1
|
Chang S, Lee WH, Lee HJ, Oh TJ, Lee SM, Lee JH, Kang SH. Transcriptomic Analysis of the Combined Effects of Methyl Jasmonate and Wounding on Flavonoid and Anthraquinone Biosynthesis in Senna tora. PLANTS (BASEL, SWITZERLAND) 2024; 13:2944. [PMID: 39458891 PMCID: PMC11510977 DOI: 10.3390/plants13202944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Jasmonates, including jasmonic acid (JA) and its derivatives such as methyl jasmonate (MeJA) or jasmonly isoleucine (JA-Ile), regulate plant responses to various biotic and abiotic stresses. In this study, we applied exogenous MeJA onto Senna tora leaves subjected to wounding and conducted a transcriptome deep sequencing analysis at 1 (T1), 3 (T3), 6 (T6), and 24 (T24) h after MeJA induction, along with the pretreatment control at 0 h (T0). Out of 18,883 mapped genes, we identified 10,048 differentially expressed genes (DEGs) between the T0 time point and at least one of the four treatment times. We detected the most DEGs at T3, followed by T6, T1, and T24. We observed the upregulation of genes related to JA biosynthesis upon exogenous MeJA application. Similarly, transcript levels of genes related to flavonoid biosynthesis increased after MeJA application and tended to reach their maximum at T6. In agreement, the flavonols kaempferol and quercetin reached their highest accumulation at T24, whereas the levels of the anthraquinones aloe-emodin, emodin, and citreorosein remained constant until T24. This study highlights an increase in flavonoid biosynthesis following both MeJA application and mechanical wounding, whereas no significant influence is observed on anthraquinone biosynthesis. These results provide insights into the distinct regulatory pathways of flavonoid and anthraquinone biosynthesis in response to MeJA and mechanical wounding.
Collapse
Affiliation(s)
- Saemin Chang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (W.-H.L.); (T.-J.O.)
| | - Hyo Ju Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (W.-H.L.); (T.-J.O.)
| | - Si-Myung Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| | - Sang-Ho Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
| |
Collapse
|
2
|
Feng Y, Li J, Yin H, Shen J, Liu W. Multi-omics analysis revealed the mechanism underlying flavonol biosynthesis during petal color formation in Camellia Nitidissima. BMC PLANT BIOLOGY 2024; 24:847. [PMID: 39251901 PMCID: PMC11382509 DOI: 10.1186/s12870-024-05332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Camellia nitidissima is a rare, prized camellia species with golden-yellow flowers. It has a high ornamental, medicinal, and economic value. Previous studies have shown substantial flavonol accumulation in C. nitidissima petals during flower formation. However, the mechanisms underlying the golden flower formation in C. nitidissima remain largely unknown. RESULTS We performed an integrative analysis of the transcriptome, proteome, and metabolome of the petals at five flower developmental stages to construct the regulatory network underlying golden flower formation in C. nitidissima. Metabolome analysis revealed the presence of 323 flavonoids, and two flavonols, quercetin glycosides and kaempferol glycosides, were highly accumulated in the golden petals. Transcriptome and proteome sequencing suggested that the flavonol biosynthesis-related genes and proteins upregulated and the anthocyanin and proanthocyanidin biosynthesis-related genes and proteins downregulated in the golden petal stage. Further investigation revealed the involvement of MYBs and bHLHs in flavonoid biosynthesis. Expression analysis showed that flavonol synthase 2 (CnFLS2) was highly expressed in the petals, and its expression positively correlated with flavonol content at all flower developmental stages. Transient overexpression of CnFLS2 in the petals increased flavonol content. Furthermore, correlation analysis showed that the jasmonate (JA) pathways positively correlated with flavonol biosynthesis, and exogenous methyl jasmonate (MeJA) treatment promoted CnFLS2 expression and flavonol accumulation. CONCLUSIONS Our findings showed that the JA-CnFLS2 module regulates flavonol biosynthesis during golden petal formation in C. nitidissima.
Collapse
Affiliation(s)
- Yi Feng
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jiyuan Li
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jian Shen
- Jinhua Forestry Technology Promotion Station of Zhejiang Province, Jinhua, Zhejiang, 321017, China.
| | - Weixin Liu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
3
|
Guan L, Yang L, Yu F, Zeng H, Yuan C, Xie X, Bai L, Chen Z, Chen X, Wang K, Huang M, Hu X, Liu L. Integrative metabolome and transcriptome analysis characterized methyl jasmonate-elicited flavonoid metabolites of Blumea balsamifera. PHYSIOLOGIA PLANTARUM 2024; 176:e14488. [PMID: 39228009 DOI: 10.1111/ppl.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.
