1
|
Chen P, Chang C, Kong L. Whole Genome Identification and Integrated Analysis of Long Non-Coding RNAs Responding ABA-Mediated Drought Stress in Panax ginseng C.A. Meyer. Curr Issues Mol Biol 2024; 47:5. [PMID: 39852120 PMCID: PMC11763544 DOI: 10.3390/cimb47010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Panax ginseng C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes. Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes but still remain poorly understood in ginseng, which has limited the application of molecular breeding in this plant. In this study, we identified 17,478 lncRNAs and 3106 novel mRNAs from ginseng by high-throughput illumine sequencing. 50 and 257 differentially expressed genes (DEGs) and DE lncRNAs (DELs) were detected under drought + ABA vs. drought conditions, respectively. The DEGs and DELs target genes main enrichment is focused on the "biosynthesis of secondary metabolites", "starch and sucrose metabolism", and "carbon metabolism" pathways under drought + ABA vs. drought conditions according to KEGG pathway enrichment analysis, suggesting that these secondary metabolites biosynthesis pathways might be crucial for ABA-mediated drought stress response in ginseng. Together, we identified drought stress response lncRNAs in ginseng for the first time and found that the target genes of these lncRNAs mainly regulate the biosynthesis of secondary metabolites pathway to response to drought stress. These findings also open up a new visual for molecular breeding in ginseng.
Collapse
Affiliation(s)
| | | | - Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (P.C.); (C.C.)
| |
Collapse
|
2
|
Sun SY, Lee DH, Liu HC, Yang Y, Han YH, Kwon T. Identifying competing endogenous RNA regulatory networks and hub genes in alcoholic liver disease for early diagnosis and potential therapeutic target insights. Aging (Albany NY) 2024; 16:9147-9167. [PMID: 38795390 PMCID: PMC11164510 DOI: 10.18632/aging.205861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/22/2024] [Indexed: 05/27/2024]
Abstract
Alcoholic liver disease (ALD) has a complex pathogenesis. Although early-stage ALD can be reversed by ceasing alcohol consumption, early symptoms are difficult to detect, and several factors contribute to making alcohol difficult to quit. Continued alcohol abuse worsens the condition, meaning it may gradually progress into alcoholic hepatitis and cirrhosis, ultimately, resulting in irreversible consequences. Therefore, effective treatments are urgently needed for early-stage ALD. Current research mainly focuses on preventing the progression of alcoholic fatty liver to alcoholic hepatitis and cirrhosis. However, challenges remain in identifying key therapeutic targets and understanding the molecular mechanisms that underlie the treatment of alcoholic hepatitis and cirrhosis, such as the limited discovery of effective therapeutic targets and treatments. Here, we downloaded ALD microarray data from Gene Expression Omnibus and used bioinformatics to compare and identify the hub genes involved in the progression of alcoholic fatty liver to alcoholic hepatitis and cirrhosis. We also predicted target miRNAs and long non-coding RNAs (lncRNAs) to elucidate the regulatory mechanisms (the mRNA-miRNA-lncRNA axis) underlying this progression, thereby building a competitive endogenous RNA (ceRNA) mechanism for lncRNA, miRNA, and mRNA. This study provides a theoretical basis for the early treatment of alcoholic hepatitis and cirrhosis and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai-Yang Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hao-Cheng Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yi Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk 56216, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
4
|
Li X, Lin Z, Lv H, Yu L, Heidari AA, Zhang Y, Chen H, Liang G. Advanced slime mould algorithm incorporating differential evolution and Powell mechanism for engineering design. iScience 2023; 26:107736. [PMID: 37810256 PMCID: PMC10558746 DOI: 10.1016/j.isci.2023.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The slime mould algorithm (SMA) is a population-based swarm intelligence optimization algorithm that simulates the oscillatory foraging behavior of slime moulds. To overcome its drawbacks of slow convergence speed and premature convergence, this paper proposes an improved algorithm named PSMADE, which integrates the differential evolution algorithm (DE) and the Powell mechanism. PSMADE utilizes crossover and mutation operations of DE to enhance individual diversity and improve global search capability. Additionally, it incorporates the Powell mechanism with a taboo table to strengthen local search and facilitate convergence toward better solutions. The performance of PSMADE is evaluated by comparing it with 14 metaheuristic algorithms (MA) and 15 improved MAs on the CEC 2014 benchmarks, as well as solving four constrained real-world engineering problems. Experimental results demonstrate that PSMADE effectively compensates for the limitations of SMA and exhibits outstanding performance in solving various complex problems, showing potential as an effective problem-solving tool.
Collapse
Affiliation(s)
- Xinru Li
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zihan Lin
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haoxuan Lv
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Liang Yu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou 325035, China
| |
Collapse
|
5
|
Chen Z, Xuan P, Heidari AA, Liu L, Wu C, Chen H, Escorcia-Gutierrez J, Mansour RF. An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection. iScience 2023; 26:106679. [PMID: 37216098 PMCID: PMC10193239 DOI: 10.1016/j.isci.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.
