1
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
2
|
Xiang X, Yang H, Yuan X, Dong X, Mai S, Zhang Q, Chen L, Cao D, Chen H, Guo W, Li L. CRISPR/Cas9-mediated editing of GmDWF1 brassinosteroid biosynthetic gene induces dwarfism in soybean. PLANT CELL REPORTS 2024; 43:116. [PMID: 38622229 DOI: 10.1007/s00299-024-03204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE The study on the GmDWF1-deficient mutant dwf1 showed that GmDWF1 plays a crucial role in determining soybean plant height and yield by influencing the biosynthesis of brassinosteroids. Soybean has not adopted the Green Revolution, such as reduced height for increased planting density, which have proven beneficial for cereal crops. Our research identified the soybean genes GmDWF1a and GmDWF1b, homologous to Arabidopsis AtDWF1, and found that they are widely expressed, especially in leaves, and linked to the cellular transport system, predominantly within the endoplasmic reticulum and intracellular vesicles. These genes are essential for the synthesis of brassinosteroids (BR). Single mutants of GmDWF1a and GmDWF1b, as well as double mutants of both genes generated through CRISPR/Cas9 genome editing, exhibit a dwarf phenotype. The single-gene mutant exhibits moderate dwarfism, while the double mutant shows more pronounced dwarfism. Despite the reduced stature, all types of mutants preserve their node count. Notably, field tests have shown that the single GmDWF1a mutant produced significantly more pods than wild-type plants. Spraying exogenous brassinolide (BL) can compensate for the loss in plant height induced by the decrease in endogenous BRs. Comparing transcriptome analyses of the GmDWF1a mutant and wild-type plants revealed a significant impact on the expression of many genes that influence soybean growth. Identifying the GmDWF1a and GmDWF1b genes could aid in the development of compact, densely planted soybean varieties, potentially boosting productivity.
Collapse
Affiliation(s)
- Xumin Xiang
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xi Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xue Dong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Sihua Mai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Qianqian Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Chen X, Hu X, Wang H, Liu J, Peng Y, He C, He M, Wang X. GmBES1-1 dampens the activity of GmNSP1/2 to mediate brassinosteroid inhibition of nodulation in soybean. PLANT COMMUNICATIONS 2023; 4:100627. [PMID: 37208896 PMCID: PMC10721450 DOI: 10.1016/j.xplc.2023.100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Soybean (Glycine max) forms root nodules to house rhizobial bacteria for biological nitrogen fixation. The development of root nodules is intricately regulated by endogenous and exogenous cues. The phytohormones brassinosteroids (BRs) have been shown to negatively regulate nodulation in soybean, but the underlying genetic and molecular mechanisms remain largely unknown. Here, we performed transcriptomic analyses and revealed that BR signaling negatively regulates nodulation factor (NF) signaling. We found that BR signaling inhibits nodulation through its signaling component GmBES1-1 by dampening NF signaling and nodule formation. In addition, GmBES1-1 can directly interact with both GmNSP1 and GmNSP2 to inhibit their interaction and the DNA-binding activity of GmNSP1. Furthermore, BR-induced nuclear accumulation of GmBES1-1 is essential for inhibiting nodulation. Taken together, our results demonstrate that regulation of GmBES1-1 subcellular localization by BRs plays a key role in the legume-rhizobium symbiosis and plant development, indicating a crosstalk mechanism between phytohormone and symbiosis signaling pathways.
Collapse
Affiliation(s)
- Xu Chen
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Xiaotong Hu
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Haijiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Jing Liu
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Chunmei He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Miao He
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China.
