1
|
Gong J, Wang R, Liu B, Zhu T, Li H, Long S, Liu T, Xu Y. Regulatory mechanism of strigolactone in tall fescue to low-light stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109054. [PMID: 39163653 DOI: 10.1016/j.plaphy.2024.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Strigolactone (SL), a plant hormone derived from carotenoids, has been recognized for its pivotal role in regulating plant growth. Nevertheless, the influence of SL on tall fescue (Festuca arundinacea) under low-light conditions remains unclear. This study aimed to investigate the impact of SL on various aspects of tall fescue, including its morphological characteristics, photosynthesis, levels of antioxidant and concentrations of SL, under low light intensity (LI). The findings showed that GR24, an artificial analog of SL, positively influenced several parameters of tall fescue under LI. In particular, it enhanced the morphological features such as plant height, leaf width, and biomass, while reducing the number of tillers. Furthermore, it improved the efficiency of photosynthetic by enhancing chlorophyll fluorescence and the gas exchange parameters, mitigating cell damage and improving the contents of antioxidants by increasing the levels of antioxidant enzymes and non-enzymatic antioxidant compounds. Moreover, treatment with SL led to elevated concentrations of this hormone and the levels of gene expression in related pathways. Owing to the immaturity of the genetic transformation system in tall fescue, partial validation through transgenic and mutant materials was obtained using Arabidopsis (Arabidopsis thaliana). These findings demonstrate that SL alleviates the physiological indicators of tall fescue under LI stress and enhances its tolerance to shade. Additionally, it suggests that SL may regulate the shade tolerance of tall fescue through the involvement of FaD14.
Collapse
Affiliation(s)
- Jiongjiong Gong
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ruijia Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
2
|
Nurcholis W, Rahmadansah R, Astuti P, Priosoeryanto BP, Arianti R, Kristóf E. Comparative Analysis of Volatile Compounds and Biochemical Activity of Curcuma xanthorrhiza Roxb. Essential Oil Extracted from Distinct Shaded Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2682. [PMID: 39409552 PMCID: PMC11479211 DOI: 10.3390/plants13192682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The application of shade during plants' growth significantly alters the biochemical compounds of the essential oil (EO). We aimed to analyze the effect of shade on the volatile compounds and biochemical activities of EO extracted from Curcuma xanthorrhiza Roxb. (C. xanthorrhiza) plants. Four shading conditions were applied: no shading (S0), 25% (S25), 50% (S50), and 75% shade (S75). The volatile compounds of EO extracted from each shaded plant were analyzed by gas chromatography-mass spectrometry. The antioxidant, antibacterial, and antiproliferative activities of EO were also investigated. We found that shade application significantly reduced the C. xanthorrhiza EO yield but increased its aroma and bioactive compound concentration. α-curcumene, xanthorrhizol, α-cedrene, epicurzerenone, and germacrone were found in EO extracted from all conditions. However, β-bisabolol, curzerene, curcuphenol, and γ-himachalene were only detected in the EO of S75 plants. The EO of the shaded plants also showed higher antioxidant activity as compared to unshaded ones. In addition, the EO extracted from S75 exerted higher antiproliferative activity on HeLa cells as compared to S0. The EO extracted from S0 and S25 showed higher antibacterial activity against Gram-positive bacteria than kanamycin. Our results suggest that shade applications alter the composition of the extractable volatile compounds in C. xanthorrhiza, which may result in beneficial changes in the biochemical activity of the EO.
Collapse
Affiliation(s)
- Waras Nurcholis
- Tropical Biopharmaca Research Center, IPB University, Bogor 16151, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Rahmadansah Rahmadansah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Puji Astuti
- Department of Biochemistry and Biomolecular Science, Faculty of Medicine, Universitas Tanjungpura, Pontianak 78124, Indonesia;
| | | | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.A.); (E.K.)
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang 33684, Indonesia
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.A.); (E.K.)
| |
Collapse
|
3
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
4
|
You HJ, Jo H, Kim JM, Kang ST, Luong NH, Kim YH, Lee S. Exploration and genetic analyses of canopy leaf pigmentation changes in soybean (Glycine max L.): unveiling a novel phenotype. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:202. [PMID: 39134894 PMCID: PMC11319514 DOI: 10.1007/s00122-024-04693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Pigmentation changes in canopy leaves were first reported, and subsequent genetic analyses identified a major QTL associated with levels of pigmentation changes, suggesting Glyma.06G202300 as a candidate gene. An unexpected reddish-purple pigmentation in upper canopy leaves was discovered during the late reproductive stages in soybean (Glycine max L.) genotypes. Two sensitive genotypes, 'Uram' and PI 96983, exhibited anomalous canopy leaf pigmentation changes (CLPC), while 'Daepung' did not. The objectives of this study were to: (i) characterize the physiological features of pigmented canopy leaves compared with non-pigmented leaves, (ii) evaluate phenotypic variation in a combined recombinant inbred line (RIL) population (N = 169 RILs) under field conditions, and (iii) genetically identify quantitative trait loci (QTL) for CLPC via joint population linkage analysis. Comparison between pigmented and normal leaves revealed different Fv/Fm of photosystem II, hyperspectral reflectance, and cellular properties, suggesting the pigmentation changes occur in response to an undefined abiotic stress. A highly significant QTL was identified on chromosome 6, explaining ~ 62.8% of phenotypic variance. Based on the QTL result, Glyma.06G202300 encoding flavonoid 3'-hydroxylase (F3'H) was identified as a candidate gene. In both Uram and PI 96983, a 1-bp deletion was confirmed in the third exon of Glyma.06G202300 that results in a premature stop codon in both Uram and PI 96983 and a truncated F3'H protein lacking important domains. Additionally, gene expression analyses uncovered significant differences between pigmented and non-pigmented leaves. This is the first report of a novel symptom and an associated major QTL. These results will provide soybean geneticists and breeders with valuable knowledge regarding physiological changes that may affect soybean production. Further studies are required to elucidate the causal environmental stress and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun Jo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Ngoc Ha Luong
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Yeong-Ho Kim
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
5
|
Yang J, Qiao H, Wu C, Huang H, Nzambimana C, Jiang C, Wang J, Tang D, Zhong W, Du K, Zhang K, Lyu C. Physiological and Transcriptome Responses of Sweet Potato [ Ipomoea batatas (L.) Lam] to Weak-Light Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2214. [PMID: 39204650 PMCID: PMC11359650 DOI: 10.3390/plants13162214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
In the relay intercropping system of maize/sweet potato, the growth of the sweet potatoes is seriously limited by weak light stress in the early stage due to shade from maize plants. However, it is not clear how the weak light affects sweet potatoes and causes tuberous root loss. By setting two light intensity levels (weak light = 30% transmittance of normal light), this study evaluated the responses of two sweet potato cultivars with different tolerances to weak light in a field-based experiment and examined the divergence of gene expression related to light and photosynthesis in a pot-based experiment. The results showed that under weak light, the anatomic structure of functional leaves changed, and the leaf thickness decreased by 39.98% and 17.32% for Yuhongxinshu-4 and Wanshu-7, respectively. The ratio of S/R increased, and root length, root superficial area, and root volume all decreased. The photosynthetic enzyme rubisco was weakened, and the net photosynthetic rate (Pn) declined as well. The level of gene expression in Wanshu-7 was higher than that of Yuhongxinshu-4. The KEGG analysis showed that differentially expressed genes from the two cultivars under weak-light stress used the same enrichment pathway, mainly via glutathione metabolism and flavonoid biosynthesis. After full light levels were restored, the differentially expressed genes were all enriched in pathways such as photosynthesis, photosynthetic pigment synthesis, and carbon metabolism. These findings indicated that weak light changed the plant morphology, photosynthetic physiology and gene expression levels of sweet potatoes, which eventually caused losses in the tuberous root yield. The more light-sensitive cultivar (Wanshu-7) had stronger reactions to weak light. This study provides a theoretical basis and strategy for breeding low-light-tolerant varieties and improving relay intercropping production in sweet potatoes.
