1
|
Bulanov AN, Andreeva EA, Tsvetkova NV, Zykin PA. Regulation of Flavonoid Biosynthesis by the MYB-bHLH-WDR (MBW) Complex in Plants and Its Specific Features in Cereals. Int J Mol Sci 2025; 26:734. [PMID: 39859449 PMCID: PMC11765516 DOI: 10.3390/ijms26020734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals. Published data revealed the following perspectives for further research: (1) In cereals, a large number of paralogs of MYC and MYB transcription factors are present, and their diversification has led to spatial and biochemical specialization, providing an opportunity to fine-tune the distribution and composition of flavonoid compounds; (2) Regulatory systems formed by MBW proteins in cereals possess distinctive features that are not yet fully understood and require further investigation; (3) Non-classical MB-EMSY-like complexes, WDR-independent MB complexes, and solely acting R2R3-MYB transcription factors are of particular interest for studying unique regulatory mechanisms in plants. More comprehensive understanding of flavonoid biosynthesis regulation will allow us to develop cereal varieties with the required flavonoid content and spatial distribution.
Collapse
Affiliation(s)
- Andrey N. Bulanov
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Elena A. Andreeva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
- Laboratory of Plant Genetics and Biotechnology, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia V. Tsvetkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (A.N.B.); (N.V.T.)
| | - Pavel A. Zykin
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia;
| |
Collapse
|
2
|
Egorova AA, Zykova TE, Hertig CW, Hoffie I, Morozov SV, Chernyak EI, Rogachev AD, Korotkova AM, Vikhorev AV, Vasiliev GV, Shoeva OY, Kumlehn J, Gerasimova SV, Khlestkina EK. Accumulation of Anthocyanin in the Aleurone of Barley Grains by Targeted Restoration of the MYC2 Gene. Int J Mol Sci 2024; 25:12705. [PMID: 39684416 DOI: 10.3390/ijms252312705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented barley, a single nucleotide insertion in this gene causes a frameshift mutation with a premature stop codon. It was hypothesized that restoring the MYC2 reading frame could activate anthocyanin accumulation in the aleurone. Using a targeted mutagenesis approach in the present study, the reading frame of MYC2 was restored in the non-pigmented cultivar Golden Promise. Genetic constructs harboring cas9 and gRNA expression units were developed, pre-validated in protoplasts, and then functional MYC2 alleles were generated at the plant level via Agrobacterium-mediated transformation. Anthocyanin accumulation in the aleurone layer of grains from these mutants was confirmed through microscopy and chemical analysis. The expression of anthocyanin biosynthesis genes was analyzed, revealing that the restoration of MYC2 led to increased transcript levels of F3H and ANS genes. These results confirm the critical role of the MYC2 transcription factor in the blue aleurone trait and provide a biotechnological solution for enriching barley grain with anthocyanins.
Collapse
Affiliation(s)
- Anastasiya A Egorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Tatyana E Zykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sergey V Morozov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna M Korotkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Alexander V Vikhorev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olesya Y Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sophia V Gerasimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Elena K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| |
Collapse
|
3
|
Wang Y, Chen L, Yao Y, Chen L, Cui Y, An L, Li X, Bai Y, Yao X, Wu K. Investigating the regulatory role of HvANT2 in anthocyanin biosynthesis through protein-motif interaction in Qingke. PeerJ 2024; 12:e17736. [PMID: 39006012 PMCID: PMC11246018 DOI: 10.7717/peerj.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Yan Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lupeng Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| |
Collapse
|
4
|
Shoeva OY, Mukhanova MA, Zakhrabekova S, Hansson M. Ant13 Encodes Regulatory Factor WD40 Controlling Anthocyanin and Proanthocyanidin Synthesis in Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6967-6977. [PMID: 37104658 DOI: 10.1021/acs.jafc.2c09051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flavonoid compounds like anthocyanins and proanthocyanidins are important plant secondary metabolites having wide biological activities for humans. In this study, the molecular function of the Ant13 locus, which is one of the key loci governing flavonoid synthesis in barley, was determined. It was found that Ant13 encodes a WD40-type regulatory protein, which is required for transcriptional activation of a set of structural genes encoding enzymes of flavonoid biosynthesis at the leaf sheath base (colored by anthocyanins) and in grains (which accumulate proanthocyanidins). Besides its role in flavonoid biosynthesis, pleiotropic effects of this gene in plant growth were revealed. The mutants deficient in the Ant13 locus showed similar germination rates but a decreased rate of root and shoot growth and yield-related parameters in comparison to the parental cultivars. This is the seventh Ant locus (among 30) for which molecular functions in flavonoid biosynthesis regulation have been determined.