| |
Collapse
|
4
|
Kao PH, Baiya S, Lai ZY, Huang CM, Jhan LH, Lin CJ, Lai YS, Kao CF. An advanced systems biology framework of feature engineering for cold tolerance genes discovery from integrated omics and non-omics data in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1019709. [PMID: 36247545 PMCID: PMC9562094 DOI: 10.3389/fpls.2022.1019709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Soybean is sensitive to low temperatures during the crop growing season. An urgent demand for breeding cold-tolerant cultivars to alleviate the production loss is apparent to cope with this scenario. Cold-tolerant trait is a complex and quantitative trait controlled by multiple genes, environmental factors, and their interaction. In this study, we proposed an advanced systems biology framework of feature engineering for the discovery of cold tolerance genes (CTgenes) from integrated omics and non-omics (OnO) data in soybean. An integrative pipeline was introduced for feature selection and feature extraction from different layers in the integrated OnO data using data ensemble methods and the non-parameter random forest prioritization to minimize uncertainties and false positives for accuracy improvement of results. In total, 44, 143, and 45 CTgenes were identified in short-, mid-, and long-term cold treatment, respectively, from the corresponding gene-pool. These CTgenes outperformed the remaining genes, the random genes, and the other candidate genes identified by other approaches in an independent RNA-seq database. Furthermore, we applied pathway enrichment and crosstalk network analyses to uncover relevant physiological pathways with the discovery of underlying cold tolerance in hormone- and defense-related modules. Our CTgenes were validated by using 55 SNP genotype data of 56 soybean samples in cold tolerance experiments. This suggests that the CTgenes identified from our proposed systematic framework can effectively distinguish cold-resistant and cold-sensitive lines. It is an important advancement in the soybean cold-stress response. The proposed pipelines provide an alternative solution to biomarker discovery, module discovery, and sample classification underlying a particular trait in plants in a robust and efficient way.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Supaporn Baiya
- Department of Resource and Environment, Faculty of Science at Sriracha, Kasetsart University, Sriracha, Thailand
| | - Zheng-Yuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Min Huang
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hsin Jhan
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chian-Jiun Lin
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Syuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
6
|
Cheng L, Li M, Min W, Wang M, Chen R, Wang W. Optimal Brassinosteroid Levels Are Required for Soybean Growth and Mineral Nutrient Homeostasis. Int J Mol Sci 2021; 22:8400. [PMID: 34445112 PMCID: PMC8395106 DOI: 10.3390/ijms22168400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Brassinosteroids (BRs) are steroid phytohormones that are known to regulate plant growth and nutrient uptake and distribution. However, how BRs regulate nutrient uptake and balance in legume species is not fully understood. Here, we show that optimal BR levels are required for soybean (Glycine max L.) seedling growth, as treatments with both 24-epicastasterone (24-epiCS) and the BR biosynthesis inhibitor propiconazole (PPZ) inhibit root growth, including primary root elongation and lateral root formation and elongation. Specifically, 24-epiCS and PPZ reduced the total phosphorus and potassium levels in the shoot and affected several minor nutrients, such as magnesium, iron, manganese, and molybdenum. A genome-wide transcriptome analysis identified 3774 and 4273 differentially expressed genes in the root tip after brassinolide and PPZ treatments, respectively. The gene ontology (GO) analysis suggested that genes related to "DNA-replication", "microtubule-based movement", and "plant-type cell wall organization" were highly responsive to the brassinolide and PPZ treatments. Furthermore, consistent with the effects on the nutrient concentrations, corresponding mineral transporters were found to be regulated by BR levels, including the GmPHT1s, GmKTs, GmVIT2, GmZIPs, and GmMOT1 genes. Our study demonstrates that optimal BR levels are important for growth and mineral nutrient homeostasis in soybean seedlings.
Collapse
Affiliation(s)
- Ling Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| | - Man Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (W.M.)
| | - Wanling Min
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (W.M.)
| | - Mengke Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| | - Rongqing Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| | - Wenfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (M.W.); (R.C.)
| |
Collapse
|
7
|
Mori K, Lemaire-Chamley M, Jorly J, Carrari F, Conte M, Asamizu E, Mizoguchi T, Ezura H, Rothan C. The conserved brassinosteroid-related transcription factor BIM1a negatively regulates fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1181-1197. [PMID: 33097930 DOI: 10.1093/jxb/eraa495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are steroid hormones that play key roles in plant development and defense. Our goal is to harness the extensive knowledge of the Arabidopsis BR signaling network to improve productivity in crop species. This first requires identifying components of the conserved network and their function in the target species. Here, we investigated the function of SlBIM1a, the closest tomato homolog of AtBIM1, which is highly expressed in fruit. SlBIM1a-overexpressing lines displayed severe plant and fruit dwarfism, and histological characterization of different transgenic lines revealed that SlBIM1a expression negatively correlated with fruit pericarp cell size, resulting in fruit size modifications. These growth phenotypes were in contrast to those found in Arabidopsis, and this was confirmed by the reciprocal ectopic expression of SlBIM1a/b in Arabidopsis and of AtBIM1 in tomato. These results determined that BIM1 function depends more on the recipient species than on its primary sequence. Yeast two-hybrid interaction studies and transcriptomic analyses of SlBIM1a-overexpressing fruit further suggested that SlBIM1a acts through its interaction with SlBZH1 to govern the transcriptional regulation of growth-related BR target genes. Together, these results suggest that SlBIM1a is a negative regulator of pericarp cell expansion, possibly at the crossroads with auxin and light signaling.