Collapse
Affiliation(s)
- Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lixin Yang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Houyuan Zeng
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xiaoli Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lin Bai
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Zhenxia Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Kai Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| |
Collapse
|
4
|
Liu S, He Z, Yin H, Zhang Y, He Z, Zou X, Yin Y, Chen F, Guo X. ABA and MeJA Induced Catechin and Epicatechin Biosynthesis and Accumulation in Camellia oleifera Fruit Shells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2211. [PMID: 39204647 PMCID: PMC11359535 DOI: 10.3390/plants13162211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Camellia oleifera Abel, one of the most valuable woody oil plants, has been widely cultivated for extracting edible oil. The shell of C. oleifera is a by-product generated in the processing of edible oil extraction. However, there is still limited research on the maturity and high-value resource utilization of shell by-products. We found that the C. oleifera 'Huashuo' (HS) fruit shells contained a high content of catechins. Abscisic acid (ABA) and methyl jasmonate (MeJA) enhanced the accumulation of catechins in C. oleifera fruit shells, providing a basis for production and application of the catechins in fruit shells of C. oleifera. We further found that 500 μM ABA and 900 μM MeJA significantly promoted the accumulation of catechin (C) and epicatechin (EC) in fruit shells. Following treatment with 900 μM MeJA, the expressions of CoPAL1, CoC4H1, CoC4H2, CoC4H3, Co4CL1, Co4CL2, CoF3'H1, CoLAR1, CoLAR2, CoLAR3, CoANR2, and CoANRL2 were significantly upregulated, while after 500 μM ABA treatment the expressions of CoPAL3, CoCHS1, CoCHS4, CoF3'H1, CoDFR, CoLAR1, CoLAR2, CoLAR3, CoANS1, CoANR1, and CoANR2 increased dramatically. These results indicate that appropriate concentrations of ABA and MeJA activate C and EC biosynthesis and promote their accumulation in fruit shells. Our results provide new ideas and guidance for promoting the resource utilization of C. oleifera fruit shells.
Collapse
Grants
- 2023NK2022 Key Research & Development Project of Hunan Provincial De-partment of Science and Technology
- 2021M701160, 2022M721101, 2023M731065 the China Postdoctoral Science Foundation
- 2022JJ40051, 2023JJ40132, 2023JJ40199 Natural Science Foundation of Hunan Province
- 32372124, 32300456, 82304652 National Natural Science Foundation of China
- kq2202149 the Changsha Natural Science Foundation
- CSTB2022NSCQ-MSX0517, CSTB2022NSCQMSX1138, CSTB2023NSCQ-MSX0542, CSTB2023NSCQ-MSX1031 the Natural Science Foundation of Chongqing, China
Collapse
Affiliation(s)
- Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| | - Zhaotong He
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Huangping Yin
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Yue Zhang
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Zexuan He
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China; (S.L.); (H.Y.); (Y.Z.); (Z.H.)
- Chongqing Research Institute, Hunan University, Chongqing 401120, China
| |
Collapse
|
5
|
Yu W, Gong F, Xu H, Zhou X. Molecular Mechanism of Exogenous ABA to Enhance UV-B Resistance in Rhododendron chrysanthum Pall. by Modulating Flavonoid Accumulation. Int J Mol Sci 2024; 25:5248. [PMID: 38791294 PMCID: PMC11121613 DOI: 10.3390/ijms25105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth's surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
6
|
Song G, Yan Y, Guo C, Chen J, Wang Y, Wang Y, Zhang J, Gao C, Lian J, Piao X, Di P. Identification and Expression Analysis of R2R3-MYB Transcription Factors Associated with Flavonoid Biosynthesis in Panax quinquefolius. Int J Mol Sci 2024; 25:3709. [PMID: 38612520 PMCID: PMC11011825 DOI: 10.3390/ijms25073709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangmin Piao
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (G.S.); (Y.Y.); (C.G.); (J.C.); (Y.W.); (Y.W.); (J.Z.); (C.G.); (J.L.)
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China; (G.S.); (Y.Y.); (C.G.); (J.C.); (Y.W.); (Y.W.); (J.Z.); (C.G.); (J.L.)
| |
Collapse
|
7
|
Zhao X, Yan F, Li YM, Tang J, Hu XC, Feng Z, Gao J, Peng L, Zhang G. Comparative transcriptome analysis and identification of candidate R2R3-MYB genes involved in anthraquinone biosynthesis in Rheum palmatum L. Chin Med 2024; 19:23. [PMID: 38317158 PMCID: PMC10845799 DOI: 10.1186/s13020-024-00891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Rheum palmatum L. has important medicinal value because it contains biologically active anthraquinones. However, the key genes and TFs involved in anthraquinone biosynthesis and regulation in R. palmatum remain unclear. METHODS Based on full length transcriptome data, in this study, we screened the differentially expressed genes in the anthraquinone biosynthesis pathway. The R2R3-MYB family genes of R. palmatum were systematically identified based on full-length transcriptome sequencing followed by bioinformatics analyses. The correlation analysis was carried out by using co-expression analysis, protein interaction analysis, and real-time fluorescence quantitative analysis after MeJA treatment. The RpMYB81 and RpMYB98 genes were amplified by RT-PCR, and their subcellular localization and self-activation characteristics were analyzed. RESULTS Comparative transcriptome analysis results revealed a total of 3525 upregulated and 6043 downregulated DEGs in the CK versus MeJA group; 28 DEGs were involved in the anthraquinone pathway. Eleven CHS genes that belonged to the PKS family were differentially expressed and involved in anthraquinone biosynthesis. Twelve differentially expressed MYBs genes were found to be co-expressed and interact with CHS genes. Furthermore, 52 MYB genes were identified as positive regulators of anthraquinone biosynthesis and were further characterized. Three MYB genes including RpMYB81, RpMYB98, and RpMYB100 responded to MeJA treatment in R. palmatum, and the levels of these genes were verified by qRT-PCR. RpMYB81 was related to anthraquinone biosynthesis. RpMYB98 had an interaction with genes in the anthraquinone biosynthesis pathway. RpMYB81 and RpMYB98 were mainly localized in the nucleus. RpMYB81 had self-activation activity, while RpMYB98 had no self-activation activity. CONCLUSION RpMYB81, RpMYB98, and RpMYB100 were significantly induced by MeJA treatment. RpMYB81 and RpMYB98 are located in the nucleus, and RpMYB81 has transcriptional activity, suggesting that it might be involved in the transcriptional regulation of anthraquinone biosynthesis in R. palmatum.