Collapse
Affiliation(s)
- Olesya Yu Shoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Kurchatov Center for Genome Research of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Marina A Mukhanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva ave. 10, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | | | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden
| |
Collapse
|
5
|
Zhang G, Liu D, Wang H. Quantitative proteomics analysis reveals the anthocyanin biosynthetic mechanism in barley. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Cai T, Ge-Zhang S, Song M. Anthocyanins in metabolites of purple corn. FRONTIERS IN PLANT SCIENCE 2023; 14:1154535. [PMID: 37089635 PMCID: PMC10118017 DOI: 10.3389/fpls.2023.1154535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Purple corn (Zea mays L.) is a special variety of corn, rich in a large amount of anthocyanins and other functional phytochemicals, and has always ranked high in the economic benefits of the corn industry. However, most studies on the stability of agronomic traits and the interaction between genotype and environment in cereal crops focus on yield. In order to further study the accumulation and stability of special anthocyanins in the growth process of purple corn, this review starts with the elucidation of anthocyanins in purple corn, the biosynthesis process and the gene regulation mechanism behind them, points out the influence of anthocyanin metabolism on anthocyanin metabolism, and introduces the influence of environmental factors on anthocyanin accumulation in detail, so as to promote the multi-field production of purple corn, encourage the development of color corn industry and provide new opportunities for corn breeders and growers.
Collapse
Affiliation(s)
- Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin, China
| | | | - Mingbo Song
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Meng G, Rasmussen SK, Christensen CSL, Fan W, Torp AM. Molecular breeding of barley for quality traits and resilience to climate change. Front Genet 2023; 13:1039996. [PMID: 36685930 PMCID: PMC9851277 DOI: 10.3389/fgene.2022.1039996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Barley grains are a rich source of compounds, such as resistant starch, beta-glucans and anthocyanins, that can be explored in order to develop various products to support human health, while lignocellulose in straw can be optimised for feed in husbandry, bioconversion into bioethanol or as a starting material for new compounds. Existing natural variations of these compounds can be used to breed improved cultivars or integrated with a large number of mutant lines. The technical demands can be in opposition depending on barley's end use as feed or food or as a source of biofuel. For example beta-glucans are beneficial in human diets but can lead to issues in brewing and poultry feed. Barley breeders have taken action to integrate new technologies, such as induced mutations, transgenics, marker-assisted selection, genomic selection, site-directed mutagenesis and lastly machine learning, in order to improve quality traits. Although only a limited number of cultivars with new quality traits have so far reached the market, research has provided valuable knowledge and inspiration for future design and a combination of methodologies to achieve the desired traits. The changes in climate is expected to affect the quality of the harvested grain and it is already a challenge to mitigate the unpredictable seasonal and annual variations in temperature and precipitation under elevated [CO2] by breeding. This paper presents the mutants and encoded proteins, with a particular focus on anthocyanins and lignocellulose, that have been identified and characterised in detail and can provide inspiration for continued breeding to achieve desired grain and straw qualities.