Collapse
Affiliation(s)
- Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Special Crops Institute, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Huanhuan Qiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Chao Wu
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Human Resources Department, Southwest University, Chongqing 400715, China
| | - Hong Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Claude Nzambimana
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cheng Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Daobin Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Weiran Zhong
- Special Crops Institute, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Kang Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Changwen Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (J.Y.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
6
|
Zhou C, Gu X, Li J, Su X, Chen S, Tang J, Chen L, Cai N, Xu Y. Physiological Characteristics and Transcriptomic Responses of Pinus yunnanensis Lateral Branching to Different Shading Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1588. [PMID: 38931020 PMCID: PMC11207258 DOI: 10.3390/plants13121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Pinus yunnanensis is an important component of China's economic development and forest ecosystems. The growth of P. yunnanensis seedlings experienced a slow growth phase, which led to a long seedling cultivation period. However, asexual reproduction can ensure the stable inheritance of the superior traits of the mother tree and also shorten the breeding cycle. The quantity and quality of branching significantly impact the cutting reproduction of P. yunnanensis, and a shaded environment affects lateral branching growth, development, and photosynthesis. Nonetheless, the physiological characteristics and the level of the transcriptome that underlie the growth of lateral branches of P. yunnanensis under shade conditions are still unclear. In our experiment, we subjected annual P. yunnanensis seedlings to varying shade intensities (0%, 25%, 50%, 75%) and studied the effects of shading on growth, physiological and biochemical changes, and gene expression in branching. Results from this study show that shading reduces biomass production by inhibiting the branching ability of P. yunnanensis seedlings. Due to the regulatory and protective roles of osmotically active substances against environmental stress, the contents of soluble sugars, soluble proteins, photosynthetic pigments, and enzyme activities exhibit varying responses to different shading treatments. Under shading treatment, the contents of phytohormones were altered. Additionally, genes associated with phytohormone signaling and photosynthetic pathways exhibited differential expression. This study established a theoretical foundation for shading regulation of P. yunnanensis lateral branch growth and provides scientific evidence for the management of cutting orchards.
Collapse
Affiliation(s)
- Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xuesha Gu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiangfei Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Shi Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Lin Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
7
|
Deng J, Huang X, Chen J, Vanholme B, Guo J, He Y, Qin W, Zhang J, Yang W, Liu J. Shade stress triggers ethylene biosynthesis to accelerate soybean senescence and impede nitrogen remobilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108658. [PMID: 38677188 DOI: 10.1016/j.plaphy.2024.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In gramineae-soybean intercropping systems, shade stress caused by taller plants impacts soybean growth specifically during the reproductive stage. However, the effects of shade stress on soybean senescence remain largely unexplored. In this research, we applied artificial shade treatments with intensities of 75% (S75) and 50% (S50) to soybean plants at the onset of flowering to simulate the shade stress experienced by soybeans in the traditional and optimized maize-soybean intercropping systems, respectively. Compared to the normal light control, both shade treatments led to a rapid decline in the dry matter content of soybean vegetative organs and accelerated their abscission. Moreover, shade treatments triggered the degradation of chlorophyll and soluble proteins in leaves and increased the expression of genes associated with leaf senescence. Metabolic profiling further revealed that ethylene biosynthesis and signal transduction were induced by shade treatment. In addition, the examination of nitrogen content demonstrated that shade treatments impeded the remobilization of nitrogen in vegetative tissues, consequently reducing the seed nitrogen harvest. It's worth noting that these negative effects were less pronounced under the S50 treatment compared to the S75 treatment. Taken together, this research demonstrates that shade stress during the reproductive stage accelerates soybean senescence and impedes nitrogen remobilization, while optimizing the field layout to improve soybean growth light conditions could mitigate these challenges in the maize-soybean intercropping system.
Collapse
Affiliation(s)
- Juncai Deng
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Xiangqing Huang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Gent, Belgium; VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052, Gent, Belgium
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China
| | - Wenting Qin
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Jing Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China; College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China.
| | - Jiang Liu
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
8
|
Wei C, Luo G, Jin Z, Li J, Li Y. Physiological and Structural Changes in Leaves of Platycrater arguta Seedlings Exposed to Increasing Light Intensities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1263. [PMID: 38732478 PMCID: PMC11085374 DOI: 10.3390/plants13091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Understanding the light adaptation of plants is critical for conservation. Platycrater arguta, an endangered deciduous shrub endemic to East Asia, possesses high ornamental and phylogeographic value. However, the weak environmental adaptability of P. arguta species has limited its general growth and conservation. To obtain a deeper understanding of the P. arguta growth conditions, we examined the leaf morphology and physiology via anatomical and chloroplast ultrastructural analyses following exposure to different natural light intensities (full light, 40%, and 10%). The findings indicated that P. arguta seedings in the 10% light intensity had significantly improved leaf morphological characteristics and specific leaf area compared to those exposed to other intensities. The net photosynthetic rate, chlorophyll (Chl) content, photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE) exhibited marked increases at a 10% light intensity compared to both 40% light and full light intensities, whereas the light compensation point and dark respiration levels reached their lowest values under the 10% light condition. With reduced light, leaf thickness, palisade tissue, spongy tissue, and stomatal density significantly decreased, whereas the stomatal length, stomatal width, and stomatal aperture were significantly elevated. When exposed to 10% light intensity, the ultrastructure of chloroplasts was well developed, chloroplasts and starch grain size, the number of grana, and thylakoids all increased significantly, while the number of plastoglobules was significantly reduced. Relative distance phenotypic plasticity index analysis exhibited that P. arguta adapts to varying light environments predominantly by adjusting PPUE, Chl b, PNUE, chloroplast area, and the activity of PSII reaction centers. We proposed that P. arguta efficiently utilizes low light to reconfigure its energy metabolism by regulating its leaf structure, photosynthetic capacity, nutrient use efficiency, and chloroplast development.
Collapse
Affiliation(s)
- Chunyan Wei
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.W.); (G.L.); (Z.J.); (J.L.)
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Guangyu Luo
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.W.); (G.L.); (Z.J.); (J.L.)
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.W.); (G.L.); (Z.J.); (J.L.)
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.W.); (G.L.); (Z.J.); (J.L.)
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Yueling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China; (C.W.); (G.L.); (Z.J.); (J.L.)
- Institute of Ecology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| |
Collapse
|
9
|
Li Z, Jiang E, Liu M, Sun Q, Gao Z, Du Y. Effects of Coverlys TF150 ® on the Photosynthetic Characteristics of Grape. Int J Mol Sci 2023; 24:16659. [PMID: 38068982 PMCID: PMC10706710 DOI: 10.3390/ijms242316659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal antifoggy PE coating that has not yet been popularized as a rain shelter film for grapes in China. To investigate the effects of Coverlys TF150® on grapes, we measured the microdomain environment, leaf development, and photosynthetic characteristics of 'Miguang' (Vitis vinifera × V. labrusca) under rain-shelter cultivation and performed transcriptome analysis. The results showed that Coverlys TF150® significantly reduced (p < 0.05) the light intensity, temperature, and humidity compared with PO film, increased the chlorophyll content and leaf thickness (particularly palisade tissue thickness), and increased stomatal density and stomatal opening from 10:00 to 14:00. Coverlys TF150® was observed to improve the maximum efficiency of photosystem II (Fv/Fm), photochemical quenching (qP), the electron transfer rate (ETR), and the actual photochemical efficiency (ΦPSII) from 10:00 to 14:00. Moreover, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) of grape leaves significantly increased (p < 0.05) from 10:00 to 14:00. RNA-Seq analysis of the grape leaves at 8:00, 10:00, and 12:00 revealed 1388, 1562, and 1436 differential genes at these points in time, respectively. KEGG enrichment analysis showed the occurrence of protein processing in the endoplasmic reticulum. Plant hormone signal transduction and plant-pathogen interaction were identified as the metabolic pathways with the highest differential gene expression enrichment. The psbA encoding D1 protein was significantly up-regulated in both CO10vsPO10 and CO12vsPO12, while the sHSPs family genes were significantly down-regulated in all time periods, and thus may play an important role in the maintenance of the photosystem II (PSII) activity in grape leaves under Coverlys TF150®. Compared with PO film, the PSI-related gene psaB was up-regulated, indicating the ability of Coverlys TF150® to better maintain PSI activity. Compared with PO film, the abolic acid receptacle-associated gene PYL1 was down-regulated at all time periods under the Coverlys TF150® treatment, while PP2C47 was significantly up-regulated in CO10vsPO10 and CO12vsPO12, inducing stomatal closure. The results reveal that Coverlys TF150® alleviates the stress of high temperature and strong light compared with PO film, improves the photosynthetic capacity of grape leaves, and reduces the midday depression of photosynthesis.
Collapse
Affiliation(s)
- Zhonghan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Enshun Jiang
- Shandong Institute of Pomology, Tai’an 271000, China;
| | - Minghui Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Qinghua Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Zhen Gao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Yuanpeng Du
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| |
Collapse
|
10
|
Li M, Hu P, He D, Zheng B, Guo Y, Wu Y, Duan T. Quantification of the Cumulative Shading Capacity in a Maize-Soybean Intercropping System Using an Unmanned Aerial Vehicle. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0095. [PMID: 37953854 PMCID: PMC10637764 DOI: 10.34133/plantphenomics.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/01/2023] [Indexed: 11/14/2023]
Abstract
In intercropping systems, higher crops block direct radiation, resulting in inevitable shading on the lower crops. Cumulative shading capacity (CSC), defined as the amount of direct radiation shaded by higher crops during a growth period, affects the light interception and radiation use efficiency of crops. Previous studies investigated the light interception and distribution of intercropping. However, how to directly quantify the CSC and its inter-row heterogeneity is still unclear. Considering the canopy height differences (Hms, obtained using an unmanned aerial vehicle) and solar position, we developed a shading capacity model (SCM) to quantify the shading on soybean in maize-soybean intercropping systems. Our results indicated that the southernmost row of soybean had the highest shading proportion, with variations observed among treatments composed of strip configurations and plant densities (ranging from 52.44% to 57.44%). The maximum overall CSC in our treatments reached 123.77 MJ m-2. There was a quantitative relationship between CSC and the soybean canopy height increment (y = 3.61 × 10-2×ln(x)+6.80 × 10-1, P < 0.001). Assuming that the growth status of maize and soybean was consistent under different planting directions and latitudes, we evaluated the effects of factors (i.e., canopy height difference, latitude, and planting direction) on shading to provide insights for optimizing intercropping planting patterns. The simulation showed that increasing canopy height differences and latitude led to increased shading, and the planting direction with the least shading was about 90° to 120° at the experimental site. The newly proposed SCM offers a quantitative approach for better understanding shading in intercropping systems.