Collapse
Affiliation(s)
- Xia Zhao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Feng Yan
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi-Min Li
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Jing Tang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Chen Hu
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhao Feng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Gao
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Liang Peng
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Gang Zhang
- Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| |
Collapse
|
8
|
Yang B, Pan F, Yasmeen F, Shan L, Pan J, Zhang M, Weng X, Wang M, Li M, Wang Q, Cheng K. Integrated multi-omic analysis reveals the cytokinin and sucrose metabolism-mediated regulation of flavone glycoside biosynthesis by MeJA exposure in Ficus pandurata Hance. Food Res Int 2023; 174:113680. [PMID: 37981372 DOI: 10.1016/j.foodres.2023.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Ficus pandurata Hance (FPH) holds a rich history as a traditional Chinese botanical remedy, utilized both as a culinary condiment and a medicinal intervention for diverse ailments. This study focuses on enhancing FPH's therapeutic potential by subjecting it to exogenous methyl jasmonate (MeJA) treatment, a strategy aimed at elevating the levels of active constituents to align with clinical and commercial requirements. Employing metabolomics, the impact of MeJA treatment on the lipid and flavonoid profiles of FPH leaves was investigated, revealing a marked increase in flavone glycosides, a subset of flavonoids. Investigation into the regulatory mechanism governing flavone glycoside biosynthesis uncovered elevated expression of structural genes associated with flavonoid production in response to MeJA exposure. Global endogenous hormone analysis pinpointed the selective activation of JA and cytokinin biosynthesis following MeJA treatment. Through a comprehensive integration of transcriptomic and metabolomic data, the cooperative stimulation of glucosyltransferase activity, alongside the JA and cytokinin signaling pathways, orchestrated by MeJA were explored. Furthermore, genes linked to sucrose metabolism exhibited heightened expression, concomitant with a noteworthy surge in antioxidant activity subsequent to MeJA treatment. These findings validate the augmentation of FPH leaf antioxidant capacity through MeJA intervention, while also offering profound insights into the regulatory role of MeJA in flavone glycoside biosynthesis, mediated by the interplay between cytokinin and sucrose metabolism pathways.
Collapse
Affiliation(s)
- Bingxian Yang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Fupeng Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Farhat Yasmeen
- Department of Biosciences, University of Wah, Wah Cantt 47040, Pakistan
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Meng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinying Weng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyu Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mengxin Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Kejun Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
9
|
Malik C, Dwivedi S, Rabuma T, Kumar R, Singh N, Kumar A, Yogi R, Chhokar V. De novo sequencing, assembly, and characterization of Asparagus racemosus transcriptome and analysis of expression profile of genes involved in the flavonoid biosynthesis pathway. Front Genet 2023; 14:1236517. [PMID: 37745855 PMCID: PMC10513371 DOI: 10.3389/fgene.2023.1236517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023] Open
Abstract
Asparagus racemosus is known for its diverse content of secondary metabolites, i.e., saponins, alkaloids, and a wide range of flavonoids. Flavonoids, including phenols and polyphenols, have a significant role in plant physiology and are synthesized in several tissues. Despite the diverse role of flavonoids, genetic information is limited for flavonoid biosynthesis pathways in A. racemosus. The current study explores full-scale functional genomics information of A. racemosus by de novo transcriptome sequencing using Illumina paired-end sequencing technology to elucidate the genes involved in flavonoid biosynthesis pathways. The de novo assembly of high-quality paired-end reads resulted in ∼2.3 million high-quality reads with a pooled transcript of 45,647 comprising ∼76 Mb transcriptome with a mean length (bp) of 1,674 and N50 of 1,868bp. Furthermore, the coding sequence (CDS) prediction analysis from 45,647 pooled transcripts resulted in 45,444 CDS with a total length and mean length of 76,398,686 and 1,674, respectively. The Gene Ontology (GO) analysis resulted in a high number of CDSs assigned to 25,342 GO terms, which grouped the predicted CDS into three main domains, i.e., Biological Process (19,550), Molecular Function (19,873), and Cellular Component (14,577). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to categorize 6,353 CDS into 25 distinct biological pathway categories, in which the majority of mapped CDS were shown to be related to translation (645), followed by signal transduction (532), carbohydrate metabolism (524), folding, sorting, and degradation (522). Among these, only ∼64 and 14 CDSs were found to be involved in the phenylpropanoid and flavonoid biosynthesis pathways, respectively. Quantitative Real-time PCR was used to check the expression profile of fourteen potential flavonoid biosynthesis pathway genes. The qRT-PCR analysis result matches the transcriptome sequence data validating the Illumina sequence results. Moreover, a large number of genes associated with the flavonoids biosynthesis pathway were found to be upregulated under the induction of methyl jasmonate. The present-day study on transcriptome sequence data of A. racemosus can be utilized for characterizing genes involved in flavonoid biosynthesis pathways and for functional genomics analysis in A. racemosus using the reverse genetics approach (CRISPR/Cas9 technology).
