1
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
2
|
Liu D, Yang H, Zhang Z, Chen Q, Guo W, Rossi V, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. An elite γ-gliadin allele improves end-use quality in wheat. THE NEW PHYTOLOGIST 2023; 239:87-101. [PMID: 36617723 DOI: 10.1111/nph.18722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/02/2023]
Abstract
Gluten is composed of glutenins and gliadins and determines the viscoelastic properties of dough and end-use quality in wheat (Triticum aestivum L.). Gliadins are important for wheat end-use traits, but the contribution of individual gliadin genes is unclear, since gliadins are encoded by a complex, multigenic family, including many pseudogenes. We used CRISPR/Cas9-mediated gene editing and map-based cloning to investigate the contribution of the γ-gliadin genes annotated in the wheat cultivar 'Fielder', showing that Gli-γ1-1D and Gli-γ2-1B account for most of the γ-gliadin accumulation. The impaired activity of only two γ-gliadin genes in knockout mutants improved end-use quality and reduced gluten epitopes associated with celiac disease (CD). Furthermore, we identified an elite haplotype of Gli-γ1-1D linked to higher end-use quality in a wheat germplasm collection and developed a molecular marker for this allele for marker-assisted selection. Our findings provide information and tools for biotechnology-based and classical breeding programs aimed at improving wheat end-use quality.
Collapse
Affiliation(s)
- Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huaimao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126, Bergamo, Italy
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Interaction between Sulfate and Selenate in Tetraploid Wheat (Triticum turgidum L.) Genotypes. Int J Mol Sci 2023; 24:ijms24065443. [PMID: 36982516 PMCID: PMC10055959 DOI: 10.3390/ijms24065443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of fundamental importance to human health and the main Se source is from plant-derived foods. Plants mainly take up Se as selenate (SeO42−), through the root sulfate transport system, because of their chemical similarity. The aims of this study were (1) to characterize the interaction between Se and S during the root uptake process, by measuring the expression of genes coding for high-affinity sulfate transporters and (2) to explore the possibility of increasing plant capability to take up Se by modulating S availability in the growth medium. We selected different tetraploid wheat genotypes as model plants, including a modern genotype, Svevo (Triticum turgidum ssp. durum), and three ancient Khorasan wheats, Kamut, Turanicum 21, and Etrusco (Triticum turgidum ssp. turanicum). The plants were cultivated hydroponically for 20 days in the presence of two sulfate levels, adequate (S = 1.2 mM) and limiting (L = 0.06 mM), and three selenate levels (0, 10, 50 μM). Our findings clearly showed the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3), which are involved in the primary uptake of sulfate from the rhizosphere. Interestingly, Se accumulation in shoots was higher when S was limited in the nutrient solution.
Collapse
|
4
|
Kim S, Sim JR, Gu YQ, Altenbach SB, Denery-Papini S, Pineau F, Tranquet O, Yang YJ, Park EJ, Lim SH, Kang CS, Choi C, Lee JY. Toward reducing the immunogenic potential of wheat flour: identification and characterization of wheat lines missing omega-5 gliadins encoded by the 1D chromosome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:33. [PMID: 36897507 DOI: 10.1007/s00122-023-04295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Eleven wheat lines that are missing genes for the 1D-encoded omega-5 gliadins will facilitate breeding efforts to reduce the immunogenic potential of wheat flour for patients susceptible to wheat allergy. Efforts to reduce the levels of allergens in wheat flour that cause wheat-dependent exercise-induced anaphylaxis are complicated by the presence of genes encoding omega-5 gliadins on both chromosomes 1B and 1D of hexaploid wheat. In this study, we screened 665 wheat germplasm samples using gene specific DNA markers for omega-5 gliadins encoded by the genes on 1D chromosome that were obtained from the reference wheat Chinese Spring. Eleven wheat lines missing the PCR product corresponding to 1D omega-5 gliadin gene sequences were identified. Two of the lines contained the 1BL·1RS translocation. Relative quantification of gene copy numbers by qPCR revealed that copy numbers of 1D omega-5 gliadins in the other nine lines were comparable to those in 1D null lines of Chinese Spring, while copy numbers of 1B omega-5 gliadins were like those of Chinese Spring. 2-D immunoblot analysis of total flour proteins from the selected lines using a specific monoclonal antibody against the N-terminal sequence of omega-5 gliadin showed no reactivity in regions of the blots containing previously identified 1D omega-5 gliadins. Interestingly, RP-UPLC analysis of the gliadin fractions of the selected lines indicated that the expression of omega-1,2 gliadins was also significantly reduced in seven of the lines, implying that 1D omega-5 gliadin and 1D omega-1,2 gliadin genes are tightly linked on the Gli-D1 loci of chromosome 1D. Wheat lines missing the omega-5 gliadins encoded by the genes on 1D chromosome should be useful in future breeding efforts to reduce the immunogenic potential of wheat flour.