Collapse
Affiliation(s)
- Min Li
- College of Land Science and Technology,
China Agricultural University, Beijing, China
| | - Pengcheng Hu
- School of Agriculture and Food Sustainability,
The University of Queensland, St Lucia, QLD, Australia
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia
| | - Di He
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia
| | - Bangyou Zheng
- Agriculture and Food, CSIRO, Queensland Biosciences Precinct, St Lucia, QLD, Australia
| | - Yan Guo
- College of Land Science and Technology,
China Agricultural University, Beijing, China
| | - Yushan Wu
- College of Agronomy,
Sichuan Agricultural University, Chengdu, China
| | - Tao Duan
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Deng JY, Wang YJ, Chen LF, Luo T, Wang R, Chen XY. Functional trait divergence associated with heteromorphic leaves in a climbing fig. FRONTIERS IN PLANT SCIENCE 2023; 14:1261240. [PMID: 37794929 PMCID: PMC10546399 DOI: 10.3389/fpls.2023.1261240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Introduction Plants that display heteroblasty possess conspicuous variations in leaf morphology between their juvenile and adult phases, with certain species retaining juvenile-like leaves even in adulthood. Nevertheless, the ecological advantages of maintaining two or more distinct leaf types in heteroblastic plants at the adult stage remain unclear. Method The aim of this study is to examine the adaptive significance of heteroblastic leaves sampled from branches with divergent functions (sterile and fertile branches) of mature Ficus pumila individuals by comparing their morphological, anatomical, and physiological characteristics. Result Leaves on sterile branches (LSs) exhibited a significantly larger specific leaf area, thinner palisade and spongy tissues, lower chlorophyll contents, and lower light saturation points than leaves on fertile branches (LFs). These results demonstrate that LSs are better adapted to low light environments, while LFs are well equipped to take advantages of high light conditions. However, both LFs and LSs have a low light compensation point with no significant difference between them, indicating that they start to accumulate photosynthetic products under similar light conditions. Interestingly, significant higher net photosynthetic rate was detected in LFs, showing they have higher photosynthetic capacity. Furthermore, LFs produced significant more nutrients compared to LSs, which may associate to their ability of accumulating more photosynthetic products under full light conditions and higher photosynthetic capacity. Discussion Overall, we observed a pattern of divergence in morphological features of leaves on two functional branches. Anatomical and physiological features indicate that LFs have an advantage in varied light conditions, providing amounts of photosynthetic products to support the sexual reproduction, while LSs adapt to low light environments. Our findings provide evidence that heteroblasty facilitates F. pumila to utilize varying light environments, likely associated with its growth form as a climbing plant. This strategy allows the plant to allocate resources more effectively and optimize its overall fitness.
Collapse
Affiliation(s)
- Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yong-Jin Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lu-Fan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Tong Luo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control & Ecological Security, Shanghai, China
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control & Ecological Security, Shanghai, China
| |
Collapse
|
12
|
Fu Z, Chen P, Zhang X, Du Q, Zheng B, Yang H, Luo K, Lin P, Li Y, Pu T, Wu Y, Wang X, Yang F, Liu W, Song C, Yang W, Yong T. Maize-legume intercropping achieves yield advantages by improving leaf functions and dry matter partition. BMC PLANT BIOLOGY 2023; 23:438. [PMID: 37726682 PMCID: PMC10507892 DOI: 10.1186/s12870-023-04408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
Intercropping can obtain yield advantages, but the mechanism of yield advantages of maize-legume intercropping is still unclear. Then, we explored the effects of cropping systems and N input on yield advantages in a two-year experiment. Cropping systems included monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), monoculture peanut (Arachis hypogaea L.) (MP), maize-soybean substitutive relay intercropping (IMS), and maize-peanut substitutive strip intercropping (IMP). N input included without N (N0) and N addition (N1). Results showed that maize's leaf area index was 31.0% and 34.6% higher in IMS and IMP than in MM. The specific leaf weight and chlorophyll a (chl a) of maize were notably higher by 8.0% and 18.8% in IMS, 3.1%, and 18.6% in IMP compared with MM. Finally, N addition resulted in a higher thousand kernels weight of maize in IMS and IMP than that in MM. More dry matter accumulated and partitioned to the grain, maize's averaged partial land equivalent ratio and the net effect were 0.76 and 2.75 t ha-1 in IMS, 0.78 and 2.83 t ha-1 in IMP. The leaf area index and specific leaf weight of intercropped soybean were 16.8% and 26% higher than MS. Although soybean suffers from shade during coexistence, recovered growth strengthens leaf functional traits and increases dry matter accumulation. The averaged partial land equivalent ratio and the net effect of intercropped soybean were 0.76 and 0.47 t ha-1. The leaf area index and specific leaf weight of peanuts in IMP were 69.1% and 14.4% lower than in the MP. The chlorophyll a and chlorophyll b of peanut in MP were 17.0% and 24.4% higher than in IMP. A less dry matter was partitioned to the grain for intercropped peanut. The averaged pLER and NE of intercropped peanuts were 0.26 and -0.55 t ha-1. In conclusion, the strengthened leaf functional traits promote dry matter accumulation, maize-soybean relay intercropping obtained a win-win yield advantage, and maize-peanut strip intercropping achieved a trade-off yield advantage.
Collapse
Affiliation(s)
- Zhidan Fu
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Ping Chen
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xiaona Zhang
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Qing Du
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Benchuan Zheng
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, 610066, People's Republic of China
| | - Huan Yang
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Kai Luo
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Ping Lin
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Yiling Li
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Tian Pu
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Yushan Wu
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Feng Yang
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China
| | - Chun Song
- Institute of Ecological and Environmental Science, College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| | - Taiwen Yong
- College of Agronomy, Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
13
|
Jiang A, Liu J, Gao W, Ma R, Zhang J, Zhang X, Du C, Yi Z, Fang X, Zhang J. Transcriptomic and Metabolomic Analyses Reveal the Key Genes Related to Shade Tolerance in Soybean. Int J Mol Sci 2023; 24:14230. [PMID: 37762532 PMCID: PMC10531609 DOI: 10.3390/ijms241814230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Soybean (Glycine max) is an important crop, rich in proteins, vegetable oils and several other phytochemicals, which is often affected by light during growth. However, the specific regulatory mechanisms of leaf development under shade conditions have yet to be understood. In this study, the transcriptome and metabolome sequencing of leaves from the shade-tolerant soybean 'Nanxiadou 25' under natural light (ND1) and 50% shade rate (SHND1) were carried out, respectively. A total of 265 differentially expressed genes (DEGs) were identified, including 144 down-regulated and 121 up-regulated genes. Meanwhile, KEGG enrichment analysis of DEGs was performed and 22 DEGs were significantly enriched in the top five pathways, including histidine metabolism, riboflavin metabolism, vitamin B6 metabolism, glycerolipid metabolism and cutin, suberine and wax biosynthesis. Among all the enrichment pathways, the most DEGs were enriched in plant hormone signaling pathways with 19 DEGs being enriched. Transcription factors were screened out and 34 differentially expressed TFs (DETFs) were identified. Weighted gene co-expression network analysis (WGCNA) was performed and identified 10 core hub genes. Combined analysis of transcriptome and metabolome screened out 36 DEGs, and 12 potential candidate genes were screened out and validated by quantitative real-time polymerase chain reaction (qRT-PCR) assay, which may be related to the mechanism of shade tolerance in soybean, such as ATP phosphoribosyl transferase (ATP-PRT2), phosphocholine phosphatase (PEPC), AUXIN-RESPONSIVE PROTEIN (IAA17), PURPLE ACID PHOSPHATASE (PAP), etc. Our results provide new knowledge for the identification and function of candidate genes regulating soybean shade tolerance and provide valuable resources for the genetic dissection of soybean shade tolerance molecular breeding.
