1
|
Liu Z, Fan L, Shu S, Qanmber G, Chen E, Huang J, Li F, Yang Z. Cotton metabolism regulatory network: Unraveling key genes and pathways in fiber development and growth regulation. PLANT COMMUNICATIONS 2024:101221. [PMID: 39673124 DOI: 10.1016/j.xplc.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Cotton (Gossypium hirsutum L.) is one of the world's most important commercial crops. However, the dynamics of metabolite abundance and potential regulatory networks throughout its life cycle remain poorly understood. In this study, we developed a cotton metabolism regulatory network (CMRN) that spans various developmental stages and encompasses 2138 metabolites and 90 309 expressed genesin upland cotton. By integrating high-resolution spatiotemporal metabolome and transcriptome data, we identified 1958 differentially accumulated metabolites and 13 597 co-expressed differentially expressed genes between the dwarf mutant pagoda1 and its wild-type counterpart Zhongmiansuo 24. These metabolites and genes were categorized into seven clusters based on tissue-specific accumulation patterns and gene expression profiles across different developmental stages. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed significant differential enrichment in the fatty acid elongation pathway, particularly in fibers. The differential involvement of genes and metabolites in very-long-chain fatty acid (VLCFA) synthesis led to the identification of GhKCS1b_Dt as a key gene. Overexpression of GhKCS1b_Dt significantly promoted fiber elongation, while its silencing markedly inhibited cotton fiber growth, affirming its positive regulatory role in fiber elongation. This dataset provides a valuable resource for further research into metabolic pathways and gene regulatory networks, offering novel insights for advancing cotton breeding strategies.
Collapse
Affiliation(s)
- Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China
| | - Sheng Shu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Eryong Chen
- Henan Engineering Research Center of Crop Genome Editing, School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453000, Henan, China
| | - Jinquan Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China.
| |
Collapse
|
2
|
Zeng G, Wan Z, Xie R, Lei B, Li C, Gao F, Zhang Z, Xi Z. 24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism. PLANT CELL REPORTS 2024; 43:219. [PMID: 39155298 DOI: 10.1007/s00299-024-03283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
KEY MESSAGE Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Guihua Zeng
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuowu Wan
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Xie
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bingyuan Lei
- School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Chan Li
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifei Gao
- School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Ai Y, Chen Y, Wang N, Li J, Liu J, Shen L, Sun X, Han L, Chao Y. Overexpression of MtIPT gene enhanced drought tolerance and delayed leaf senescence of creeping bentgrass (Agrostis stolonifera L.). BMC PLANT BIOLOGY 2024; 24:734. [PMID: 39085786 PMCID: PMC11293197 DOI: 10.1186/s12870-024-05442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Isopentenyltransferases (IPT) serve as crucial rate-limiting enzyme in cytokinin synthesis, playing a vital role in plant growth, development, and resistance to abiotic stress. RESULTS Compared to the wild type, transgenic creeping bentgrass exhibited a slower growth rate, heightened drought tolerance, and improved shade tolerance attributed to delayed leaf senescence. Additionally, transgenic plants showed significant increases in antioxidant enzyme levels, chlorophyll content, and soluble sugars. Importantly, this study uncovered that overexpression of the MtIPT gene not only significantly enhanced cytokinin and auxin content but also influenced brassinosteroid level. RNA-seq analysis revealed that differentially expressed genes (DEGs) between transgenic and wild type plants were closely associated with plant hormone signal transduction, steroid biosynthesis, photosynthesis, flavonoid biosynthesis, carotenoid biosynthesis, anthocyanin biosynthesis, oxidation-reduction process, cytokinin metabolism, and wax biosynthesis. And numerous DEGs related to growth, development, and stress tolerance were identified, including cytokinin signal transduction genes (CRE1, B-ARR), antioxidase-related genes (APX2, PEX11, PER1), Photosynthesis-related genes (ATPF1A, PSBQ, PETF), flavonoid synthesis genes (F3H, C12RT1, DFR), wax synthesis gene (MAH1), senescence-associated gene (SAG20), among others. CONCLUSION These findings suggest that the MtIPT gene acts as a negative regulator of plant growth and development, while also playing a crucial role in the plant's response to abiotic stress.