Collapse
Affiliation(s)
- Sewon Kim
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Jae-Ryeong Sim
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Yong Q Gu
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Susan B Altenbach
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Sandra Denery-Papini
- UR1268 Biopolymers, Interactions, Assemblies, INRAE, Rue de la Géraudière, 44316, Nantes, France
| | - Florence Pineau
- UR1268 Biopolymers, Interactions, Assemblies, INRAE, Rue de la Géraudière, 44316, Nantes, France
| | - Olivier Tranquet
- UR1268 Biopolymers, Interactions, Assemblies, INRAE, Rue de la Géraudière, 44316, Nantes, France
| | - Yu-Jeong Yang
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Eun Ji Park
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, South Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Changhyun Choi
- National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea.
| |
Collapse
|
5
|
The Ability of the Yeast Wickerhamomyces anomalus to Hydrolyze Immunogenic Wheat Gliadin Proteins. Foods 2022; 11:foods11244105. [PMID: 36553848 PMCID: PMC9778486 DOI: 10.3390/foods11244105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Gliadins proteins make up around 30% of total wheat flour proteins. They are involved in many immune disorders affecting an increasing number of people who eat foods made with wheat flour. The triggering factor is the accumulation in the gut of immunogenic peptides derived from incomplete degradation of gliadins by gastric proteases. Previous research has revealed the effectiveness of sourdough-fermentation technology or related lactic acid bacteria in reducing wheat flour allergenic proteins. However, there are no single yeast cultures for producing reduced allergenicity wheat products. This study evaluated sourdough-related yeast Wickerhamomyces anomalus strains for their ability to hydrolyze gliadin proteins. All yeast strains were able to degrade gliadins and use them as carbon and nitrogen sources. The proliferation of the yeast strains depended on the gliadin addition; complete hydrolysis was observed after 24 h. The strain showing higher proteolytic activity fermented, acceptably wheat flour dough. The gliadin content of the leavened dough was reduced by 50%. Bread made from the W. anomalus-fermented dough showed a 78% reduction in immunogenic α-gliadins. 50% of the decrease was attributed to the proteolytic activity of the yeast cells, and the other 35% to the baking process. These results show the potential of the yeast W. anomalus as a starter for reducing immunogenicity wheat products.