Collapse
Affiliation(s)
- Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Weiran Gao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ronghan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jijun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaochun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Chengzhang Du
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Wang X, Komatsu S. Subcellular Proteomics to Elucidate Soybean Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2865. [PMID: 37571018 PMCID: PMC10421527 DOI: 10.3390/plants12152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Climate change jeopardizes soybean production by declining seed yield and quality. In this review, the morphophysiological alterations of soybean in response to abiotic stress are summarized, followed by illustrations of cellular metabolisms and regulatory mechanisms to organellar stress based on subcellular proteomics. This highlights the communications associated with reactive oxygen species scavenging, molecular chaperones, and phytohormone signals among subcellular compartments. Given the complexity of climate change and the limitations of plants in coping with multiple abiotic stresses, a generic response to environmental constraints is proposed between calcium and abscisic acid signals in subcellular organelles. This review summarizes the findings of subcellular proteomics in stressed soybean and discusses the future prospects of subcellular proteomics for promoting the improvement of climate-tolerant crops.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
15
|
Lu J, Dong Q, Lan G, He Z, Zhou D, Zhang H, Wang X, Liu X, Jiang C, Zhang Z, Wan S, Zhao X, Yu H. Row ratio increasing improved light distribution, photosynthetic characteristics, and yield of peanut in the maize and peanut strip intercropping system. FRONTIERS IN PLANT SCIENCE 2023; 14:1135580. [PMID: 37521911 PMCID: PMC10377676 DOI: 10.3389/fpls.2023.1135580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Changes in the canopy microclimate in intercropping systems, particularly in the light environment, have important effects on the physiological characteristics of photosynthesis and yield of crops. Although different row ratio configurations and strip widths of dwarf crops in intercropping systems have important effects on canopy microclimate, little information is available on the effects of intercropping on chlorophyll synthesis and photosynthetic physiological properties of dwarf crops. A 2-year field experiment was conducted in 2019 and 2020, with five treatments: sole maize (SM), sole peanut (SP), four rows of maize intercropping with eight rows of peanut (M4P8), four rows of maize intercropping with four rows of peanut (M4P4), and four rows of maize intercropping with two rows of peanut (M4P2). The results showed that the light transmittance [photosynthetically active radiation (PAR)], photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of intercropped peanut canopy were reduced, while the intercellular carbon dioxide concentration (Ci) was increased, compared with SP. In particular, the M4P8 pattern Pn (2-year mean) was reduced by 5.68%, 5.33%, and 5.30%; Tr was reduced by 7.41%, 5.45%, and 5.95%; and Gs was reduced by 8.20%, 6.88%, and 6.46%; and Ci increased by 11.95%, 8.06%, and 9.61% compared to SP, at the flowering needle stage, pod stage, and maturity, respectively. M4P8 improves the content of chlorophyll synthesis precursor and conversion efficiency, which promotes the utilization efficiency of light energy. However, it was significantly reduced in M4P2 and M4P4 treatment. The dry matter accumulation and pod yield of peanut in M4P8 treatment decreased, but the proportion of dry matter distribution in the late growth period was more transferred to pods. The full pod number decreases as the peanut row ratio decreases and increases with year, but there is no significant difference between years. M4P8 has the highest yield and land use efficiency and can be used as a reference row ratio configuration for maize-peanut intercropping to obtain relatively high yield benefits.
Collapse
Affiliation(s)
- Juntian Lu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
- Maize Research Institute, Dandong Academy of Agricultural Sciences, Dandong, Liaoning, China
| | - Qiqi Dong
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Guohu Lan
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zecheng He
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongying Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zheng Zhang
- Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Zhou F, Matthew C, Yang P, Huang Y, Nie B, Nan Z. Leaf morphology, functional trait and altitude response in perennial vetch (Vicia unijuga A. Braun), alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.). PLANTA 2023; 257:75. [PMID: 36879140 DOI: 10.1007/s00425-023-04098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Species have plasticity across altitude gradients in leaf morphology and function, and their response to high altitude conditions was mainly reflected in leaf cell metabolism and gas exchange. Leaf morphological and functional adaptation to altitude has received research attention in recent years, but there are no studies for forage legumes. Here we report differences in 39 leaf morphology and functional traits of three leguminous forages (alfalfa, sainfoin and perennial vetch) at three sites in Gansu Province, China, ranging from 1768 to 3074 m altitude to provide information for potential use in breeding programmes. With increasing altitude, plant water status increased, reflecting increase in soil water content and decreased average temperature, which lead to leaf intercellular CO2 concentration. Stomatal conductance and evapotranspiration increased significantly but water-use efficiency decreased. At high altitude, ΦPSII decreased but non-photochemical quenching and chlorophyll a:b ratio increased while spongy mesophyll tissue and leaf thickness increased. These changes may be due to UV or low-temperature damage of leaf protein and metabolic cost of plant protection or defence responses. Contrary to many other studies, leaf mass per area decreased significantly at higher altitude. This was consistent with predictions under the worldwide leaf economic spectrum on the basis that soil nutrients increased with increasing altitude. The key species differences were more irregularly shaped epidermal cells and larger stomatal size in perennial vetch compared to alfalfa or sainfoin that enhanced gas exchange and photosynthesis by generating mechanical force, increasing guard cell turgor, and promoting stomatal operation. The lower adaxial stomatal density also enhanced water-use efficiency. These adaptations might confer perennial vetch an advantage in environments with extreme diurnal temperature fluctuation or in frigid conditions.
Collapse
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Cory Matthew
- School of Agriculture and Environment, College of Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Pengfei Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230031, Anhui, China
| | - Bin Nie
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China.
| |
Collapse
|
17
|
Investigating the Mechanisms Underlying the Low Irradiance-Tolerance of the Economically Important Seaweed Species Pyropia haitanensis. Life (Basel) 2023; 13:life13020481. [PMID: 36836838 PMCID: PMC9965670 DOI: 10.3390/life13020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Pyropia haitanensis, one of the most economically and ecologically important seaweed species, is often exposed to persistent or transient low irradiance (LI), resulting in limited yield and quality. However, the mechanisms mediating P. haitanensis responses to LI are largely unknown. In this study, LI-tolerant (LIT) and LI-sensitive (LIS) P. haitanensis strains were compared regarding their physiological and transcriptomic changes induced by 1 and 4 days of LI (5 μmol photons/m2·s). The results indicated that the inhibition of photomorphogenesis and decreases in photosynthesis and photosynthetic carbon fixation as the duration of LI increased are the key reasons for retarded blade growth under LI conditions. A potential self-amplifying loop involving calcium signaling, phosphatidylinositol signaling, reactive oxygen species signaling, and MAPK signaling may be triggered in blades in response to LI stress. These signaling pathways might activate various downstream responses, including improving light energy use, maintaining cell membrane stability, mitigating oxidative damage, to resist LI stress. Additionally, the LIT strain maintained transcriptional homeostasis better than the LIS strain under LI stress. Specifically, photosynthesis and energy production were relatively stable in the LIT strain, which may help to explain why the LIT strain was more tolerant to LI stress than the LIS strain. The findings of this study provide the basis for future investigations on the precise mechanisms underlying the LI stress tolerance of P. haitanensis.
Collapse
|
18
|
Wang Z, Liu M, Yao M, Zhang X, Qu C, Du H, Lu K, Li J, Wei L, Liang Y. Rapeseed ( Brassica napus) Mitogen-Activated Protein Kinase 1 Enhances Shading Tolerance by Regulating the Photosynthesis Capability of Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:902989. [PMID: 35720537 PMCID: PMC9201689 DOI: 10.3389/fpls.2022.902989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Rapeseed (Brassica napus) is the third-largest source of vegetable oil in the world with an edible, medicinal, and ornamental value. However, insufficient light or high planting density directly affects its growth, development, yield, and quality. Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that play key roles in regulating the responses to biotic and abiotic stresses in plants. In this study, we found that the promoter of BnaMAPK1 contained several light-responsive elements (including the AT1-motif, G-Box, and TCT-motif), consistent with its shading stress-induced upregulation. Compared with the wild type under shading stress, BnaMAPK1-overexpressing plants showed higher light capture efficiency and carbon assimilation capacity, enhancing their shading tolerance. Using RNA sequencing, we systematically investigated the function of BnaMAPK1 in shading stress on photosynthetic structure, Calvin cycle, and light-driven electron transport. Notably, numerous genes encoding light-harvesting chlorophyll a/b-binding proteins (BnaLHCBs) in photosystem II-light-harvesting complex (LHC) II supercomplex were significantly downregulated in the BnaMAPK1-overexpressing lines relative to the wild type under shading stress. Combining RNA sequencing and yeast library screening, a candidate interaction partner of BnaMAPK1 regulating in shading stress, BnaLHCB3, was obtained. Moreover, yeast two-hybrid and split-luciferase complementation assays confirmed the physical interaction relationship between BnaLHCB3 and BnaMAPK1, suggesting that BnaMAPK1 may involve in stabilizing the photosystem II-LHC II supercomplex. Taken together, our results demonstrate that BnaMAPK1 positively regulates photosynthesis capability to respond to shading stress in rapeseed, possibly by controlling antenna proteins complex in photosystem II, and could provide valuable information for further breeding for rapeseed stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Miao Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering College, Guizhou University, Guiyang, China
| | - Mengnan Yao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Xiaoli Zhang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Hai Du
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Kun Lu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Jiana Li
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Ying Liang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
19
|
Zheng B, Zhao W, Ren T, Zhang X, Ning T, Liu P, Li G. Low Light Increases the Abundance of Light Reaction Proteins: Proteomics Analysis of Maize ( Zea mays L.) Grown at High Planting Density. Int J Mol Sci 2022; 23:ijms23063015. [PMID: 35328436 PMCID: PMC8955883 DOI: 10.3390/ijms23063015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is usually planted at high density, so most of its leaves grow in low light. Certain morphological and physiological traits improve leaf photosynthetic capacity under low light, but how light absorption, transmission, and transport respond at the proteomic level remains unclear. Here, we used tandem mass tag (TMT) quantitative proteomics to investigate maize photosynthesis-related proteins under low light due to dense planting, finding increased levels of proteins related to photosystem II (PSII), PSI, and cytochrome b6f. These increases likely promote intersystem electron transport and increased PSI end electron acceptor abundance. OJIP transient curves revealed increases in some fluorescence parameters under low light: quantum yield for electron transport (φEo), probability that an electron moves beyond the primary acceptor QA- (ψo), efficiency/probability of electron transfer from intersystem electron carriers to reduction end electron acceptors at the PSI acceptor side (δRo), quantum yield for reduction of end electron acceptors at the PSI acceptor side (φRo), and overall performance up to the PSI end electron acceptors (PItotal). Thus, densely planted maize shows elevated light utilization through increased electron transport efficiency, which promotes coordination between PSII and PSI, as reflected by higher apparent quantum efficiency (AQE), lower light compensation point (LCP), and lower dark respiration rate (Rd).
