and 38 in the developing grains. The phosphorylated proteins from flag leaves mainly involved in photosynthesis, carbohydrate and energy metabolism, while those from developing grains were closely related with detoxification and defense, protein, carbohydrate and energy metabolism. Particularly, water deficit resulted in significant downregulation of phosphorylated modification level in the flag leaves, which could affect photosynthesis and grain yield. However, some important phosphorylated proteins involved in stress defense, energy metabolism and starch biosynthesis were upregulated under water deficit, which could benefit drought tolerance, accelerate grain filling and shorten grain developing time. CONCLUSIONS The modification level of those identified proteins from flag leaves and grains had great changes when wheat was suffered from water deficit, indicating that phosphoproteins played a key role in response to drought stress. Our results provide new insights into the molecular mechanisms how phosphoproteins respond to drought stress and thus reduce production.
Collapse
Affiliation(s)
- Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yue Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
20
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
21
|
Vu LD, Zhu T, Verstraeten I, van de Cotte B, Gevaert K, De Smet I. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4609-4624. [PMID: 29939309 PMCID: PMC6117581 DOI: 10.1093/jxb/ery204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity.
Collapse
Affiliation(s)
- Lam Dai Vu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Inge Verstraeten
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte van de Cotte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
22
|
Zhu GR, Yan X, Zhu D, Deng X, Wu JS, Xia J, Yan YM. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J Proteomics 2018; 185:8-24. [DOI: 10.1016/j.jprot.2018.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
|