Collapse
|
6
|
Noma S, Yamagishi M, Ogihara Y, Kawaura K. Characterization of α-gliadin alleles of Japanese wheat cultivars in relation to flour dough extensibility and celiac disease epitopes. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Kaur S, Kumar K, Singh L, Sharanagat VS, Nema PK, Mishra V, Bhushan B. Gluten-free grains: Importance, processing and its effect on quality of gluten-free products. Crit Rev Food Sci Nutr 2022; 64:1988-2015. [PMID: 36094456 DOI: 10.1080/10408398.2022.2119933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gluten-enteropathy affects a significant number of people, making gluten a major concern in the food industry. With medical advancements, the diagnosis of allergies is becoming easier, and people who are allergic to gluten are recommended a complete gluten-free diet. Since wheat provides a major part of the energy and nutrition in the diet, its elimination affects nutrition intake of allergic population. Food scientists are working to formulate products using protein-rich gluten-free grains with quality attributes at par with gluten-containing products. Focused research has been done to provide nutrition and a variety of food to people suffering from gluten-related disorders. Efforts are being made to remove the gluten from the wheat and other gluten-containing grains, while applying different processing/treatments to enhance the properties of gluten-free grains. Hence, the present review summarizes the importance, processing, and products of different gluten-free grains. It also highlights the digestibility of gluten-free grains with clinical trials and gluten elimination strategies for gluten-containing grains.
Collapse
Affiliation(s)
- Samandeep Kaur
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Kshitiz Kumar
- Department of Food Processing Technology, A. D. Patel Institute of Technology, Anand, Gujarat, India
| | - Lochan Singh
- Contract Research Organization, NIFTEM, Sonepat, Haryana, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Prabhat K Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Vijendra Mishra
- Department of Basics and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Bharat Bhushan
- Department of Basics and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| |
Collapse
|
8
|
Camerlengo F, Sestili F, Cammerata A, Kuzmanovic L, Ceoloni C, Sissons M, Lafiandra D. Introgression of gluten protein genes associated with the D-genome of bread wheat into durum wheat. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Fiol A, Jurado-Ruiz F, López-Girona E, Aranzana MJ. An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly duplicated genomic regions. A case study in the Prunus salicina LG3-MYB10 genes cluster. PLANT METHODS 2022; 18:105. [PMID: 36030243 PMCID: PMC9419362 DOI: 10.1186/s13007-022-00937-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Genome complexity is largely linked to diversification and crop innovation. Examples of regions with duplicated genes with relevant roles in agricultural traits are found in many crops. In both duplicated and non-duplicated genes, much of the variability in agronomic traits is caused by large as well as small and middle scale structural variants (SVs), which highlights the relevance of the identification and characterization of complex variability between genomes for plant breeding. RESULTS Here we improve and demonstrate the use of CRISPR-Cas9 enrichment combined with long-read sequencing technology to resolve the MYB10 region in the linkage group 3 (LG3) of Japanese plum (Prunus salicina). This region, which has a length from 90 to 271 kb according to the P. salicina genomes available, is associated with fruit color variability in Prunus species. We demonstrate the high complexity of this region, with homology levels between Japanese plum varieties comparable to those between Prunus species. We cleaved MYB10 genes in five plum varieties using the Cas9 enzyme guided by a pool of crRNAs. The barcoded fragments were then pooled and sequenced in a single MinION Oxford Nanopore Technologies (ONT) run, yielding 194 Mb of sequence. The enrichment was confirmed by aligning the long reads to the plum reference genomes, with a mean read on-target value of 4.5% and a depth per sample of 11.9x. From the alignment, 3261 SNPs and 287 SVs were called and phased. A de novo assembly was constructed for each variety, which also allowed detection, at the haplotype level, of the variability in this region. CONCLUSIONS CRISPR-Cas9 enrichment is a versatile and powerful tool for long-read targeted sequencing even on highly duplicated and/or polymorphic genomic regions, being especially useful when a reference genome is not available. Potential uses of this methodology as well as its limitations are further discussed.