Collapse
Affiliation(s)
- Geng Meng
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anna Maria Torp
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
8
|
Shoeva OY, Kukoeva TV. Relationship between the anthocyanin content values in the leaf sheath base of barley cultivars and in the grain of the hybrids derived from them. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2022. [DOI: 10.30901/2227-8834-2022-4-152-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. The development of barley cultivars accumulating anthocyanins in grain is an important task for breeding, which is based on the Ant1 and Ant2 genes that control synthesis of these compounds. To optimize the breeding strategy and selection of the initial material, quantitative assay of anthocyanin content in the leaf sheath base of barley cultivars was carried out and the relationship between this parameter for some of the barley cultivars and anthocyanin content in grain of the hybrids derived from them was evaluated.Materials and methods. The anthocyanin content in the leaf sheath base was studied in 32 barley cultivars in the tillering stage and in mature grains of 11 purple-grain hybrids selected from the hybrid populations using DNA-markers.Results and discussion. It was shown that there were quantitative differences in the anthocyanin content in the leaf sheath base among barley cultivars, which varied from 1 to 191 mg/kg. A cluster analysis helped to identify three groups of cultivars: with low, medium and high anthocyanin content. The hybrids from crossing cultivars differing in their anthocyanin content in the leaf sheath base with line P18, the donor of the dominant allele of the Ant2 gene, showed variation of the anthocyanin content in grain from 22 to 71 mg/kg. The observed differences among the hybrids were determined by the genotypes of individual plants and the allelic state of Ant2. A weak correlation (rs = 0.37, p = 0.0362) was shown between the anthocyanin contents in the leaf sheath base and in the grain of the obtained hybrids.Conclusion. The results of the study would help to optimize the breeding strategy for the development of new barley cultivars with high anthocyanin content in the grain and substantiate the need to test the anthocyanin content in the grain of individual lines.
Collapse
Affiliation(s)
- O. Yu. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences;
Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - T. V. Kukoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences;
Kurchatov Genomic Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
9
|
Yao X, Yao Y, An L, Li X, Bai Y, Cui Y, Wu K. Accumulation and regulation of anthocyanins in white and purple Tibetan Hulless Barley (Hordeum vulgare L. var. nudum Hook. f.) revealed by combined de novo transcriptomics and metabolomics. BMC PLANT BIOLOGY 2022; 22:391. [PMID: 35922757 PMCID: PMC9351122 DOI: 10.1186/s12870-022-03699-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colored barley, which may have associated human health benefits, is more desirable than the standard white variety, but the metabolites and molecular mechanisms underlying seedcoat coloration remain unclear. RESULTS Here, the development of Tibetan hulless barley was monitored, and 18 biological samples at 3 seedcoat color developmental stages were analyzed by transcriptomic and metabolic assays in Nierumuzha (purple) and Kunlun10 (white). A total of 41 anthocyanin compounds and 4186 DEGs were identified. Then we constructed the proanthocyanin-anthocyanin biosynthesis pathway of Tibetan hulless barley, including 19 genes encoding structural enzymes in 12 classes (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, DFR, ANS, ANR, GT, and ACT). 11 DEGs other than ANR were significantly upregulated in Nierumuzha as compared to Kunlun10, leading to high levels of 15 anthocyanin compounds in this variety (more than 25 times greater than the contents in Kunlun10). ANR was significantly upregulated in Kunlun10 as compared to Nierumuzha, resulting in higher contents of three anthocyanins compounds (more than 5 times greater than the contents in Nierumuzha). In addition, 22 TFs, including MYBs, bHLHs, NACs, bZips, and WD40s, were significantly positively or negatively correlated with the expression patterns of the structural genes. Moreover, comparisons of homologous gene sequences between the two varieties identified 61 putative SNPs in 13 of 19 structural genes. A nonsense mutation was identified in the coding sequence of the ANS gene in Kunlun10. This mutation might encode a nonfunctional protein, further reducing anthocyanin accumulation in Kunlun10. Then we identified 3 modules were highly specific to the Nierumuzha (purple) using WGCNA. Moreover, 12 DEGs appeared both in the putative proanthocyanin-anthocyanin biosynthesis pathway and the protein co-expression network were obtained and verified. CONCLUSION Our study constructed the proanthocyanin-anthocyanin biosynthesis pathway of Tibetan hulless barley. A series of compounds, structural genes and TFs responsible for the differences between purple and white hulless barley were obtained in this pathway. Our study improves the understanding of the molecular mechanisms of anthocyanin accumulation and biosynthesis in barley seeds. It provides new targets for the genetic improvement of anthocyanin content and a framework for improving the nutritional quality of barley.
Collapse
Affiliation(s)
- Xiaohua Yao
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Youhua Yao
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Likun An
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Xin Li
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Yixiong Bai
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Yongmei Cui
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Kunlun Wu
- Qinghai University, Xining, 810016, China.