Collapse
|
20
|
Luo K, Yuan X, Xie C, Liu S, Chen P, Du Q, Zheng B, Wu Y, Wang X, Yong T, Yang W. Diethyl Aminoethyl Hexanoate Increase Relay Strip Intercropping Soybean Grain by Optimizing Photosynthesis Aera and Delaying Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2022; 12:818327. [PMID: 35069671 PMCID: PMC8767051 DOI: 10.3389/fpls.2021.818327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 05/31/2023]
Abstract
Insufficient and unbalanced biomass supply inhibited soybean [Glycine max (L.) Merr.] yield formation in the maize-soybean relay strip intercropping (IS) and monoculture soybean (SS). A field experiment was conducted to explore the soybean yield increase mechanism of DA-6 in IS and SS treatments. In this 2-year experiment, compact maize "Denghai 605" and shade-tolerant soybean "Nandou 25" were selected as cultivated materials. DA-6 with four concentrations, i.e., 0 mg/L (CK), 40 mg/L (D40), 60 mg/L (D60), and 80 mg/L (D80), were sprayed on soybean leaves at the beginning of flowering stage of soybean. Results showed that DA-6 treatments significantly (p < 0.05) increased soybean grain yield, and the yield increase ratio was higher in IS than SS. The leaf area index values and net photosynthesis rate of IS peaked at D60 and were increased by 32.2-49.3% and 24.1-27.2% compared with the corresponding CK. Similarly, DA-6 treatments increased the aboveground dry matter and the amount of soybean dry matter accumulation from the R1 stage to the R8 stage (VDMT) and highest at D60 both in IS and SS. D60 increased the VDMT by 29.0-47.1% in IS and 20.7-29.2% in SS. The TR G at D60 ranged 72.4-77.6% in IS and 61.4-62.5% in SS. The MDA content at D60 treatment was decreased by 38.3% in IS and 25.8% in SS. The active grain-filling day in IS was about 7 days longer than in SS. In D60 treatment, the Vmean and Vmax increased by 6.5% and 6.5% in IS and 5.7% and 4.3% in SS compared with the corresponding CK. Although the pod number and hundred-grain weight were significantly (p < 0.05) increased by DA-6 treatments, the grains per pod were maintained stable. The pod number and hundred-grain weight were increased by 30.1-36.8% and 4.5-6.7% in IS and 6.3-13% and 3.6-5.6% in SS. Thus, the grain yield at D60 was increased by 36.7-38.4% in IS and 21.7-26.6% in SS. DA-6 treatments significantly (p < 0.05) increased soybean grain yield and peaked D60 treatments both in IS and SS.
Collapse
Affiliation(s)
- Kai Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaoting Yuan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Chen Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Shanshan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qing Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Benchuan Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
21
|
Xie B, Bai X, Sun P, Zhang L, Wei S, Bai H. A Novel Plant Leaf Patch Absorbed With IL-33 Antibody Decreases Venous Neointimal hyperplasia. Front Bioeng Biotechnol 2021; 9:742285. [PMID: 34778224 PMCID: PMC8585764 DOI: 10.3389/fbioe.2021.742285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction: We recently showed that a decellularized leaf scaffold can be loaded with polylactic-co-glycolic acid (PLGA)-based rapamycin nanoparticles, this leaf patch can then inhibit venous neointimal hyperplasia in a rat inferior vena cava (IVC) venoplasty model. IL-33 plays a role in the neointimal formation after vascular injury. We hypothesized that plant leaves can absorb therapeutic drug solution and can be used as a patch with drug delivery capability, and plant leaves absorbed with IL-33 antibody can decrease venous neointimal hyperplasia in the rat IVC venoplasty model. Method: A human spiral saphenous vein (SVG) graft implanted in the popliteal vein was harvested from a patient with trauma and analyzed by immunofluorescence. Male Sprague-Dawley rats (aged 6-8 weeks) were used to create the IVC patch venoplasty model. Plant leaves absorbed with rhodamine, distilled water (control), rapamycin, IL-33, and IL-33 antibody were cut into patches (3 × 1.5 mm2) and implanted into the rat IVC. Patches were explanted at day 14 for analysis. Result: At day 14, in the patch absorbed with rhodamine group, immunofluorescence showed rhodamine fluorescence in the neointima, inside the patch, and in the adventitia. There was a significantly thinner neointima in the plant patch absorbed with rapamycin (p = 0.0231) compared to the patch absorbed with distilled water. There was a significantly large number of IL-33 (p = 0.006) and IL-1β (p = 0.012) positive cells in the human SVG neointima compared to the human great saphenous vein. In rats, there was a significantly thinner neointima, a smaller number of IL-33 (p = 0.0006) and IL-1β (p = 0.0008) positive cells in the IL-33 antibody-absorbed patch group compared to the IL-33-absorbed patch group. Conclusion: We found that the natural absorption capability of plant leaves means they can absorb drug solution efficiently and can also be used as a novel drug delivery system and venous patch. IL-33 plays a role in venous neointimal hyperplasia both in humans and rats; neutralization of IL-33 by IL-33 antibody can be a therapeutic method to decrease venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Xiche Bai
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,The First Zhongyuan Middle School, Zhengzhou, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
22
|
Kazerooni EA, Al-Sadi AM, Kim ID, Imran M, Lee IJ. Ampelopsin Confers Endurance and Rehabilitation Mechanisms in Glycine max cv. Sowonkong under Multiple Abiotic Stresses. Int J Mol Sci 2021; 22:10943. [PMID: 34681604 PMCID: PMC8536110 DOI: 10.3390/ijms222010943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
The present investigation aims to perceive the effect of exogenous ampelopsin treatment on salinity and heavy metal damaged soybean seedlings (Glycine max L.) in terms of physiochemical and molecular responses. Screening of numerous ampelopsin concentrations (0, 0.1, 1, 5, 10 and 25 μM) on soybean seedling growth indicated that the 1 μM concentration displayed an increase in agronomic traits. The study also determined how ampelopsin application could recover salinity and heavy metal damaged plants. Soybean seedlings were irrigated with water, 1.5% NaCl or 3 mM chosen heavy metals for 12 days. Our results showed that the application of ampelopsin raised survival of the 45-day old salinity and heavy metal stressed soybean plants. The ampelopsin treated plants sustained high chlorophyll, protein, amino acid, fatty acid, salicylic acid, sugar, antioxidant activities and proline contents, and displayed low hydrogen peroxide, lipid metabolism, and abscisic acid contents under unfavorable status. A gene expression survey revealed that ampelopsin application led to the improved expression of GmNAC109, GmFDL19, GmFAD3, GmAPX, GmWRKY12, GmWRKY142, and GmSAP16 genes, and reduced the expression of the GmERF75 gene. This study suggests irrigation with ampelopsin can alleviate plant damage and improve plant yield under stress conditions, especially those including salinity and heavy metals.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman;
| | - Il-Doo Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| |
Collapse
|
23
|
Abbott E, Dixon G, Matz M. Shuffling between Cladocopium and Durusdinium extensively modifies the physiology of each symbiont without stressing the coral host. Mol Ecol 2021; 30:6585-6595. [PMID: 34551161 DOI: 10.1111/mec.16190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
As sea surface temperatures increase, many coral species that used to harbour symbionts of the genus Cladocopium have become colonized with the thermally tolerant genus, Durusdinium. Here, we asked how gene expression in the symbionts of one genus changes depending on the abundance of another symbiont genus within the same coral host, and what effect this interaction has on the host. Symbiont gene expression was overwhelmingly driven by whether the genus was the minority or the majority within the host, which affected 79% (Durusdinium) and 96% (Cladocopium) of all genes. Particularly strong effects in both genera were observed for photosynthesis components (upregulated in the minority state) and proteins putatively associated with cell motility (upregulated in the majority state). Importantly, there was no distinct gene expression signature associated with the mixed symbiosis state when both genera were represented in comparable proportions within the host, which could lead to more intense competition. The mixed symbiosis was also not associated with elevated host stress: in fact, after heat treatment, stress signatures were the lowest in mixed-symbiosis corals compared to both Cladocopium- and Durusdinium-dominated corals. In conclusion, during shuffling between Cladocopium and Durusdinium both symbiont genera go through extensive and largely reciprocal physiological transitions, but there is no evidence of intensifying antagonistic interactions that are detrimental to the host. Unless the mixed-symbiosis corals in this study are not representative of the typical transition between Cladocopium and Durusdinium, the process of shuffling from one symbiont genus to another appears to be cost-free for the coral host, and even appears to be associated with lower stress susceptibility. This raises optimism for the future corals, which will probably have to rely on symbiont shuffling more and more to withstand environmental challenges.