Collapse
Affiliation(s)
- Arnau Fiol
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Federico Jurado-Ruiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Elena López-Girona
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Barcelona, Spain.
| |
Collapse
|
10
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Wheat Breeding, Fertilizers, and Pesticides: Do They Contribute to the Increasing Immunogenic Properties of Modern Wheat? GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Celiac disease (CD) is a small intestinal inflammatory condition where consumption of gluten induces a T-cell mediated immune response that damages the intestinal mucosa in susceptible individuals. CD affects at least 1% of the world’s population. The increasing prevalence of CD has been reported over the last few decades. However, the reason for this increase is not known so far. Certain factors such as increase in awareness and the development of advanced and highly sensitive diagnostic screening markers are considered significant factors for this increase. Wheat breeding strategies, fertilizers, and pesticides, particularly herbicides, are also thought to have a role in the increasing prevalence. However, less is known about this issue. In this review, we investigated the role of these agronomic practices in depth. Our literature-based results showed that wheat breeding, use of nitrogen-based fertilizers, and herbicides cannot be solely responsible for the increase in celiac prevalence. However, applying nitrogen fertilizers is associated with an increase in gluten in wheat, which increases the risk of developing celiac-specific symptoms in gluten-sensitive individuals. Additionally, clustered regularly interspaced short palindromic repeats (CRISPR) techniques can edit multiple gliadin genes, resulting in a low-immunogenic wheat variety that is safe for such individuals.
Collapse
|
12
|
Halstead-Nussloch G, Tanaka T, Copetti D, Paape T, Kobayashi F, Hatakeyama M, Kanamori H, Wu J, Mascher M, Kawaura K, Shimizu KK, Handa H. Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:715985. [PMID: 34539709 PMCID: PMC8446623 DOI: 10.3389/fpls.2021.715985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
The seed protein α-gliadin is a major component of wheat flour and causes gluten-related diseases. However, due to the complexity of this multigene family with a genome structure composed of dozens of copies derived from tandem and genome duplications, little was known about the variation between accessions, and thus little effort has been made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic variation in α-gliadins across 11 recently published chromosome-scale assemblies of hexaploid wheat, with validation using long-read data. We unexpectedly found that the Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting the possibility of recombination between the two during breeding. We confirmed that the number of immunogenic epitopes among 11 accessions varied. The D subgenome of a European spelt line also contained epitopes, in agreement with its hybridization history. Evolutionary analysis identified amino acid sites under diversifying selection, suggesting their functional importance. The analysis opens the way for improved grain quality and safety through wheat breeding.
Collapse
Affiliation(s)
- Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Brookhaven National Laboratory, Upton, NY, United States
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
13
|
Sestili F, Margiotta B, Vaccino P, Moscaritolo S, Giorgi D, Lucretti S, Palombieri S, Masci S, Lafiandra D. A Cross between Bread Wheat and a 2D(2R) Disomic Substitution Triticale Line Leads to the Formation of a Novel Disomic Addition Line and Provides Information of the Role of Rye Secalins on Breadmaking Characteristics. Int J Mol Sci 2020; 21:ijms21228450. [PMID: 33182791 PMCID: PMC7696169 DOI: 10.3390/ijms21228450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
A bread wheat line (N11) and a disomic 2D(2R) substitution triticale line were crossed and backrossed four times. At each step electrophoretic selection for the seeds that possessed, simultaneously, the complete set of high molecular weight glutenin subunits of N11 and the two high molecular weight secalins of rye, present in the 2D(2R) line, was carried out. Molecular cytogenetic analyses of the BC4F8 generation revealed that the selection carried out produced a disomic addition line (2n = 44). The pair of additional chromosomes consisted of the long arm of chromosome 1R (1RL) from rye fused with the satellite body of the wheat chromosome 6B. Rheological analyses revealed that the dough obtained by the new addition line had higher quality characteristics when compared with the two parents. The role of the two additional high molecular weight secalins, present in the disomic addition line, in influencing improved dough characteristics is discussed.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (S.P.); (S.M.)
| | - Benedetta Margiotta
- Institute of Biosciences and Bioresources of the National Research Council, 70126 Bari, Italy;
| | - Patrizia Vaccino
- CREA Research Centre for Cereal and Industrial Crops, 13100 Vercelli, Italy;
| | | | - Debora Giorgi
- ENEA, CASACCIA Research Center, Laboratory Biotechnologies, 00189 Rome, Italy; (D.G.); (S.L.)
| | - Sergio Lucretti
- ENEA, CASACCIA Research Center, Laboratory Biotechnologies, 00189 Rome, Italy; (D.G.); (S.L.)