Collapse
Affiliation(s)
- Ye Ai
- School of Grassland Science of Beijing Forestry University, Beijing, China
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grassland Administration, Beijing, China
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Ning Wang
- Shenzhen Tidyfield System Biotechnology Co., Ltd, Shenzhen, China
| | - Jiaxing Li
- School of Grassland Science of Beijing Forestry University, Beijing, China
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grassland Administration, Beijing, China
| | - Jinnan Liu
- School of Grassland Science of Beijing Forestry University, Beijing, China
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grassland Administration, Beijing, China
| | - Liangying Shen
- School of Grassland Science of Beijing Forestry University, Beijing, China
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grassland Administration, Beijing, China
| | - Xinbo Sun
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Liebao Han
- School of Grassland Science of Beijing Forestry University, Beijing, China.
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grassland Administration, Beijing, China.
| | - Yuehui Chao
- School of Grassland Science of Beijing Forestry University, Beijing, China.
- Engineering and Technology Research Center for Sports Field and Slope Protection Turf, National Forestry and Grassland Administration, Beijing, China.
| |
Collapse
|
4
|
Kolomeichuk LV, Murgan OK, Danilova ED, Serafimovich MV, Khripach VA, Litvinovskaya RP, Sauchuk AL, Denisiuk DV, Zhabinskii VN, Kuznetsov VV, Efimova MV. Effects of Lactone- and Ketone-Brassinosteroids of the 28-Homobrassinolide Series on Barley Plants under Water Deficit. PLANTS (BASEL, SWITZERLAND) 2024; 13:1345. [PMID: 38794416 PMCID: PMC11124923 DOI: 10.3390/plants13101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action.
Collapse
Affiliation(s)
- Liliya V. Kolomeichuk
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Ol’ga K. Murgan
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Elena D. Danilova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Mariya V. Serafimovich
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Raisa P. Litvinovskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Alina L. Sauchuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Daria V. Denisiuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Street 5/2, 220084 Minsk, Belarus; (V.A.K.); (A.L.S.); (V.N.Z.)
| | - Vladimir V. Kuznetsov
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia;
| | - Marina V. Efimova
- Department of Plant Physiology, Biotechnology and Bioinformatics, Biological Institute, National Research Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia; (L.V.K.); (O.K.M.); (E.D.D.); (M.V.S.)
| |
Collapse
|
5
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
7
|
Zhang Y, Xiao Y, Zhang Y, Dong Y, Liu Y, Liu L, Wan S, He J, Yu Y. Accumulation of Galactinol and ABA Is Involved in Exogenous EBR-Induced Drought Tolerance in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13391-13403. [PMID: 36218024 DOI: 10.1021/acs.jafc.2c04892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drought stress severely limits growth and causes losses in the yield of tea plants. Exogenous application of 24-epibrassinolide (EBR) positively regulates drought responses in various plants. However, whether EBR could contribute to drought resistance in tea plants and the underlying mechanisms has not been investigated. Here, we found that EBR application is beneficial for the drought tolerance of tea plants. The transcriptome results revealed that EBR could contribute to tea plant drought resistance by promoting galactinol and abscisic acid (ABA) biosynthesis gene expression. The content of galactinol was elevated by EBR and EBR-responsive CsDof1.1 positively regulated the expression of the galactinol synthase genes CsGolS2-1 and CsGolS2-2 to contribute to the accumulation of galactinol by directly binding to their promoters. Moreover, exogenous EBR was found to elevate the expression of genes related to ABA signal transduction and stomatal closure regulation, which resulted in the promotion of stomatal closure. In addition, EBR-responsive CsMYC2-2 is involved in ABA accumulation by binding to the promoters CsNCED1 and CsNCED2 to activate their expression. In summary, findings in this study provide knowledge into the transcriptional regulatory mechanism of EBR-induced drought resistance in tea plants.
Collapse
Affiliation(s)
- Yongheng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingao Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Dong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingqing Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lu Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siqing Wan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyuan He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Chen E, Yang X, Liu R, Zhang M, Zhang M, Zhou F, Li D, Hu H, Li C. GhBEE3-Like gene regulated by brassinosteroids is involved in cotton drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1019146. [PMID: 36311136 PMCID: PMC9606830 DOI: 10.3389/fpls.2022.1019146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are important phytohormones that play a vital role in plant drought tolerance, but their mechanisms in cotton (Gossypium hirsutum L.) are poorly understood. Numerous basic helix-loop-helix (bHLH) family genes are involved in the responses to both BRs and drought stress. GhBEE3-Like, a bHLH transcription factor, is repressed by both 24-epi-BL (an active BR substance) and PEG8000 (drought simulation) treatments in cotton. Moreover, GhBZR1, a crucial transcription factor in BR signaling pathway, directly binds to the E-box element in GhBEE3-Like promoter region and inhibits its expression, which has been confirmed by electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assay. Functional analysis revealed that Arabidopsis with GhBEE3-Like overexpression had drought sensitive phenotype, while GhBEE3-Like knock-down cotton plants obtained by virus-induced gene silencing (VIGS) technology were more tolerant to drought stress. Furthermore, the expression levels of three stress-related genes, GhERD10, GhCDPK1 and GhRD26, were significantly higher in GhBEE3-Like knock-down cotton than in control cotton after drought treatment. These results suggest that GhBEE3-Like is inhibited by BRs which elevates the expressions of stress-related genes to enhance plant drought tolerance. This study lays the foundation for understanding the mechanisms of BR-regulated drought tolerance and establishment of drought-resistant cotton lines.