Collapse
Affiliation(s)
- Chanchal Malik
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sudhanshu Dwivedi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Tilahun Rabuma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Ravinder Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Nitesh Singh
- Faculty of Agricultural Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Anil Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rajesh Yogi
- UIBT-Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
10
|
Zhang L, Liu Y, Zhang Z, Fang S. Physiological response and molecular regulatory mechanism reveal a positive role of nitric oxide and hydrogen sulfide applications in salt tolerance of Cyclocarya paliurus. FRONTIERS IN PLANT SCIENCE 2023; 14:1211162. [PMID: 37719222 PMCID: PMC10502730 DOI: 10.3389/fpls.2023.1211162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
As a multifunctional tree species, Cyclocarya paliurus leaves are rich in bioactive substances with precious healthy values. To meet the huge requirement of C. paliurus leaf production, sites with some environmental stresses would be potential land for developing its plantations due to the limitation of land resources in China. Nitric oxide (NO) and hydrogen sulfide (H2S) are common gas messengers used to alleviate abiotic stress damage, whereas the mechanism of these messengers in regulating salt resistance of C. paliurus still remains unclear. We performed a comprehensive study to reveal the physiological response and molecular regulatory mechanism of C. paliurus seedlings to the application of exogenous NO and H2S under salt stress. The results showed that the application of sodium hydrosulfide (NaHS) and sodium nitroprusside (SNP) not only maintained the photosynthetic capacity and reduced the loss of leaf biomass, but also promoted endogenous NO synthesis and reduced oxidative damage by activating antioxidant enzyme activity and increasing the content of soluble protein and flavonoids. Moreover, transcriptome and metabolome analysis indicated the expression of genes encoding phenylalanine ammonia lyase (PAL), cytochromeP450 (CYP), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) in flavonoid biosynthesis pathway was all up-regulated by the application of NO and H2S. Meanwhile, 15 transcriptional factors (TFs) such as WRKY, ERF, bHLH and HY5 induced by NO were found to regulated the activities of several key enzymes in flavonoid biosynthesis pathway under salt stress, via the constructed co-expression network. Our findings revealed the underlying mechanism of NO and H2S to alleviate salt stress and regulate flavonoid biosynthesis, which provides a theoretical basis for establishing C. paliurus plantations in the salt stress areas.
Collapse
Affiliation(s)
- Lei Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yang Liu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zijie Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Li J, Xu S, Mei Y, Gu Y, Sun M, Zhang W, Wang J. Genomic-wide identification and expression analysis of R2R3-MYB transcription factors related to flavonol biosynthesis in Morinda officinalis. BMC PLANT BIOLOGY 2023; 23:381. [PMID: 37550611 PMCID: PMC10405574 DOI: 10.1186/s12870-023-04394-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis. RESULTS In this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR. CONCLUSIONS This study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.
Collapse
Affiliation(s)
- Jingyu Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Mingyang Sun
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Zheng J, Zhao C, Liao Z, Liu X, Gong Q, Zhou C, Liu Y, Wang Y, Cao J, Liu L, Wang D, Sun C. Functional characterization of two flavone synthase II members in citrus. HORTICULTURE RESEARCH 2023; 10:uhad113. [PMID: 37577395 PMCID: PMC10419818 DOI: 10.1093/hr/uhad113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Polymethoxylated flavones (PMFs), the main form of flavones in citrus, are derived from the flavone branch of the flavonoid biosynthesis pathway. Flavone synthases (FNSs) are enzymes that catalyze the synthesis of flavones from flavanones. However, the FNS in citrus has not been characterized yet. Here, we identified two type II FNSs, designated CitFNSII-1 and CitFNSII-2, based on phylogenetics and transcriptome analysis. Both recombinant CitFNSII-1 and CitFNSII-2 proteins directly converted naringenin, pinocembrin, and liquiritigenin to the corresponding flavones in yeast. In addition, transient overexpression of CitFNSII-1 and CitFNSII-2, respectively, in citrus peel significantly enhanced the accumulation of total PMFs, while virus-induced CitFNSII-1 and CitFNSII-2 genes silencing simultaneously significantly reduced the expression levels of both genes and total PMF content in citrus seedlings. CitFNSII-1 and CitFNSII-2 presented distinct expression patterns in different cultivars as well as different developmental stages. Methyl salicylate (MeSA) treatment reduced the CitFNSII-2 expression as well as the PMFs content in the peel of Citrus sinensis fruit but did not affect the CitFNSII-1 expression. These results indicated that both CitFNSII-1 and CitFNSII-2 participated in the flavone biosynthesis in citrus while the regulatory mechanism governing their expression might be specific. Our findings improved the understanding of the PMFs biosynthesis pathway in citrus and laid the foundation for further investigation on flavone synthesis regulation.