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (S.P.); (S.M.)
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (S.P.); (S.M.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (S.P.); (S.M.)
- Correspondence: ; Tel.: +39-076-135-7243
| |
Collapse
|
14
|
Reduction of Allergenic Potential in Bread Wheat RNAi Transgenic Lines Silenced for CM3, CM16 and 0.28 ATI Genes. Int J Mol Sci 2020; 21:ijms21165817. [PMID: 32823634 PMCID: PMC7461106 DOI: 10.3390/ijms21165817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker’s asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet.
Collapse
|
15
|
Camerlengo F, Frittelli A, Sparks C, Doherty A, Martignago D, Larré C, Lupi R, Sestili F, Masci S. CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|
17
|
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Kumari A, Garg M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr 2020; 7:6. [PMID: 32118025 PMCID: PMC7020197 DOI: 10.3389/fnut.2020.00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat is a major cereal crop providing energy and nutrients to the billions of people around the world. Gluten is a structural protein in wheat, that is necessary for its dough making properties, but it is responsible for imparting certain intolerances among some individuals, which are part of this review. Most important among these intolerances is celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and results in villous atrophy, inflammation and damage to intestinal lining in genetically liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen presenting cells. Celiac disease occurs due to presence of celiac disease eliciting epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated immune response occurs in individuals after inhalation or ingestion of wheat. Following a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is very challenging as none of wheat cultivar or related species stands safe for consumption. Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic, and chemical strategies have been worked upon to reduce the celiac disease epitopes and the gluten content in wheat. Currently, only 8.4% of total population is affected by wheat-related issues, while rest of population remains safe and should not remove wheat from the diet, based on false media coverage.
Collapse
Affiliation(s)
- Natasha Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Simran Bhatia
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Saloni Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
18
|
Rustgi S, Shewry P, Brouns F. Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies. WHEAT QUALITY FOR IMPROVING PROCESSING AND HUMAN HEALTH 2020:471-515. [DOI: 10.1007/978-3-030-34163-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Sestili F, Garcia-Molina MD, Gambacorta G, Beleggia R, Botticella E, De Vita P, Savatin DV, Masci S, Lafiandra D. Provitamin A Biofortification of Durum Wheat through a TILLING Approach. Int J Mol Sci 2019; 20:E5703. [PMID: 31739436 PMCID: PMC6888361 DOI: 10.3390/ijms20225703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023] Open
Abstract
Macro- and micronutrients, essential for the maintenance of human metabolism, are assimilated daily through the diet. Wheat and other major cereals are a good source of nutrients, such as carbohydrates and proteins, but cannot supply a sufficient amount of essential micronutrients, including provitamin A. As vitamin A deficiency (VAD) leads to several serious diseases throughout the world, the biofortification of a major staple crop, such as wheat, represents an effective way to preserve human health in developing countries. In the present work, a key enzyme involved in the branch of carotenoids pathway producing β-carotene, lycopene epsilon cyclase, has been targeted by a Targeting Induced Local Lesions in Genomes (TILLING) approach in a "block strategy" perspective. The null mutant genotype showed a strong reduction in the expression of the lcyE gene and also interesting pleiotropic effects on an enzyme (β-ring hydroxylase) acting downstream in the pathway. Biochemical profiling of carotenoids in the wheat mutant lines showed an increase of roughly 75% in β-carotene in the grains of the complete mutant line compared with the control. In conclusion, we describe here the production and characterization of a new wheat line biofortified with provitamin A obtained through a nontransgenic approach, which also sheds new light on the molecular mechanism governing carotenoid biosynthesis in durum wheat.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Maria Dolores Garcia-Molina
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Gianluca Gambacorta
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (P.D.V.)