Collapse
Affiliation(s)
- Evelyn Abbott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
24
|
Baillard V, Delignette-Muller ML, Sulmon C, Bittebiere AK, Mony C, Couée I, Gouesbet G, Devin S, Billoir E. How does interspecific competition modify the response of grass plants against herbicide treatment? A hierarchical concentration-response approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146108. [PMID: 33714095 DOI: 10.1016/j.scitotenv.2021.146108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Ecological interactions are rarely taken into account in environmental risk assessment. The objective of this work was to assess how interspecific competition affects the way plant species react to herbicides and more specifically how it modifies the concentration-response curves that can be built using ecotoxicological bioassays. To do this, we relied on the results of ecotoxicological bioassays on six herbaceous species exposed to isoproturon under two conditions: in presence and in absence of a competitor. At the end of the experiments, eleven endpoints were measured. We modelled these data using a hierarchical modelling framework designed to assess the effects of competition on each of the four parameters of the concentration response curves (e.g. the level of response at the control or the concentration at the inflection point of the curve) simultaneously for the six species. The modelled effects could be of three types, 1) competition had no effect on the parameter, 2) competition had the same effect on the parameter for all species and 3) competition had a different effect on the parameter for each species. Our main hypothesis was that different species would react differently to competition. Results showed that about a half of the estimated parameters showed a modification under competition pressure among which only a fourth showed a species-specific effect, the three other fourth showing the same effect between the different species. Our initial hypothesis was thus not supported as species tended to react in the same way to competition. The competition effect on plants was mainly negative, thus showing that they were more affected by isoproturon under competition pressure. This study therefore establishes how competition modifies plant responses to chemical stress and how this interaction varies from one species to the other.
Collapse
Affiliation(s)
| | - Marie Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Anne-Kristel Bittebiere
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard du 11 novembre 1918, Villeurbanne Cedex 69622, France
| | - Cendrine Mony
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Ivan Couée
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Gwenola Gouesbet
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| |
Collapse
|
25
|
Zeng R, Chen T, Wang X, Cao J, Li X, Xu X, Chen L, Xia Q, Dong Y, Huang L, Wang L, Zhang J, Zhang L. Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:601771. [PMID: 34276712 PMCID: PMC8283264 DOI: 10.3389/fpls.2021.601771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Waterlogging has negative effects on crop yield. Physiological and transcriptome data of two peanut cultivars [Zhongkaihua 1 (ZKH 1) and Huayu 39 (HY 39)] were studied under normal water supply and waterlogging stress for 5 or 10 days at the flowering stage. The results showed that the main stem height, the number of lateral branches, lateral branch length, and the stem diameter increased under waterlogging stress, followed by an increase in dry matter accumulation, which was correlated with the increase in the soil and plant analysis development (SPAD) and net photosynthetic rate (Pn) and the upregulation of genes related to porphyrin and chlorophyll metabolism and photosynthesis. However, the imbalance of the source-sink relationship under waterlogging was the main cause of yield loss, and waterlogging caused an increase in the sucrose and soluble sugar contents and a decrease in the starch content; it also decreased the activities of sucrose synthetase (SS) and sucrose phosphate synthetase (SPS), which may be due to the changes in the expression of genes related to starch and sucrose metabolism. However, the imbalance of the source-sink relationship led to the accumulation of photosynthate in the stems and leaves, which resulted in the decrease of the ratio of pod dry weight to total dry weight (PDW/TDW) and yield. Compared with ZKH 1, the PDW of HY 39 decreased more probably because more photosynthate accumulated in the stem and leaves of HY 39 and could not be effectively transported to the pod.
Collapse
Affiliation(s)
- Ruier Zeng
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinyue Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xi Li
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lei Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qing Xia
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yonglong Dong
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Luping Huang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Leidi Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
| | - Jialei Zhang
- Bio-Tech Research Center, Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Xiong F, Nie X, Yang L, Wang L, Li J, Zhou G. Non-target metabolomics revealed the differences between Rh. tanguticum plants growing under canopy and open habitats. BMC PLANT BIOLOGY 2021; 21:119. [PMID: 33639841 PMCID: PMC7913229 DOI: 10.1186/s12870-021-02897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/21/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rheum tanguticum (Rh. tanguticum) is an important traditional Chinese medicine plant, "Dahuang", which contains productive metabolites and occupies wide habitats on the Qinghai-Tibet plateau. Plants occupying wide habitats usually vary in phenotypes such as in morphology and metabolism, thereby developing into different ecotypes. Under canopy and open habitats are a pair of dissimilar habitats which possess Rh. tanguticum plants. However, few studies have focused on the effect of habitats on Rh. tanguticum growth, particularly combining morphological and metabolic changes. This study focused on Rh. tanguticum plants growing in under canopy and open habitats where morphology and metabolism changes were quantified using non-target metabolism methods. RESULTS The obtained results indicated that the two dissimilar habitats led to Rh. tanguticum developing into two distinct ecotypes where the morphology and metabolism were simultaneously changed. Under canopy habitats bred morphologically smaller Rh. tanguticum plants which had a higher level of metabolites (22 out of 31) which included five flavonoids, four isoflavonoids, and three anthracenes. On the other hand, the open habitats produced morphologically larger Rh. tanguticum plants having a higher level of metabolites (9 out of 31) including four flavonoids. 6 of the 31 metabolites were predicted to have effect targets, include 4 represent for under canopy habitats and 2 for open habitats. Totally, 208 targets were connected, among which 42 were communal targets for both under canopy and open habitats represent compounds, and 100 and 66 were unique targets for under canopy superior compounds and open habitats superior compounds, respectively. In addition, aloe-emodin, emodin, chrysophanol, physcion, sennoside A and sennoside B were all more accumulated in under canopy habitats, and among which aloe-emodin, emodin, chrysophanol and physcion were significantly higher in under canopy habitats. CONCLUSIONS This study determined that Rh. tanguticum growing in under canopy and in open habitats developed into two distinct ecotypes with morphological and metabolic differences. Results of network pharmacology study has indicated that "Dahuang" coming from different habitats, such as under canopy and open habitats, are different in effect targets and thus may have different medicinal use. According to target metabolomics, under canopy habitats may grow better "Dahuang".
Collapse
Affiliation(s)
- Feng Xiong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
- College of Resources and Environment, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiuqing Nie
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Nature Protected Area Chinese Academy of Forestry, Beijing, 100091, China
| | - Lucun Yang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Lingling Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
- College of Resources and Environment, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jingjing Li
- College of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guoying Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China.
| |
Collapse
|
27
|
Hussain S, Shuxian L, Mumtaz M, Shafiq I, Iqbal N, Brestic M, Shoaib M, Sisi Q, Li W, Mei X, Bing C, Zivcak M, Rastogi A, Skalicky M, Hejnak V, Weiguo L, Wenyu Y. Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123256. [PMID: 32629356 DOI: 10.1016/j.jhazmat.2020.123256] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
In order to improve soybean's resistance to lodging, silicon (Si) solutions at concentrations of 0,100, 200,300 mg kg-1 were applied during the seedling stage. The Si accumulation in different parts of the plants, the photosynthetic parameters of leaves and chlorophyll content, the stem bending resistance, the expression of genes of lignin biosynthesis and associated enzyme activity and sap flow rates were measured at early and late growth stages. The potential mechanisms for how Si improve growth and shade tolerance, enhances lodging resistance and improves photosynthesis were analyzed to provide a theoretical basis for the use of Si amendments in agriculture. After application of Si at 200 mg kg-1, the net photosynthetic rate of soybeans increased by 46.4 % in the light and 33.3 % under shade. The application of Si increased chlorophyll content, and fresh weight of leaves, reduced leaf area and enhanced photosynthesis by increasing stomatal conductance. The activity of peroxidase (POD), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase (PAL) increased during pre-and post-growth periods, whereas Si also increased lignin accumulation and inhibited lodging. We concluded that Si affects the composition of plant cell walls components, mostly by altering linkages of non-cellulosic polymers and lignin. The modifications of the cell wall network through Si application could be a useful strategy to reduce shading stress in intercropping.