Collapse
Affiliation(s)
- Juan Zheng
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Qin Gong
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Chenwen Zhou
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Yilong Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Lili Liu
- Quzhou Academy of Agriculture and Forestry Science, Quzhou, 324000, China
| | - Dengliang Wang
- Quzhou Academy of Agriculture and Forestry Science, Quzhou, 324000, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
13
|
Zhao Y, Huang S, Wei L, Li M, Cai T, Ma X, Shuai P. ClNAC100 Is a NAC Transcription Factor of Chinese Fir in Response to Phosphate Starvation. Int J Mol Sci 2023; 24:10486. [PMID: 37445664 DOI: 10.3390/ijms241310486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphate (Pi) deficiency is one of the most limiting factors for Chinese fir growth and production. Moreover, continuous cultivation of Chinese fir for multiple generations led to the reduction of soil nutrients, which hindered the yield of Chinese fir in southern China. Although NAC (NAM, ATAF, and CUC) transcription factors (TFs) play critical roles in plant development and abiotic stress resistance, it is still unclear how they regulate the response of Chinese fir to phosphate (Pi) starvation. Based on Pi-deficient transcriptome data of Chinses fir root, we identified a NAC transcription factor with increased expression under Pi deficiency, which was obtained by PCR and named ClNAC100. RT-qPCR confirmed that the expression of ClNAC100 in the root of Chinese fir was induced by phosphate deficiency and showed a dynamic change with time. It was positively regulated by ABA and negatively regulated by JA, and ClNAC100 was highly expressed in the roots and leaves of Chinese fir. Transcriptional activation assay confirmed that ClNAC100 was a transcriptional activator. The promoter of ClNAC100 was obtained by genome walking, which was predicted to contain a large number of stress, hormone, and growth-related cis-elements. Tobacco infection was used to verify the activity of the promoter, and the core promoter was located between -1519 bp and -589 bp. We identified 18 proteins bound to the ClNAC100 promoter and 5 ClNAC100 interacting proteins by yeast one-hybrid and yeast two-hybrid, respectively. We speculated that AHL and TIFY family transcription factors, calmodulin, and E3 ubiquitin ligase in these proteins might be important phosphorus-related proteins. These results provide a basis for the further study of the regulatory mechanism and pathways of ClNAC100 under Pi starvation.
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Shuotian Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Lihui Wei
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Meng Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Tingting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
14
|
Wu Z, Zeng W, Li C, Wang J, Shang X, Xiao L, Cao S, Zhang Y, Xu S, Yan H. Genome-wide identification and expression pattern analysis of R2R3-MYB transcription factor gene family involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. BMC PLANT BIOLOGY 2023; 23:107. [PMID: 36814206 PMCID: PMC9945399 DOI: 10.1186/s12870-023-04115-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND R2R3-MYB transcription factors regulate secondary metabolism, stress responses and development in various plants. Puerarin is a bioactive ingredient and most abundant secondary metabolite isolated from Pueraria lobata. The biosynthesis of puerarin proceeds via the phenylpropanoid pathway and isoflavonoids pathway, in which 9 key enzymes are involved. The expression of these structural genes is under control of specific PtR2R3-MYB genes in different plant tissues. However, how PtR2R3-MYB genes regulates structural genes in puerarin biosynthesis remains elusive. This study mined the PtR2R3-MYB genes involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. RESULTS A total of 209 PtR2R3-MYB proteins were identified, in which classified into 34 subgroups based on the phylogenetic topology and the classification of the R2R3-MYB superfamily in Arabidopsis thaliana. Furtherly physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze PtR2R3-MYBs. Combining puerarin content and RNA-seq data, speculated on the regulated puerarin biosynthesis of PtR2R3-MYB genes and structural genes, thus 21 PtR2R3-MYB genes and 25 structural genes were selected for validation gene expression and further explore its response to MeJA and GSH treatment by using qRT-PCR analysis technique. Correlation analysis and cis-acting element analysis revealed that 6 PtR2R3-MYB genes (PtMYB039, PtMYB057, PtMYB080, PtMYB109, PtMYB115 and PtMYB138) and 7 structural genes (PtHID2, PtHID9, PtIFS3, PtUGT069, PtUGT188, PtUGT286 and PtUGT297) were directly or indirectly regulation of puerarin biosynthesis in ZG11. It is worth noting that after MeJA and GSH treatment for 12-24 h, the expression changes of most candidate genes were consistent with the correlation of puerarin biosynthesis, which also shows that MeJA and GSH have the potential to mediate puerarin biosynthesis by regulating gene expression in ZG11. CONCLUSIONS Overall, this study provides a comprehensive understanding of the PtR2R3-MYB and will paves the way to reveal the transcriptional regulation of puerarin biosynthesis and response to phytohormone of PtR2R3-MYB genes in Pueraria lobata var. thomsonii.
Collapse
Affiliation(s)
- Zhengdan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
15
|
Ren S, Wang Y. Protoplast Isolation for Plant Single-Cell RNA-seq. Methods Mol Biol 2023; 2686:301-305. [PMID: 37540365 DOI: 10.1007/978-1-0716-3299-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The growth and development of plants depends on diversified gene expression in different cell types. Compared to traditional bulk RNA sequencing, droplet-based single-cell RNA sequencing (scRNA-seq) allows for transcriptome profiling of individual cells within heterogeneous tissues. scRNA-seq provides a high-resolution atlas of cellular characterization and vastly improves our understandings of the interactions between individual cells and the microenvironment. However, the difficulty in protoplast isolation has limited the application of single-cell sequencing technology in plant research. Here we describe a high-efficiency protoplast isolation protocol for scRNA-seq.