| | - Ermelinda Botticella
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), 71122 Foggia, Italy; (R.B.); (P.D.V.)
| | - Daniel Valentin Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy; (F.S.); (M.D.G.-M.); (G.G.); (E.B.); (D.V.S.); (S.M.)
| |
Collapse
|
20
|
Rustgi S, Shewry P, Brouns F, Deleu LJ, Delcour JA. Wheat Seed Proteins: Factors Influencing Their Content, Composition, and Technological Properties, and Strategies to Reduce Adverse Reactions. Compr Rev Food Sci Food Saf 2019; 18:1751-1769. [PMID: 33336954 DOI: 10.1111/1541-4337.12493] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Wheat is the primary source of nutrition for many, especially those living in developing countries, and wheat proteins are among the most widely consumed dietary proteins in the world. However, concerns about disorders related to the consumption of wheat and/or wheat gluten proteins have increased sharply in the last 20 years. This review focuses on wheat gluten proteins and amylase trypsin inhibitors, which are considered to be responsible for eliciting most of the intestinal and extraintestinal symptoms experienced by susceptible individuals. Although several approaches have been proposed to reduce the exposure to gluten or immunogenic peptides resulting from its digestion, none have proven sufficiently effective for general use in coeliac-safe diets. Potential approaches to manipulate the content, composition, and technological properties of wheat proteins are therefore discussed, as well as the effects of using gluten isolates in various food systems. Finally, some aspects of the use of gluten-free commodities are discussed.
Collapse
Affiliation(s)
- Sachin Rustgi
- Dept. of Plant and Environmental Sciences, School of Health Research, Clemson Univ. Pee Dee Research and Education Centre, Florence, SC, U.S.A.,Dept. of Crop and Soil Sciences, Washington State Univ., Pullman, WA, U.S.A
| | - Peter Shewry
- Rothamsted Research, Harpenden, Hertfordshire, U.K
| | - Fred Brouns
- Dept. of Human Biology, School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht Univ., Universiteitssingel 50, 6200, MD, Maastricht, the Netherlands
| | - Lomme J Deleu
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
21
|
Moehs CP, Austill WJ, Holm A, Large TAG, Loeffler D, Mullenberg J, Schnable PS, Skinner W, van Boxtel J, Wu L, McGuire C. Development of Decreased-Gluten Wheat Enabled by Determination of the Genetic Basis of lys3a Barley. PLANT PHYSIOLOGY 2019; 179:1692-1703. [PMID: 30696748 PMCID: PMC6446766 DOI: 10.1104/pp.18.00771] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
Celiac disease is the most common food-induced enteropathy in humans, with a prevalence of approximately 1% worldwide. It is induced by digestion-resistant, proline- and glutamine-rich seed storage proteins, collectively referred to as gluten, found in wheat (Triticum aestivum). Related prolamins are present in barley (Hordeum vulgare) and rye (Secale cereale). The incidence of both celiac disease and a related condition called nonceliac gluten sensitivity is increasing. This has prompted efforts to identify methods of lowering gluten in wheat, one of the most important cereal crops. Here, we used bulked segregant RNA sequencing and map-based cloning to identify the genetic lesion underlying a recessive, low-prolamin mutation (lys3a) in diploid barley. We confirmed the mutant identity by complementing the lys3a mutant with a transgenic copy of the wild-type barley gene and then used targeting-induced local lesions in genomes to identify induced single-nucleotide polymorphisms in the three homeologs of the corresponding wheat gene. Combining inactivating mutations in the three subgenomes of hexaploid bread wheat in a single wheat line lowered gliadin and low-molecular-weight glutenin accumulation by 50% to 60% and increased free and protein-bound lysine by 33%.