Collapse
Affiliation(s)
- Zhiqing Chen
- School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou 325035, China
| | - Ping Xuan
- Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chengwen Wu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla 080002, Colombia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| |
Collapse
|
6
|
Wang M, Wang J. Non-coding RNA expression analysis revealed the molecular mechanism of flag leaf heterosis in inter-subspecific hybrid rice. FRONTIERS IN PLANT SCIENCE 2022; 13:990656. [PMID: 36226282 PMCID: PMC9549252 DOI: 10.3389/fpls.2022.990656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Heterosis has been used widespread in agriculture, but its molecular mechanism is inadequately understood. Plants have a large number of non-coding RNAs (ncRNAs), among them, functional ncRNAs that have been studied widely containing long non-coding RNA (lncRNA) and circular RNA (circRNA) that play a role in varied biological processes, as well as microRNA (miRNA), which can not only regulate the post-transcriptional expression of target genes, but also target lncRNA and circRNA then participate the competing endogenous RNA (ceRNA) regulatory network. However, the influence of these three ncRNAs and their regulatory relationships on heterosis is unknown in rice. In this study, the expression profile of ncRNAs and the ncRNA regulatory network related to heterosis were comprehensively analyzed in inter-subspecific hybrid rice. A total of 867 miRNAs, 3,278 lncRNAs and 2,521 circRNAs were identified in the hybrid and its parents. Analysis of the global profiles of these three types of ncRNAs indicated that significant differences existed in the distribution and sequence characteristics of the corresponding genes. The numbers of miRNA and lncRNA in hybrid were higher than those in its parents. A total of 784 ncRNAs (169 miRNAs, 573 lncRNAs and 42 circRNAs) showed differentially expressed in the hybrid, and their target/host genes were vital in stress tolerance, growth and development in rice. These discoveries suggested that the expression plasticity of ncRNA has an important role of inter-subspecific hybrid rice heterosis. It is worth mentioning that miRNAs exhibited substantially more variations between hybrid and parents compared with observed variation for lncRNA and circRNA. Non-additive expression ncRNAs and allele-specific expression genes-related ncRNAs in hybrid were provided in this study, and multiple sets of ncRNA regulatory networks closely related to heterosis were obtained. Meanwhile, heterosis-related regulatory networks of ceRNA (lncRNA and circRNA) and miRNA were also demonstrated.
Collapse
|
7
|
Zou X, Ali F, Jin S, Li F, Wang Z. RNA-Seq with a novel glabrous-ZM24fl reveals some key lncRNAs and the associated targets in fiber initiation of cotton. BMC PLANT BIOLOGY 2022; 22:61. [PMID: 35114937 PMCID: PMC8815142 DOI: 10.1186/s12870-022-03444-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cotton fiber is an important natural resource for textile industry and an excellent model for cell biology study. Application of glabrous mutant cotton and high-throughput sequencing facilitates the identification of key genes and pathways for fiber development and cell differentiation and elongation. LncRNA is a type of ncRNA with more than 200 nt in length and functions in the ways of chromatin modification, transcriptional and post-transcriptional modification, and so on. However, the detailed lncRNA and associated mechanisms for fiber initiation are still unclear in cotton. RESULTS In this study, we used a novel glabrous mutant ZM24fl, which is endowed with higher somatic embryogenesis, and functions as an ideal receptor for cotton genetic transformation. Combined with the high-throughput sequencing, fatty acid pathway and some transcription factors such as MYB, ERF and bHLH families were identified the important roles in fiber initiation; furthermore, 3,288 lncRNAs were identified, and some differentially expressed lncRNAs were also analyzed. From the comparisons of ZM24_0 DPA vs ZM24_-2 DPA and fl_0 DPA vs ZM24_0 DPA, one common lncRNA MSTRG 2723.1 was found that function upstream of fatty acid metabolism, MBY25-mediating pathway, and pectin metabolism to regulate fiber initiation. In addition, other lncRNAs MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1 were also showed potential important roles in fiber development; and the co-expression analysis between lncRNAs and targets showed the distinct models of different lncRNAs and complicated interaction between lncRNAs in fiber development of cotton. CONCLUSIONS From the above results, a key lncRNA MSTRG 2723.1 was identified that might mediate some key genes transcription of fatty acid metabolism, MYB25-mediating pathway, and pectin metabolism to regulate fiber initiation of ZM24 cultivar. Co-expression analysis implied that some other important lncRNAs (e.g., MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1) were also showed the different regulatory model and interaction between them, which proposes some valuable clues for the lncRNAs associated mechanisms in fiber development.
Collapse
Affiliation(s)
- Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faiza Ali
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
9
|
Cao W, Gan L, Wang C, Zhao X, Zhang M, Du J, Zhou S, Zhu C. Genome-Wide Identification and Characterization of Potato Long Non-coding RNAs Associated With Phytophthora infestans Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:619062. [PMID: 33643350 PMCID: PMC7902931 DOI: 10.3389/fpls.2021.619062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/06/2021] [Indexed: 05/26/2023]
Abstract
Long non-coding RNA (lncRNA) is a crucial regulatory mechanism in the plant response to biotic and abiotic stress. However, their roles in potato (Solanum tuberosum L.) resistance to Phytophthora infestans (P. infestans) largely remain unknown. In this study, we identify 2857 lncRNAs and 33,150 mRNAs of the potato from large-scale published RNA sequencing data. Characteristic analysis indicates a similar distribution pattern of lncRNAs and mRNAs on the potato chromosomes, and the mRNAs were longer and had more exons than lncRNAs. Identification of alternative splicing (AS) shows that there were a total of 2491 lncRNAs generated from AS and the highest frequency (46.49%) of alternative acceptors (AA). We performed R package TCseq to cluster 133 specific differentially expressed lncRNAs from resistance lines and found that the lncRNAs of cluster 2 were upregulated. The lncRNA targets were subject to KEGG pathway enrichment analysis, and the interactive network between lncRNAs and mRNAs was constructed by using GENIE3, a random forest machine learning algorithm. Transient overexpression of StLNC0004 in Nicotiana benthamiana significantly suppresses P. infestans growth compared with a control, and the expression of extensin (NbEXT), the ortholog of the StLNC0004 target gene, was significantly upregulated in the overexpression line. Together, these results suggest that lncRNAs play potential functional roles in the potato response to P. infestans infection.
Collapse
|