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China.
| |
Collapse
|
10
|
Glagoleva AY, Vikhorev AV, Shmakov NA, Morozov SV, Chernyak EI, Vasiliev GV, Shatskaya NV, Khlestkina EK, Shoeva OY. Features of Activity of the Phenylpropanoid Biosynthesis Pathway in Melanin-Accumulating Barley Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:923717. [PMID: 35898231 PMCID: PMC9310326 DOI: 10.3389/fpls.2022.923717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Barley (Hordeum vulgare L.) grain pigmentation is caused by two types of phenolic compounds: anthocyanins (which are flavonoids) give a blue or purple color, and melanins (which are products of enzymatic oxidation and polymerization of phenolic compounds) give a black or brown color. Genes Ant1 and Ant2 determine the synthesis of purple anthocyanins in the grain pericarp, whereas melanins are formed under the control of the Blp1 gene in hulls and pericarp tissues. Unlike anthocyanin synthesis, melanin synthesis is poorly understood. The objective of the current work was to reveal features of the phenylpropanoid biosynthesis pathway functioning in melanin-accumulating barley grains. For this purpose, comparative transcriptomic and metabolomic analyses of three barley near-isogenic lines accumulating anthocyanins, melanins, or both in the grain, were performed. A comparative analysis of mRNA libraries constructed for three stages of spike development (booting, late milk, and early dough) showed transcriptional activation of genes encoding enzymes of the general phenylpropanoid pathway in all the lines regardless of pigmentation; however, as the spike matured, unique transcriptomic patterns associated with melanin and anthocyanin synthesis stood out. Secondary activation of transcription of the genes encoding enzymes of the general phenylpropanoid pathway together with genes of monolignol synthesis was revealed in the line accumulating only melanin. This pattern differs from the one observed in the anthocyanin-accumulating lines, where - together with the genes of general phenylpropanoid and monolignol synthesis pathways - flavonoid biosynthesis genes were found to be upregulated, with earlier activation of these genes in the line accumulating both types of pigments. These transcriptomic shifts may underlie the observed differences in concentrations of phenylpropanoid metabolites analyzed in the grain at a late developmental stage by high-performance liquid chromatography. Both melanin-accumulating lines showed an increased total level of benzoic acids. By contrast, anthocyanin-accumulating lines showed higher concentrations of flavonoids and p-coumaric and ferulic acids. A possible negative effect of melanogenesis on the total flavonoid content and a positive influence on the anthocyanin content were noted in the line accumulating both types of pigments. As a conclusion, redirection of metabolic fluxes in the phenylpropanoid biosynthesis pathway occurs when melanin is synthesized.
Collapse
Affiliation(s)
- Anastasiia Y. Glagoleva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, ICG, SB RAS, Novosibirsk, Russia
| | - Alexander V. Vikhorev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay A. Shmakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, ICG, SB RAS, Novosibirsk, Russia
| | - Sergey V. Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | - Elena I. Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Novosibirsk, Russia
| | - Gennady V. Vasiliev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, ICG, SB RAS, Novosibirsk, Russia
| | - Natalia V. Shatskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, ICG, SB RAS, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, Saint Petersburg, Russia
| | - Olesya Y. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomics Center, ICG, SB RAS, Novosibirsk, Russia
| |
Collapse
|
11
|
Dwivedi SL, Mattoo AK, Garg M, Dutt S, Singh B, Ortiz R. Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.867897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malnutrition, unhealthy diets, and lifestyle changes are the major risk factors for overweight and obesity-linked chronic diseases in humans adversely impact achieving sustainable development goals. Colored grains are a source of anthocyanins, a group of flavonoids, that contribute positively to human health. This review focuses on genetic variation harnessed through breeding and biotechnology tools for developing anthocyanin-rich grain crops. Agronomic practices, genotype × environment interactions, different stresses, seed development and seed maturity are factors that impact the content and composition of anthocyanins. Significant progress has been made in characterizing genes associated with anthocyanin biosynthesis in cereal and other crops. Breeding has led to the development and release of grain anthocyanin-rich crop cultivars in Europe, America and in some countries in Asia. Notably, genetic engineering utilizing specific transcription factors and gene editing has led to the development of anthocyanin-rich genetic variants without any significant yield penalty. A variety of food products derived from colored grains or flours are now available in grocery stores and supermarkets worldwide. The public perception about anthocyanin-rich food is positive, but availability, affordability, and willingness to pay a higher price than before limit consumption. Together with other seed nutrition traits in breeding programs the inclusion of anthocyanins can ensure the development of cultivars that meet nutrition needs of humans, especially in the developing world.