Collapse
Affiliation(s)
| | | | - Aaron Holm
- Arcadia Biosciences, Davis, California 95618
| | | | | | | | - Patrick S Schnable
- Data2Bio, 2079 Roy J. Carver Co-Lab, Ames, Iowa 50011
- 2035B Roy J. Carver Co-Lab, Iowa State University, Ames, Iowa 50011
| | | | | | - Liying Wu
- Arcadia Biosciences, Davis, California 95618
| | | |
Collapse
|
22
|
Sestili F, Pagliarello R, Zega A, Saletti R, Pucci A, Botticella E, Masci S, Tundo S, Moscetti I, Foti S, Lafiandra D. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:419-429. [PMID: 30426174 DOI: 10.1007/s00122-018-3229-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/02/2018] [Indexed: 05/21/2023]
Abstract
Knocking down GW2 enhances grain size by regulating genes encoding the synthesis of cytokinin, gibberellin, starch and cell wall. Raising crop yield is a priority task in the light of the continuing growth of the world's population and the inexorable loss of arable land to urbanization. Here, the RNAi approach was taken to reduce the abundance of Grain Weight 2 (GW2) transcript in the durum wheat cultivar Svevo. The effect of the knockdown was to increase the grains' starch content by 10-40%, their width by 4-13% and their surface area by 3-5%. Transcriptomic profiling, based on a quantitative real-time PCR platform, revealed that the transcript abundance of genes encoding both cytokinin dehydrogenase 1 and the large subunit of ADP-glucose pyrophosphorylase was markedly increased in the transgenic lines, whereas that of the genes encoding cytokinin dehydrogenase 2 and gibberellin 3-oxidase was reduced. A proteomic analysis of the non-storage fraction extracted from mature grains detected that eleven proteins were differentially represented in the transgenic compared to wild-type grain: some of these were involved, or at least potentially involved, in cell wall development, suggesting a role of GW2 in the regulation of cell division in the wheat grain.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Riccardo Pagliarello
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Alessandra Zega
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Rosaria Saletti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Anna Pucci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Ermelinda Botticella
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Silvio Tundo
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Ilaria Moscetti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Salvatore Foti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy.
| |
Collapse
|
23
|
Dubois B, Bertin P, Hautier L, Muhovski Y, Escarnot E, Mingeot D. Genetic and environmental factors affecting the expression of α-gliadin canonical epitopes involved in celiac disease in a wide collection of spelt (Triticum aestivum ssp. spelta) cultivars and landraces. BMC PLANT BIOLOGY 2018; 18:262. [PMID: 30382818 PMCID: PMC6211434 DOI: 10.1186/s12870-018-1487-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder affecting genetically predisposed individuals whose dietary gluten proteins trigger an inflammatory reaction in the small intestine. Gluten is found in the seeds of cereals like bread wheat (Triticum aestivum ssp. aestivum) and spelt (Triticum aestivum ssp. spelta). The development of new varieties lacking immunogenic peptides is one of the strategies currently investigated to address the CD problem. Among gluten proteins, α-gliadins display the strongest immunogenicity with four main T-cell stimulatory epitopes. The objective of this work was to study the expression of α-gliadin epitopes related to CD in a wide collection of 121 spelt accessions (landraces and varieties, spring and winter accessions) from different provenances, and to analyze the correlation between the presence of epitope sequences in gDNA and their expression (cDNA). The effect of environmental factors (harvest year and N fertilization) on the epitope expression was also investigated. RESULTS TaqMan probes targeting the canonical form of the epitopes were used to evaluate the epitope expression levels. Significant variations in the amount of epitope transcripts were identified between accessions and according to the provenances. Spring accessions showed a significantly higher immunogenicity than winter ones and no influence of spelt breeding on the epitope expression levels could be assessed when comparing landraces and varieties from Northwestern Europe. No correlation was observed between quantitative PCR results obtained from cDNA and gDNA for 45 accessions tested, stressing the need to use markers focusing on epitope transcripts rather than on genomic sequences. A relative stability of the amount of epitopes expressed by a same accession across four harvest years was detected. The fertilization strategy, evaluated through seven N fertilization modalities applied to two commercial spelt varieties, did not influence the epitope expression of the first variety, whereas it had a slight effect for the second one. CONCLUSIONS The results obtained in this work showed that the CD-related epitope expression greatly fluctuated among the spelt accessions studied. This expression was not correlated to the epitope genomic occurrence and environmental factors had almost no influence on the amount of epitope transcripts.