Collapse
Affiliation(s)
- Shulin Ren
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Negi S, Bhakta S, Ganapathi TR, Tak H. MusaNAC29-like transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111507. [PMID: 36332768 DOI: 10.1016/j.plantsci.2022.111507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/20/2023]
Abstract
Understanding the molecular mechanisms governed by genes and cross-talks among stress signaling pathways is vital for generating a broad view on stress responses in plants. Here, we analysed the effects of MusaNAC29-like transcription factor of banana on stress responses and report the quantitative modulation of phytohormone and flavonoid content and analysed the growth parameters and yield trait in transgenic banana plants. Expression of MusaNAC29-like transcription factor was strongly altered in responses to stress conditions and application of signaling molecules. Under control conditions, PMusaNAC29-like-GUS is activated in cells bordering xylem vessel elements and is strongly triggered in other cells types after influence of salicylic acid and abscisic acid. Transgenic banana plants of cultivar Rasthali and Grand Naine overexpressing MusaNAC29-like transcription factor displayed superior tolerance towards drought and salinity stress. LC-MS analysis indicated elevated levels of jasmonic acid and salicylic acid while content of zeatin was significantly reduced in leaves of transgenic banana lines. Transgenic banana lines displayed increased levels of gallic acid, coumaric acid, naringenin, chlorogenic acid while levels of vanillic acid and piperine were significantly reduced. Expression of stress related genes coding for antioxidants, thiol peptidase proteins, cold-regulated proteins, late embryogenesis abundant proteins, ethylene-responsive transcription factors, bHLH proteins, jasmonate-zim-domain proteins and WRKY transcription factors were significantly induced in transgenic banana lines. Though MusaNAC29-like transcription factor improved stress tolerance, its overexpression resulted in retarded growth of transgenic lines resulting in reduced yield of banana fruits.
Collapse
Affiliation(s)
- Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai 400098, India.
| | - Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
17
|
Zhang L, Tao R, Wang S, Gao Y, Wang L, Yang S, Zhang X, Yu W, Wu X, Li K, Ni J, Teng Y, Bai S. PpZAT5 suppresses the expression of a B-box gene PpBBX18 to inhibit anthocyanin biosynthesis in the fruit peel of red pear. FRONTIERS IN PLANT SCIENCE 2022; 13:1022034. [PMID: 36304405 PMCID: PMC9592862 DOI: 10.3389/fpls.2022.1022034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BBX (B-box) proteins play a vital role in light-induced anthocyanin biosynthesis. PpBBX18 was an indispensable regulator for the induction of anthocyanin biosynthesis in the peel of red pear fruit (Pyrus pyrifolia Nakai.). However, the upstream regulation of BBX genes has not been well characterized. In this study, PpZAT5, a cysteine2/histidine2-type transcription factor, was discovered as the upstream negative regulator of PpBBX18. The results showed that PpZAT5 functions as a transcriptional repressor and directly binds to the CAAT motif of PpBBX18 and inhibits its expression. PpZAT5 expression was inhibited by light, which is converse to the expression pattern of anthocyanin-related structural genes. In addition, less anthocyanin accumulated in the PpZAT5-overexpressing pear calli than in the wild-type pear calli; on the contrary, more anthocyanin accumulated in PpZAT5-RNAi pear calli. Moreover, the crucial genes involved in light-induced anthocyanin biosynthesis were markedly down-regulated in the transcriptome of PpZAT5 overexpression pear calli compared to wild-type. In conclusion, our study indicates that PpBBX18 is negatively regulated by a C2H2-type transcriptional repressor, PpZAT5, which reduces anthocyanin content in pear. The present results demonstrate an upstream molecular mechanism of PpBBX18 and provide insights into light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Simai Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Lu Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Shulin Yang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Xiao Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Xinyue Wu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Kunfeng Li
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| |
Collapse
|
18
|
Alabd A, Ahmad M, Zhang X, Gao Y, Peng L, Zhang L, Ni J, Bai S, Teng Y. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. HORTICULTURE RESEARCH 2022; 9:uhac199. [PMID: 37180030 PMCID: PMC10167416 DOI: 10.1093/hr/uhac199] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 05/15/2023]
Abstract
Anthocyanins are a valuable source of antioxidants in the human diet and contribute to fruit coloration. In red-skinned pears, anthocyanin biosynthesis can be induced by light, in which the MYB-bHLH-WDR complex plays a critically important role in transcriptional regulation. However, knowledge of WRKY-mediated transcriptional regulation of light-induced anthocyanin biosynthesis is scarce in red pears. This work identified and functionally characterized a light-inducing WRKY transcription factor, PpWRKY44, in pear. Functional analysis based on overexpressed pear calli showed that PpWRKY44 promoted anthocyanin accumulation. Also, transiently overexpressed PpWRKY44 in pear leaves and fruit peels significantly enhanced the accumulation of anthocyanin, whereas silencing PpWRKY44 in pear fruit peels impaired induction of the accumulation of anthocyanin by light. By chromatin immunoprecipitation and electrophoretic mobility shift assay coupled to a quantitative polymerase chain reaction, we found that PpWRKY44 bound in vivo and in vitro to the PpMYB10 promoter, revealing it as a direct downstream target gene. Moreover, PpWRKY44 was activated by PpBBX18, a light signal transduction pathway component. Our results explained the mechanism mediating the impacts of PpWRKY44 on the transcriptional regulation of anthocyanin accumulation, with potential implications for fine-tuning the fruit peel coloration triggered by light in red pears.