Collapse
Affiliation(s)
- Eryong Chen
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobei Yang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruie Liu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengke Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng Zhang
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongxiao Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- Henan Engineering Research Center of Crop Genome Editing, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
9
|
Khan R, Ma X, Hussain Q, Asim M, Iqbal A, Ren X, Shah S, Chen K, Shi Y. Application of 2,4-Epibrassinolide Improves Drought Tolerance in Tobacco through Physiological and Biochemical Mechanisms. BIOLOGY 2022; 11:biology11081192. [PMID: 36009819 PMCID: PMC9405153 DOI: 10.3390/biology11081192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Drought stress is a major abiotic stress that hinders plant growth and development. Brassinosteroids (BR), including 2,4-epibrassinolide (EBR), play important roles in plant growth, development, and responses to abiotic stresses, including drought stress. This work investigates exogenous EBR application roles in improving drought tolerance in tobacco. Tobacco plants were divided into three groups: WW (well-watered), DS (drought stress), and DSB (drought stress + 0.05 mM EBR). The results revealed that DS decreased the leaf thickness (LT), whereas EBR application upregulated genes related to cell expansion, which were induced by the BR (DWF4, HERK2, and BZR1) and IAA (ARF9, ARF6, PIN1, SAUR19, and ABP1) signaling pathway. This promoted LT by 28%, increasing plant adaptation. Furthermore, EBR application improved SOD (22%), POD (11%), and CAT (5%) enzyme activities and their related genes expression (FeSOD, POD, and CAT) along with a higher accumulation of osmoregulatory substances such as proline (29%) and soluble sugars (14%) under DS and conferred drought tolerance. Finally, EBR application augmented the auxin (IAA) (21%) and brassinolide (131%) contents and upregulated genes related to drought tolerance induced by the BR (BRL3 and BZR2) and IAA (YUCCA6, SAUR32, and IAA26) signaling pathways. These results suggest that it could play an important role in improving mechanisms of drought tolerance in tobacco.
Collapse
Affiliation(s)
- Rayyan Khan
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinghua Ma
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence:
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anas Iqbal
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaochun Ren
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shahen Shah
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Keling Chen
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
10
|
Shi Z, Chen X, Xue H, Jia T, Meng F, Liu Y, Luo X, Xiao G, Zhu S. GhBZR3 suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:785-799. [PMID: 35653239 PMCID: PMC9544170 DOI: 10.1111/tpj.15852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
The BRASSINAZOLE-RESISTANT (BZR) transcription factor is a core component of brassinosteroid (BR) signaling and is involved in the development of many plant species. BR is essential for the initiation and elongation of cotton fibers. However, the mechanism of BR-regulating fiber development and the function of BZR is poorly understood in Gossypium hirsutum L. (cotton). Here, we identified a BZR family transcription factor protein referred to as GhBZR3 in cotton. Overexpression of GhBZR3 in Arabidopsis caused shorter root hair length, hypocotyl length, and hypocotyl cell length, indicating that GhBZR3 negatively regulates cell elongation. Pathway enrichment analysis from VIGS-GhBZR3 cotton plants found that fatty acid metabolism and degradation might be the regulatory pathway that is primarily controlled by GhBZR3. Silencing GhBZR3 expression in cotton resulted in taller plant height as well as longer fibers. The very-long-chain fatty acid (VLCFA) content was also significantly increased in silenced GhBZR3 plants compared with the wild type. The GhKCS13 promoter, a key gene for VLCFA biosynthesis, contains two GhBZR3 binding sites. The results of yeast one-hybrid, electrophoretic mobility shift, and luciferase assays revealed that GhBZR3 directly interacted with the GhKCS13 promoter to suppress gene expression. Taken together, these results indicate that GhBZR3 negatively regulates cotton fiber development by reducing VLCFA biosynthesis. This study not only deepens our understanding of GhBZR3 function in cotton fiber development, but also highlights the potential of improving cotton fiber length and plant growth using GhBZR3 and its related genes in future cotton breeding programs.