Collapse
Affiliation(s)
- Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China.
| | - Li Shuxian
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Maryam Mumtaz
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China
| | - Iram Shafiq
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Nasir Iqbal
- School of Agriculture, Food & Wine, The University of Adelaide, PMB1, Glen Osmond, Adelaide 5064, Australia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, 94976 Nitra, Slovakia; Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Shoaib
- College of Resources, Sichuan Agricultural University, PR China
| | - Qin Sisi
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Wang Li
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Xu Mei
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Chen Bing
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Liu Weiguo
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China.
| | - Yang Wenyu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, PR China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
28
|
Omagamre EW, Ojo F, Zebelo SA, Pitula JS. Influence of Perfluorobutanoic Acid (PFBA) on the Developmental Cycle and Damage Potential of the Beet Armyworm Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:500-507. [PMID: 33184688 DOI: 10.1007/s00244-020-00780-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Perfluorobutanoic acid (PFBA), one of the short-chain replacement perfluoroalkyl substances, has been shown to accumulate in plants. The potential of PFBA to modulate the developmental cycle of the beet armyworm, Spodoptera exigua, a polyphagous pest, was investigated. Second-instar larvae were fed with PFBA-spiked artificial diets and leaves from soybean plants grown with PFBA-spiked irrigation water. Spiked PFBA concentrations were 200 μg/kg for the artificial diet, whereas 405 to 15,190 ng/kg accumulated in the soybean leaves. The larvae fed with the PFBA-spiked diet showed a significant increase in weight gain compared with the controls over a 7-day exposure period. A similar weight gain trend was observed with larvae fed with the PFBA-containing soybean leaves, with the dose-response data fitting into a Brain-Cousens hormesis model with a 57% stimulation over controls. The artificial diet treatments showed 66.7% metamorphosed larva to pupa at 9 days after exposure (dpe) compared with 33.3% of the controls. The adult emergence at 16-dpe followed a similar trend with 57.7% and 33.3%, respectively, for the exposed and control groups. The duration of transition from larvae to adults was more symmetrical and 0.5 day faster for the exposed groups over controls. The beet armyworm caused more damage on leaves from the PFBA exposed plants in a nonmonotonic dose-response manner. The results suggest PFBA may have a stimulatory impact on some hormonal signaling pathways at low doses.
Collapse
Affiliation(s)
- Eguono W Omagamre
- Department of Natural Sciences, University of Maryland Eastern Shore, 11868 College Backbone Rd, Princess Anne, MD, USA
| | - Feyisanmi Ojo
- Department of Agricultural and Food Sciences, University of Maryland Eastern Shore, 11868 College Backbone Rd, Princess Anne, MD, USA
| | - Simon A Zebelo
- Department of Natural Sciences, University of Maryland Eastern Shore, 11868 College Backbone Rd, Princess Anne, MD, USA.
- Department of Agricultural and Food Sciences, University of Maryland Eastern Shore, 11868 College Backbone Rd, Princess Anne, MD, USA.
| | - Joseph S Pitula
- Department of Natural Sciences, University of Maryland Eastern Shore, 11868 College Backbone Rd, Princess Anne, MD, USA
| |
Collapse
|
29
|
Matthaeus WJ, Schmidt J, White JD, Zechmann B. Novel perspectives on stomatal impressions: Rapid and non-invasive surface characterization of plant leaves by scanning electron microscopy. PLoS One 2020; 15:e0238589. [PMID: 32881951 PMCID: PMC7470294 DOI: 10.1371/journal.pone.0238589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
Scanning electron microscopy (SEM) is widely used to investigate the surface morphology, and physiological state of plant leaves. Conventionally used methods for sample preparation are invasive, irreversible, require skill and expensive equipment, and are time and labor consuming. This study demonstrates a method to obtain in vivo surface information of plant leaves by imaging replicas with SEM that is rapid and non-invasive. Dental putty was applied to the leaves for 5 minutes and then removed. Replicas were then imaged with SEM and compared to fresh leaves, and leaves that were processed conventionally by chemical fixation, dehydration and critical point drying. The surface structure of leaves was well preserved on the replicas. The outline of epidermal as well as guard cells could be clearly distinguished enabling determination of stomatal density. Comparison of the dimensions of guard cells revealed that replicas did not differ from fresh leaves, while conventional sample preparation induced strong shrinkage (-40% in length and -38% in width) of the cells when compared to guard cells on fresh leaves. Tilting the replicas enabled clear measurement of stomatal aperture dimensions. Summing up, the major advantages of this method are that it is inexpensive, non-toxic, simple to apply, can be performed in the field, and that results on stomatal density and in vivo stomatal dimensions in 3D can be obtained in a few minutes.
Collapse
Affiliation(s)
| | - Jonathan Schmidt
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Joseph D. White
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
30
|
Chen G, Chen H, Shi K, Raza MA, Bawa G, Sun X, Pu T, Yong T, Liu W, Liu J, Du J, Yang F, Yang W, Wang X. Heterogeneous Light Conditions Reduce the Assimilate Translocation Towards Maize Ears. PLANTS 2020; 9:plants9080987. [PMID: 32759776 PMCID: PMC7465644 DOI: 10.3390/plants9080987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
The border row crop in strip intercropped maize is often exposed to heterogeneous light conditions, resulting in increased photosynthesis and yield decreased. Previous studies have focused on photosynthetic productivity, whereas carbon allocation could also be one of the major causes of decreased yield. However, carbon distribution remains unclear in partially shaded conditions. In the present study, we applied heterogeneous light conditions (T), and one side of plants was shaded (T-30%), keeping the other side fully exposed to light (T-100%), as compared to control plants that were exposed entirely to full-light (CK). Dry weight, carbon assimilation, 13C abundance, and transport tissue structure were analyzed to clarify the carbon distribution in partial shading of plants. T caused a marked decline in dry weight and harvest index (HI), whereas dry weight in unshaded and shaded leaves did not differ. Net photosynthesis rate (Pn), the activity of sucrose phosphate synthase enzymes (SPS), and sucrose concentration increased in unshaded leaves. Appropriately, 5.7% of the 13C from unshaded leaves was transferred to shaded leaves. Furthermore, plasmodesma density in the unshaded (T-100%) and shaded (T-30%) leaves in T was not significantly different but was lower than that of CK. Similarly, the vascular bundle total area of T was decreased. 13C transfer from unshaded leaves to ear in T was decreased by 18.0% compared with that in CK. Moreover, 13C and sucrose concentration of stem in T were higher than those in CK. Our results suggested that, under heterogeneous light, shaded leaves as a sink imported the carbohydrates from the unshaded leaves. Ear and shaded leaf competed for carbohydrates, and were not conducive to tissue structure of sucrose transport, resulting in a decrease in the carbon proportion in the ear, harvest index, and ear weight.
Collapse
Affiliation(s)
- Guopeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Hong Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Kai Shi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - George Bawa
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.C.); (H.C.); (K.S.); (M.A.R.); (G.B.); (X.S.); (T.P.); (T.Y.); (W.L.); (J.L.); (J.D.); (F.Y.); (W.Y.)