Collapse
Affiliation(s)
- Ahmed Alabd
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Pomology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lin Peng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| |
Collapse
|
19
|
Integrative Metabolome and Transcriptome Analysis Reveals the Regulatory Network of Flavonoid Biosynthesis in Response to MeJA in Camelliavietnamensis Huang. Int J Mol Sci 2022; 23:ijms23169370. [PMID: 36012624 PMCID: PMC9409299 DOI: 10.3390/ijms23169370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are secondary metabolites widely found in plants, which perform various biological activities, such as antiinflammation, antioxidation, antitumor, and so on. Camellia vietnamensis Huang, a species of oil-tea Camellia tree, is an important woody oil crop species widely planted on Hainan Island, which provides health benefits with its high antioxidant activity and abundant flavonoid content. However, very little is known about the overall molecular mechanism of flavonoid biosynthesis in C. vietnamensis Huang. In this study, methyl jasmonate (MeJA) is used as an inducer to change the content of secondary metabolites in C. vietnamensis. Then, the potential mechanisms of flavonoid biosynthesis in C. vietnamensis leaves in response to MeJA were analyzed by metabolomics and transcriptomics (RNA sequencing). The results showed that metabolome analysis detected 104 flavonoids and 74 fatty acyls which showed different expression patterns (increased or decreased expression). It was discovered by KEGG analysis that three differentially accumulated metabolites (cinnamaldehyde, kaempferol and quercitrin) were annotated in the phenylpropanoid biosynthesis (ko00940), flavonoid biosynthesis (ko00941), and flavone and flavonol biosynthesis (ko00944) pathways. In the transcriptome analysis, 35 different genes involved in the synthesis of flavonoids were identified by MapMan analysis. The key genes (PAL, 4CL, CCR, CHI, CHS, C4H, FLS) that might be involved in the formation of flavonoid were highly expressed after 2 h of MeJA treatment. This study provides new insights and data supporting the molecular mechanism underlying the metabolism and synthesis of flavonoids in C. vietnamensis under MeJA treatment.
Collapse
|
20
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
21
|
Light and Potassium Improve the Quality of Dendrobium officinale through Optimizing Transcriptomic and Metabolomic Alteration. Molecules 2022; 27:molecules27154866. [PMID: 35956813 PMCID: PMC9369990 DOI: 10.3390/molecules27154866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Dendrobium officinale is a perennial epiphytic herb in Orchidaceae. Cultivated products are the main alternative for clinical application due to the shortage of wild resources. However, the phenotype and quality of D. officinale have changed post-artificial cultivation, and environmental cues such as light, temperature, water, and nutrition supply are the major influencing factors. This study aims to unveil the mechanisms beneath the cultivation-induced variation by analyzing the changes of the metabolome and transcriptome of D. officinale seedlings treated with red- blue LED light and potassium fertilizer. Results: After light- and K-treatment, the D. officinale pseudobulbs turned purple and the anthocyanin content increased significantly. Through wide-target metabolome analysis, compared with pseudobulbs in the control group (P), the proportion of flavonoids in differentially-accumulated metabolites (DAMs) was 22.4% and 33.5% post light- and K-treatment, respectively. The gene modules coupled to flavonoids were obtained through the coexpression analysis of the light- and K-treated D. officinale transcriptome by WGCNA. The KEGG enrichment results of the key modules showed that the DEGs of the D. officinale pseudobulb were enriched in phenylpropane biosynthesis, flavonoid biosynthesis, and jasmonic acid (JA) synthesis post-light- and K-treatment. In addition, anthocyanin accumulation was the main contribution to the purple color of pseudobulbs, and the plant hormone JA induced the accumulation of anthocyanins in D. officinale. Conclusions: These results suggested that light and potassium affected the accumulation of active compounds in D. officinale, and the gene-flavone network analysis emphasizes the key functional genes and regulatory factors for quality improvement in the cultivation of this medicinal plant.
Collapse
|
22
|
The roles of WRKY transcription factors in Malus spp. and Pyrus spp. Funct Integr Genomics 2022; 22:713-729. [PMID: 35906324 DOI: 10.1007/s10142-022-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
The WRKY transcription factor gene family is known to be involved in plant defense against pathogens and in tolerance to different environmental stresses at different stages of development. The response mechanisms through which these genes act can be influenced by different phytohormones as well as by many trans- and cis-acting elements, making this network an important topic for analysis, but still something complex to fully understand. According to available reports, these genes can also perform important roles in pome species (Malus spp. and Pyrus spp.) metabolism, especially in adaptation of these plants to stressful conditions. Here, we present a quick review of what is known about WRKY genes in Malus and Pyrus genomes offering a simple way to understand what is already known about this topic. We also add information connecting the evolution of these transcription factors with others that can also be found in pomes.