Collapse
Affiliation(s)
- Zemin Shi
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xia Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huidan Xue
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'an710021China
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710012China
| | - Tingting Jia
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Funing Meng
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunfei Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaomin Luo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| | - Guanghui Xiao
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| |
Collapse
|
11
|
Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and Characterization of the ERF Subfamily B3 Group Revealed GhERF13.12 Improves Salt Tolerance in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:705883. [PMID: 34434208 PMCID: PMC8382128 DOI: 10.3389/fpls.2021.705883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 06/12/2023]
Abstract
The APETALA2 (AP2)/ethylene response factor plays vital functions in response to environmental stimulus. The ethylene response factor (ERF) subfamily B3 group belongs to the AP2/ERF superfamily and contains a single AP2/ERF domain. Phylogenetic analysis of the ERF subfamily B3 group genes from Arabdiposis thaliana, Gossypium arboreum, Gossypium hirsutum, and Gossypium raimondii made it possible to divide them into three groups and showed that the ERF subfamily B3 group genes are conserved in cotton. Collinearity analysis identified172 orthologous/paralogous gene pairs between G. arboreum and G. hirsutum; 178 between G. hirsutum and G. raimondii; and 1,392 in G. hirsutum. The GhERF subfamily B3 group gene family experienced massive gene family expansion through either segmental or whole genome duplication events, with most genes showing signature compatible with the action of purifying selection during evolution. Most G. hirsutum ERF subfamily B3 group genes are responsive to salt stress. GhERF13.12 transgenic Arabidopsis showed enhanced salt stress tolerance and exhibited regulation of related biochemical parameters and enhanced expression of genes participating in ABA signaling, proline biosynthesis, and ROS scavenging. In addition, the silencing of the GhERF13.12 gene leads to increased sensitivity to salt stress in cotton. These results indicate that the ERF subfamily B3 group had remained conserved during evolution and that GhERF13.12 induces salt stress tolerance in Arabidopsis and cotton.
Collapse
Affiliation(s)
- Lili Lu
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Li
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mengli Pu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Guoquan Chen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Shengdong Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Wang
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Huang L, Zhang L, Zeng R, Wang X, Zhang H, Wang L, Liu S, Wang X, Chen T. Brassinosteroid Priming Improves Peanut Drought Tolerance via Eliminating Inhibition on Genes in Photosynthesis and Hormone Signaling. Genes (Basel) 2020; 11:genes11080919. [PMID: 32796553 PMCID: PMC7465412 DOI: 10.3390/genes11080919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
Drought negatively affects the growth and yield of terrestrial crops. Seed priming, pre-exposing seed to a compound, could induce improved tolerance and adaptation to stress in germinated plants. To understand the effects and regulatory mechanism of seed priming with brassinosteroid (BR) on peanut plants, we treated seeds with five BR concentrations and examined dozens of physiological and biochemical features, and transcriptomic changes in leaves under well-watered and drought conditions. We found optimal 0.15 ppm BR priming could reduce inhibitions from drought and increase the yield of peanut, and priming effects are dependent on stage of plant development and duration of drought. BR priming induced fewer differentially expressed genes (DEGs) than no BR priming under well-watered condition. Drought with BR priming reduced the number of DEGs than drought only. These DEGs were enriched in varied gene ontologies and metabolism pathways. Downregulation of DEGs involved in both light perceiving and photosynthesis in leaves is consistent with low parameters of photosynthesis. Optimal BR priming partially rescued the levels of growth promoting auxin and gibberellin which were largely reduced by drought, and increased levels of defense associated abscisic acid and salicylic acid after long-term drought. BR priming induced many DEGs which function as kinase or transcription factor for signal cascade under drought. We proposed BR priming-induced regulatory responses will be memorized and recalled for fast adaptation in later drought stress. These results provide physiological and regulatory bases of effects of seed priming with BR, which can help to guide the framing improvement under drought stress.
Collapse
Affiliation(s)
- Luping Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Lei Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Ruier Zeng
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Xinyue Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Huajian Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Leidi Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Shiyuan Liu
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Correspondence: (X.W.); (T.C.)
| | - Tingting Chen
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
- Correspondence: (X.W.); (T.C.)
| |
Collapse
|