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu 611130, China
- Correspondence: ; Tel.: +86-028-8629-0906
| |
Collapse
|
31
|
Lv Y, Li Y, Liu X, Xu K. Photochemistry and proteomics of ginger (Zingiber officinale Roscoe) under drought and shading. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:188-196. [PMID: 32224390 DOI: 10.1016/j.plaphy.2020.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 05/20/2023]
Abstract
Drought has become an increasingly serious ecological problem that limits crop production. However, little is known about the response of ginger (Zingiber officinale Roscoe) to drought and shading, especially with respect to photosynthetic electron transport. Here, differential proteomics was used to study the response of ginger to four experimental treatments: control, drought, 50% shading, and the combination of 50% shading and drought. Proteomic analysis suggested that ginger increased cyclic electron flow under drought stress by enhancing the expression of proteins related to photosystem I and cytochrome b6f. Shading significantly increased the expression of proteins related to the light harvesting complex, even under drought stress. In addition, shading increased the expression of proteins related to the oxygen evolution complex, plastocyanin, and ferredoxin-NADP+ reductase (FNR), thereby enhancing the efficiency of photosynthetic electron utilization. The shading and drought combination treatment appeared to enhance ginger's drought tolerance by reducing the expression of FNR and enhancing cyclic electron flow. Photosynthetic and fluorescence parameters showed that drought stress caused non-stomatal limitation of photosynthesis in ginger leaves. Drought stress also significantly reduced the quantum efficiency of photosystem II (Fv/Fm), the non-cyclic electron transfer efficiency of photosystem II (ϕPSII), and photochemical quenching (qP), while simultaneously increasing nonphotochemical quenching (NPQ). The addition of shading improved photosynthetic efficiency under drought. These results provide important baseline information on the photosynthetic mechanisms by which ginger responds to drought and shading. In addition, they provide a theoretical basis for the study of shade cultivation during the arid season.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
32
|
Hussain S, Pang T, Iqbal N, Shafiq I, Skalicky M, Brestic M, Safdar ME, Mumtaz M, Ahmad A, Asghar MA, Raza A, Allakhverdiev SI, Wang Y, Wang XC, Yang F, Yong T, Liu W, Yang W. Acclimation strategy and plasticity of different soybean genotypes in intercropping. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:592-610. [PMID: 32375994 DOI: 10.1071/fp19161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/18/2019] [Indexed: 05/12/2023]
Abstract
In response to shading, plant leaves acclimate through a range of morphological, physiological and biochemical changes. Plants produce a myriad of structurally and functionally diverse metabolites that play many important roles in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. To develop a clearer understanding of the effects of shade on soybeans at different growth stages, a comprehensive, three-year, stage-wise study was conducted. Leaf area, leaf thickness, stem diameter, chlorophyll contents, photosynthetic characteristics and other morphological and physiological features were measured along with biochemical assays for antioxidants such as superoxide dismutase, peroxidase and caralase and yield attributes of different soybean genotypes (Guixia 2, Nandou12, Nandong Kang-22, E61 and C103) under shading nets with 50% light transmittance. It was observed that early shading (VER1 and VER2) significantly decreased main stem length and main stem length/stem diameter. Later shading (R1R8 and R2R8) had significant effects on morphological characters such as branch number and pod height. In Nandou 12, the protein contents in plants shaded at R1R8, R2R8 and R5R8 were 9.20, 8.98 and 6.23% higher than in plants grown under normal light levels (CK), respectively, and the crude fat content was 9.31, 10.74 and 4.28% lower. The influence of shading in the later period on anatomy was greater than that in the earlier period. Shading reduced the light saturation point (LSP), the light compensation point (LCP) and the maximum photosynthetic rate (Pnmax), and increased the apparent quantum yield (AQ). Shading also increased the antioxidant enzyme activity in the plants, and this increase was greater with early shading than late. The variability in the chlorophyll (a + b) content and the chlorophyll a/b ratio in R2 stage plants was less than in R5 stage (VER5) plants. Similarly, the activity of antioxidant enzymes in R2 after returning the plants to normal light levels (VER2) was lower than in R5 after relighting (VER5). Compared with later shading, the early shading had a greater effect on the photosynthetic and related characteristics. The longer the shading time, the greater the adverse effects and the less able the plants' were to recover. The data collected in this study contribute to an understanding of the physiological mechanisms underlying the early and late growth stage acclimation strategies in different soybean genotypes subjected to shade stress.
Collapse
Affiliation(s)
- Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Ting Pang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Nasir Iqbal
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Iram Shafiq
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; and Department of Plant Physiology, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | | | - Maryam Mumtaz
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China
| | - Aftab Ahmad
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Muhammad A Asghar
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Ali Raza
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; and Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; and Department of Plant Physiology, Faculty of Biology, MV Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia; and Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku 1073, Azerbaijan; and College of Science, King Saud University, Riyadh, Saudi Arabia; and Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region 141700, Russia
| | - Yi Wang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Xiao C Wang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China; and Corresponding authors. ;
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, PR China; and Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, PR China; and Corresponding authors. ;
| |
Collapse
|
33
|
Hussain S, Liu T, Iqbal N, Brestic M, Pang T, Mumtaz M, Shafiq I, Li S, Wang L, Gao Y, Khan A, Ahmad I, Allakhverdiev SI, Liu W, Yang W. Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochem Photobiol Sci 2020; 19:462-472. [PMID: 32154819 DOI: 10.1039/c9pp00369j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2023]
Abstract
Soybean (Glycine max L.) has been extensively cultivated in maize-soybean relay intercropping systems in southwest China. However, during the early co-growth period, soybean seedlings suffer from severe shading by maize resulting in lodging and significant yield reduction. The purpose of the present research was to investigate the reasons behind severe lodging and yield loss. Therefore, four different soybean genotypes (B3, B15, B23, and B24) having different agronomic characteristics were cultivated in intercropping and monocropping planting patterns. The results showed that under different planting patterns, the stem resistance varied among genotypes (P < 0.01). The lodging resistance index of B3, B15, B23, and B24 genotypes was 70.9%, 60.5%, 65.2%, and 57.4%, respectively, under intercropping, among which the B24 genotype was less affected by the shade environment as there was little decrease in the lodging resistance index of this genotype under intercropping. The lignin content of B23 and B24 was significantly higher than that of B3 and B15 under both planting patterns. Under intercropping, the hemicellulose content of B23 and B24 stems was significantly higher than that of B3 and B15. Compared to the monocropping, the content of mannose in the structural carbohydrate of soybean stems was decreased in all genotypes except B23, but the difference was not significant. The content of xylose in the structural carbohydrate of soybean stems was significantly higher than that in B3 and B15. Mannose content showed no significant difference among genotypes. The arabinose content of B24 was significantly higher than that of B3, B15, and B23. The effective pod number, seed number per plant, seed weight per plant and yield of soybean plants were significantly decreased under intercropping. Conclusively, manipulation of structural and nonstructural carbohydrate rich soybean genotypes in intercropping systems could alleviate the yield loss due to lodging.
Collapse
Affiliation(s)
- Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Ting Liu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Nasir Iqbal
- School of Agriculture, Food & Wine, The University of Adelaide, PMB1, Glen Osmond, Adelaide, 5064, Australia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Ting Pang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Maryam Mumtaz
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Iram Shafiq
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Shuxian Li
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Li Wang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Yang Gao
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Aaqil Khan
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Irshan Ahmad
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya St. 2, Pushchino, Moscow Region, 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
- Zoology Department, College of Science, King Saud University, Saudi Arabia
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku, 1073, Azerbaijan
- Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China.
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China.
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Chen F, Yang Y, Luo X, Zhou W, Dai Y, Zheng C, Liu W, Yang W, Shu K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC PLANT BIOLOGY 2019; 19:269. [PMID: 31226949 PMCID: PMC6588917 DOI: 10.1186/s12870-019-1861-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/31/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The Growth-regulating factor (GRF) family encodes plant-specific transcription factors which contain two conserved domains, QLQ and WRC. Members of this family play vital roles in plant development and stress response processes. Although GRFs have been identified in various plant species, we still know little about the GRF family in soybean (Glycine max). RESULTS In the present study, 22 GmGRFs distributed on 14 chromosomes and one scaffold were identified by searching soybean genome database and were clustered into five subgroups according to their phylogenetic relationships. GmGRFs belonging to the same subgroup shared a similar motif composition and gene structure. Synteny analysis revealed that large-scale duplications played key roles in the expansion of the GmGRF family. Tissue-specific expression data showed that GmGRFs were strongly expressed in growing tissues, including the shoot apical meristems, developing seeds and flowers, indicating that GmGRFs play critical roles in plant growth and development. On the basis of expression analysis of GmGRFs under shade conditions, we found that all GmGRFs responded to shade stress. Most GmGRFs were down-regulated in soybean leaves after shade treatment. CONCLUSIONS Taken together, this research systematically analyzed the characterization of the GmGRF family and its primary roles in soybean development and shade stress response. Further studies of the function of the GmGRFs in the growth, development and stress tolerance of soybean, especially under shade stress, will be valuable.
Collapse
Affiliation(s)
- Feng Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yingzeng Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaofeng Luo
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenguan Zhou
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yujia Dai
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chuan Zheng
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wenyu Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kai Shu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, 710129 China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
35
|
Xin X, Chen C, Hu YY, Feng Q. Protective effect of genistein on nonalcoholic fatty liver disease (NAFLD). Biomed Pharmacother 2019; 117:109047. [PMID: 31176163 DOI: 10.1016/j.biopha.2019.109047] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
NAFLD is a vital health problem worldwide; however, no effective treatment is currently available for NAFLD. Intensive studies have indicated the efficacy of genistein (GE), a bioactive isoflavone extracted from soy, in treating NAFLD. In addition to its oestrogen-like effects, GE is known to have multiple molecular effects, for instance, lipid and glucose metabolism-promoting effects and activities against lipid peroxidation, inflammation, fibrosis, and NAFLD-related tumours. Here, this review summarizes the potential role of GE in the treatment and prevention of NAFLD and some of the currently known targets and signalling pathways of GE in NAFLD.
Collapse
Affiliation(s)
- Xin Xin
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Chen
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Yang Hu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
| | - Qin Feng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|