Collapse
|
12
|
Glagoleva A, Kukoeva T, Mursalimov S, Khlestkina E, Shoeva O. Effects of Combining the Genes Controlling Anthocyanin and Melanin Synthesis in the Barley Grain on Pigment Accumulation and Plant Development. AGRONOMY 2022; 12:112. [PMID: 0 DOI: 10.3390/agronomy12010112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Anthocyanins and melanins are phenolic pigments of plants and accumulate in seed envelopes of the barley grain, thereby giving them a blue, purple, or black color. To explore the effects of combined accumulation of anthocyanins and melanins in the grain, a barley near-isogenic line (NIL), characterized by simultaneous accumulation in both pigments, was developed using a marker-assisted approach. The presence of both pigments in the grain pericarp was evaluated by light microscopy. Emergence of anthocyanin pigmentation proved to be temporally separated from that of melanin, and the formation of anthocyanin pigments began at an earlier stage of spike maturation. During spike maturation, a significantly higher total anthocyanin content was noted in the created NIL than in the parental anthocyanin-accumulating NIL, indicating a positive influence of the Blp1 gene on the anthocyanin content at some developmental stages. In a comparative analysis of yield components, it was found that the observed differences between the barley NILs are possibly caused by environmental factors, and the presence of pigments does not decrease plant productivity. Our results should facilitate investigation into genetic mechanisms underlying overlaps in the biosynthesis of pigments and into breeding strategies aimed at the enrichment of barley varieties with polyphenols.
Collapse
|
13
|
Lap B, Rai M, Tyagi W. Playing with colours: genetics and regulatory mechanisms for anthocyanin pathway in cereals. Biotechnol Genet Eng Rev 2021; 37:1-29. [PMID: 34470563 DOI: 10.1080/02648725.2021.1928991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cereals form the most important source of energy in our food. Currently, demand for coloured food grains is significantly increasing globally because of their antioxidant properties and enhanced nutritional value. Coloured grains of major and minor cereals are due to accumulation of secondary metabolites like carotenoids and flavonoids such as anthocyanin, proanthocyanin, phlobaphenes in pericarp, aleurone, lemma, testa or seed coat of grains. Differential accumulation of colour in grains is regulated by several regulatory proteins and enzymes involved in flavonoid and caroteniod biosynthesis. MYB and bHLH gene family members are the major regulators of these pathways. Genes for colour across various cereals have been extensively studied; however, only a few functional and allele-specific markers to be utilized directly in breeding programmes are reported so far. In this review, while briefly discussing the well studied and explored carotenoid pathway, we focus on a much more complex anthocyanin pathway that is found across cereals. The genes and their orthologs that are responsible for encoding key regulators of anthocyanin biosynthesis are discussed. This review also focuses on the genetic factors that influence colour change in different cereal crops, and the available/reported markers that can be used in breeding programs for utilizing this pathway for enhancing food and nutritional security.
Collapse
Affiliation(s)
- Bharati Lap
- School of Crop Improvement, CPGS-AS, CAU (I), Umiam, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal) College of Post-Graduate Studies, Umiam, Meghalaya, India
| | - Wricha Tyagi
- New Zealand Institute for Plant and Food Research Ltd, Umiam, India
| |
Collapse
|
14
|
Genetic Diversity for Agronomic Traits and Phytochemical Compounds in Coloured Naked Barley Lines. PLANTS 2021; 10:plants10081575. [PMID: 34451619 PMCID: PMC8398654 DOI: 10.3390/plants10081575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022]
Abstract
Interest of breeders is increasing toward the development of new barley cultivars with functional properties and adapted for food uses. A barley breeding program was initiated to develop germplasm with naked and coloured grains rich in bioactive compounds In the present study, a set of 16 F8 recombinant inbred lines (RILs) derived from the following four parental lines: 2005FG, K4-31, L94 and Priora, were evaluated in the experimental trials in Foggia (Italy) during the 2017–2019 growing seasons with the aims to assess the genetic variability for desired traits and identify superior genotypes. Lines were characterised for agronomic traits (earliness, plant height, seed yield, specific weight, 1000-seed weight) and biochemical compounds accumulation (phenolics, anthocyanins, flavonoids, carotenoids, β-glucans, proteins, antioxidant activity). A high heritability and selection response were observed for most of the biochemical compounds. The grain yield showed high significant positive genetic and phenotypic correlations (p < 0.05) with phenols and antioxidant activity. Cluster analysis grouped the genotypes into three groups. The barley RIL lines L1997, L3005, L3007 and L3009 were superior for more than four traits including seed yield and antioxidant compounds. These genotypes may serve as potential sources of nutraceuticals for healthy food and in breeding programs. In the present study, the new barley genotypes with naked and coloured grains have been selected without compromising their productivity.