Collapse
Affiliation(s)
- Kentaro Mori
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon, France
| | | | - Joana Jorly
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon, France
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA Castelar, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA Castelar, Argentina
| | - Erika Asamizu
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Tsuyoshi Mizoguchi
- Department of Natural Sciences, International Christian University, Mitaka, Tokyo, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tskuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tskuba, Ibaraki, Japan
| | | |
Collapse
|
8
|
Shan W, Guo YF, Wei W, Chen JY, Lu WJ, Yuan DB, Su XG, Kuang JF. Banana MaBZR1/2 associate with MaMPK14 to modulate cell wall modifying genes during fruit ripening. PLANT CELL REPORTS 2020; 39:35-46. [PMID: 31501956 DOI: 10.1007/s00299-019-02471-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Banana MaBZR1/2 interact with MaMPK14 to enhance the transcriptional inhibition of cell wall modifying genes including MaEXP2, MaPL2 and MaXET5. Fruit ripening and softening, the major attributes to perishability in fleshy fruits, are modulated by various plant hormones and gene expression. Banana MaBZR1/2, the central transcription factors of brassinosteroid (BR) signaling, mediate fruit ripening through regulation of ethylene biosynthesis, but their possible roles in fruit softening as well as the underlying mechanisms remain to be determined. In this work, we found that MaBZR1/2 directly bound to and repressed the promoters of several cell wall modifying genes such as MaEXP2, MaPL2 and MaXET5, whose transcripts were elevated concomitant with fruit ripening. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that MaBZR1/2 physically interacted with a mitogen-activated protein kinase MaMPK14, and this interaction strengthened the MaBZR1/2-mediated transcriptional inhibitory abilities. Collectively, our study provides insight into the mechanism of MaBZR1/2 contributing to fruit ripening and softening, which may have potential for banana molecular improvement.
Collapse
Affiliation(s)
- Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yu-Fan Guo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - De-Bao Yuan
- Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, People's Republic of China
| | - Xin-Guo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou, 510520, People's Republic of China.
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
9
|
Muhammad II, Kong SL, Akmar Abdullah SN, Munusamy U. RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. Int J Mol Sci 2019; 21:E167. [PMID: 31881735 PMCID: PMC6981605 DOI: 10.3390/ijms21010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.
Collapse
Affiliation(s)
- Isiaka Ibrahim Muhammad
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Sze Ling Kong
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Umaiyal Munusamy
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| |
Collapse
|
10
|
Song L, Chen W, Yao Q, Guo B, Valliyodan B, Wang Z, Nguyen HT. Genome-wide transcriptional profiling for elucidating the effects of brassinosteroids on Glycine max during early vegetative development. Sci Rep 2019; 9:16085. [PMID: 31695113 PMCID: PMC6834599 DOI: 10.1038/s41598-019-52599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Soybean is a widely grown grain legume and one of the most important economic crop species. Brassinosteroids play a crucial role in plant vegetative growth and reproductive development. However, it remains unclear how BRs regulate the developmental processes in soybean, and the molecular mechanism underlying soybean early development is largely unexplored. In this study, we first characterized how soybean early vegetative growth was specifically regulated by the BR biosynthesis inhibitor propiconazole; this characterization included shortened root and shoot lengths, reduced leaf area, and decreased chlorophyll content. In addition, the growth inhibition induced by Pcz could be rescued by exogenous brassinolide application. The RNA-seq technique was employed to investigate the BR regulatory networks during soybean early vegetative development. Identification and analysis of differentially expressed genes indicated that BRs orchestrate a wide range of cellular activities and biological processes in soybean under various BR concentrations. The regulatory networks between BRs and multiple hormones or stress-related pathways were investigated. The results provide a comprehensive view of the physiological functions of BRs and new insights into the molecular mechanisms at the transcriptional level of BR regulation of soybean early development.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Wei Chen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Qiuming Yao
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|