Collapse
Affiliation(s)
- Benjamin Dubois
- Unit of Bioengineering, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
- Earth and Life Institute-Agronomy, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Bertin
- Earth and Life Institute-Agronomy, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Louis Hautier
- Unit of Plant protection and ecotoxicology, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Yordan Muhovski
- Unit of Bioengineering, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Emmanuelle Escarnot
- Unit of Breeding and biodiversity, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| | - Dominique Mingeot
- Unit of Bioengineering, Department of Life Sciences, Walloon Agricultural Research Center, Gembloux, Belgium
| |
Collapse
|
24
|
Ribeiro M, Picascia S, Rhazi L, Gianfrani C, Carrillo JM, Rodriguez-Quijano M, Branlard G, Nunes FM. In Situ Gluten-Chitosan Interlocked Self-Assembled Supramolecular Architecture Reduces T-Cell-Mediated Immune Response to Gluten in Celiac Disease. Mol Nutr Food Res 2018; 62:e1800646. [PMID: 30289620 DOI: 10.1002/mnfr.201800646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Indexed: 12/14/2022]
Abstract
SCOPE The prevalence of celiac disease has increased since the last half of the 20th century and is now about 1% in most western populations. At present, people who suffer from celiac disease have to follow a gluten-exclusion diet throughout their lives. Compliance to this restrictive diet is demanding and the development of alternative strategies has become urgent. METHODS AND RESULTS In this context, it is found that the biocompatible aminopolysaccharide chitosan imposes a different gluten reorganization after gluten redox reaction producing in situ mechanically interlocked supramolecular assemblies between gluten and chitosan. These new structures result in the decrease of gluten digestibility, tissue transglutaminase deamidation activity, and interferon-γ production in intestinal T cell lines generated from biopsy specimens of celiac disease patients. CONCLUSION Overall, the results demonstrate the potential of this research avenue to celiac disease is problematic, as the reorganization of gluten proteins to a novel supramolecular architecture shows a positive impact on known pathogenesis mechanisms of the disease. At present, the only therapy for celiac disease is adherence to a gluten-free diet. Here, it is shown that chitosan-imposed gluten reorganization to an interlocked self-assembled supramolecular architecture reduces gluten digestibility, R5-reactivity, tissue transglutaminase deamidation activity, and its capacity to stimulate a T-cell-mediated immune response in celiac disease.
Collapse
Affiliation(s)
- Miguel Ribeiro
- CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Stefania Picascia
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino, 111, 80131, Naples, Italy
| | - Larbi Rhazi
- UniLaSalle, Unité de recherche "Transformations & Agro-Ressources", 19 rue Pierre Waguet - BP 30313, F-60026, Beauvais Cedex, France
| | - Carmen Gianfrani
- Institute of Protein Biochemistry-CNR, Via Pietro Castellino, 111, 80131, Naples, Italy
| | - Jose Maria Carrillo
- Unit of Genetics, Department of Biotechnology - Plant Biology. UPM, Ciudad Universitaria, 28040, Madrid, Spain
| | - Marta Rodriguez-Quijano
- Unit of Genetics, Department of Biotechnology - Plant Biology. UPM, Ciudad Universitaria, 28040, Madrid, Spain
| | - Gérard Branlard
- Institut National de la Recherche Agronomique GDEC/UBP, UMR 1095, 63100, Clermont-Ferrand, France
| | - Fernando M Nunes
- CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
25
|
|