Collapse
|
15
|
Zhou C, Zeng Z, Suo J, Li X, Bian H, Wang J, Zhu M, Han N. Manipulating a Single Transcription Factor, Ant1, Promotes Anthocyanin Accumulation in Barley Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5306-5317. [PMID: 33908247 DOI: 10.1021/acs.jafc.0c08147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barley has abundant anthocyanin-rich accessions, which renders it an ideal model to investigate the regulatory mechanism of anthocyanin biosynthesis. This study functionally characterized two transcription factors: Ant1 and Ant2. Sequence alignment showed that the coding sequences of Ant1 and Ant2 are conserved among 11 colored hulless barley and noncolored barley varieties. The expression profiles of Ant1 and Ant2 were divergent between species, and significantly higher expression was found in two colored Qingke accessions. The co-expression of Ant1 and Ant2 resulted in purple pigmentation in transient transformation systems via the promotion of the transcription of four structural genes. Ant1 interacted with Ant2, and overexpression of Ant1 activated the transcription of Ant2. Moreover, overexpression of Ant1 led to anthocyanin accumulation in the pericarp and aleurone layer of transgenic barley grains. Overall, our results suggest that anthocyanin-enriched barley grains can be produced by manipulating Ant1 expression.
Collapse
Affiliation(s)
- Chenlu Zhou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Zhanghui Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Jingqi Suo
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Xipu Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Junhui Wang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| |
Collapse
|
16
|
Loskutov IG, Khlestkina EK. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. PLANTS (BASEL, SWITZERLAND) 2021; 10:E86. [PMID: 33401643 PMCID: PMC7823506 DOI: 10.3390/plants10010086] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Cereal grains provide half of the calories consumed by humans. In addition, they contain important compounds beneficial for health. During the last years, a broad spectrum of new cereal grain-derived products for dietary purposes emerged on the global food market. Special breeding programs aimed at cultivars utilizable for these new products have been launched for both the main sources of staple foods (such as rice, wheat, and maize) and other cereal crops (oat, barley, sorghum, millet, etc.). The breeding paradigm has been switched from traditional grain quality indicators (for example, high breadmaking quality and protein content for common wheat or content of protein, lysine, and starch for barley and oat) to more specialized ones (high content of bioactive compounds, vitamins, dietary fibers, and oils, etc.). To enrich cereal grain with functional components while growing plants in contrast to the post-harvesting improvement of staple foods with natural and synthetic additives, the new breeding programs need a source of genes for the improvement of the content of health benefit components in grain. The current review aims to consider current trends and achievements in wheat, barley, and oat breeding for health-benefiting components. The sources of these valuable genes are plant genetic resources deposited in genebanks: landraces, rare crop species, or even wild relatives of cultivated plants. Traditional plant breeding approaches supplemented with marker-assisted selection and genetic editing, as well as high-throughput chemotyping techniques, are exploited to speed up the breeding for the desired genotуpes. Biochemical and genetic bases for the enrichment of the grain of modern cereal crop cultivars with micronutrients, oils, phenolics, and other compounds are discussed, and certain cases of contributions to special health-improving diets are summarized. Correlations between the content of certain bioactive compounds and the resistance to diseases or tolerance to certain abiotic stressors suggest that breeding programs aimed at raising the levels of health-benefiting components in cereal grain might at the same time match the task of developing cultivars adapted to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Igor G. Loskutov
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia;
| | | |
Collapse
|
17
|
Strygina KV. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Tang B, Li L, Hu Z, Chen Y, Tan T, Jia Y, Xie Q, Chen G. Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12152-12163. [PMID: 33054200 DOI: 10.1021/acs.jafc.0c02460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pepper (Capsicum annuum) is among the important horticultural crops with economic value, and more and more colorful varieties have been marketed. The purple pepper is becoming increasingly popular on the consumer market because of its anthocyanin richness. Here, two cyanidin-based anthocyanins were separated and identified from peels of purple cultivars by HPLC-LC-MS. To study the molecular mechanism of anthocyanin accumulation, the differential expression of genes related to anthocyanin biosynthesis was examined by qRT-PCR and RNA-Seq in peel from green and purple cultivars. These results show that CaANT1, CaANT2, CaAN1, and CaTTG1 are involved in anthocyanin accumulation of pepper. Further investigation suggested that CaANT1, CaANT2, CaAN1, and CaTTG1 can activate anthocyanin accumulation via forming a new MMBW transcription complex.
Collapse
Affiliation(s)
- Boyan Tang
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Ling Li
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Zongli Hu
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Yanan Chen
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Tingting Tan
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Yanhua Jia
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Qiaoli Xie
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Guoping Chen
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| |
Collapse
|
19
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
20
|
Abstract
Background The members of the Triticeae tribe are characterised by the presence of orthologous and homoeologous gene copies regulating flavonoid biosynthesis. Among transcription factors constituting a regulatory MBW complex, the greatest contribution to the regulation of flavonoid biosynthetic pathway is invested by R2R3-Myb-type TFs. Differently expressed R2R3-Myb copies activate the synthesis of various classes of flavonoid compounds in different plant tissues. The aim of this research was the identification, comparison and analysis of full-length sequences of the duplicated R2R3-Myb Mpc1 (Myb protein c1) gene copies in barley and wheat genomes. Results The Mpc1 genes were identified in homoeologous group 4 and 7 chromosomes: a total of 3 copies in barley (Hordeum vulgare L.) and 8 copies in bread wheat (Triticum aestivum L.) genomes. All Mpc1 genes have a similar two-exon structure, and almost all of them are transcriptionally active. The calculation of the divergence time revealed that first duplication between 4 and 7 chromosomes of the common ancestor of the Triticeae tribe occurred about 35–46 million years ago (MYA); the last duplication arised about 16–19 MYA before the divergence Triticum and Hordeum genera The connection between gene expression and the appearance of anthocyanin pigmentation was found for three genes from homoeologous group 4 chromosomes: TaMpc1-A2 (5AL) in wheat coleoptile, HvMpc1-H2 (4HL) in barley lemma and aleurone layer, and HvMpc1-H3 (4HL) in barley aleurone layer. TaMpc1-D4 (4DL) from the wheat genome showed a strong level of expression regardless of the colour of coleoptile or pericarp. It is assumed, that this gene regulates the biosynthesis of uncoloured flavonoids in analysed tissues. Conclusions The regulatory R2R3-Myb genes involved in anthocyanin synthesis were identified and characterised in Triticeae tribe species. Genes designated HvMpc1-H2 and HvMpc1-H3 appeared to be the main factors underlying intraspecific variation of H. vulgare by lemma and aleurone colour. TaMpc1-A2 is the co-regulator of the Mpc1–1 genes in bread wheat genome controlling anthocyanin synthesis in coleoptile. Electronic supplementary material The online version of this article (10.1186/s12862-019-1378-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ksenia V Strygina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090, Russia.
| | - Elena K Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjeva ave. 10, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str., 1, Novosibirsk, 630090, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya Str., 42-44, St. Petersburg, 190000, Russia
| |
Collapse
|
21
|
Orlov YL, Salina EA, Eslami G, Kochetov AV. Plant biology research at BGRS-2018. BMC PLANT BIOLOGY 2019; 19:56. [PMID: 30813889 PMCID: PMC6393955 DOI: 10.1186/s12870-019-1634-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Yuriy L. Orlov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, Department of Parasitology and Mycology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alex V. Kochetov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|