Collapse
|
23
|
Lin Y, Hou G, Jiang Y, Liu X, Yang M, Wang L, Long Y, Li M, Zhang Y, Wang Y, Chen Q, Zhang Y, Wang X, Tang H, Luo Y. Joint Transcriptomic and Metabolomic Analysis Reveals Differential Flavonoid Biosynthesis in a High-Flavonoid Strawberry Mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:919619. [PMID: 35837466 PMCID: PMC9274175 DOI: 10.3389/fpls.2022.919619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The enriched phenolic content attributes to the promising health benefit of strawberry fruits. On behalf of screening and seeking the breeding material with high phytochemical composition, a mutant (MT) of strawberry 'Benihoppe' (WT) with high total flavonoid content (TFC), especially anthocyanins and proanthocyanidins (PAs), was identified in this study. To investigate the possible reason for these disparities during strawberry fruit development, an integrated transcriptomic and metabolomic analysis was conducted using these two specific materials. As a result, a total of 113 flavonoid compounds were detected, a specific anthocyanin, namely, petunidin 3-O-rutinoside was detected for the first time in strawberry. By comparing with the WT fruits, a significant reduction of petunidin 3-O-rutinoside while around 24 times higher of cyanidin 3-O-rutinoside in MT fruits were observed. However, the cyanidin 3-glucoside content did not show obvious changes between MT and WT fruits, the pelargonidin and its derivatives were up-regulated only in partial red (PR) stage, but not in large green (LG) and fully red (FR) stages. Notably, the PAs such as procyanidin B2, procyanidin A1, catechin, gallocatechin gallate, epigallacatechin, and theaflavin were markedly up-regulated in MT. These results revealed a differential flavonoid biosynthesis between the two detected strawberry genotypes. A joint analysis with transcriptome data explained the up-regulation of cyanidin-based anthocyanins and PAs were caused by the down-regulation of F3'5'H, and up-regulation of F3'H and LAR expression, which might be regulated by the upregulation of potential TFs such as C3H, MADS, and AP2/ERF TFs. Metabolite correlation analysis suggested that it was PAs but not anthocyanins strongly correlated with the total phenolic content (TPC), indicated that PAs might contribute more to TPC than anthocyanins in our detected strawberry samples. This study not only potentially provided a new mutant for further breeding program to obtain high flavonoid content strawberry but also gave insights into strawberry flavonoid metabolic regulatory network, laid the foundation for identifying new flavonoid regulators in strawberry.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yu Long
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Transcriptome analysis reveals regulation mechanism of methyl jasmonate-induced terpenes biosynthesis in Curcuma wenyujin. PLoS One 2022; 17:e0270309. [PMID: 35737688 PMCID: PMC9223393 DOI: 10.1371/journal.pone.0270309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Curcuma wenyujin is the source plant of three traditional Chinese medicines, which have been widely used in clinical treatment over 1000 years. The content of terpenes, the major medicinal active ingredients, is relatively low in this plant. Studies have shown that MeJA can promote terpenes biosynthesis in plants. However, the mechanism underlying the effect of MeJA in C. wenyujin remains unclear. In this work, the transcriptome of C. wenyujin leaves with MeJA treatment was analyzed to elucidate the regulation mechanism of MeJA-mediated terpene biosynthesis. Based on the RNA-seq data, 7,246 unigenes were differentially expressed with MeJA treatment. Expression pattern clustering of DEGs revealed that unigenes, related to JA biosynthesis and signal transduction, responded to exogenous MeJA stimulation on the early stage and maintained throughout the process. Subsequently, unigenes related to terpene biosynthesis pathway showed a significant up-regulation with 6 h treatment. The analysis results suggested that MeJA induced the expression of JA biosynthesis genes (such as LOXs, AOSs, AOCs, OPRs, and MFPs) and JA signal transduction core genes (JAZs and MYCs) to activate JA signaling pathway. Meanwhile, downstream JA-responsive genes presented up-regulated expression levels such as AACT, HMGSs, HMGRs, DXSs, DXRs, MCTs, HDSs, and HDRs, thus promoting terpenes biosynthesis. The transcriptional expressions of these genes were validated by qRT-PCR. In addition, six CwTPS genes in response to MeJA were identified. With MeJA treatment, the expression levels of CwTPSs were increased as well as those of the transcription factors MYB, NAC, bZIP, WRKY, AP2/ERF, and HLH. These TFs might potentially regulate terpenes biosynthesis. These results provide insights for regulation mechanism of terpenes biosynthesis.
Collapse
|
25
|
Yang J, Li H, Ma R, Chang Y, Qin X, Xu J, Fu Y. Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan). PLANTA 2022; 255:120. [PMID: 35538269 DOI: 10.1007/s00425-022-03896-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
226 CcCYP450 genes were identified at the genomic level and were classified into 45 clades based on phylogenetic analysis. CcCYP75B165 gene was found that might play important roles in the biosynthesis of flavonoids in pigeon pea, and was significantly induced by methyl jasmonate (MeJA). The cytochrome P450 mono-oxygenase (CYP450) superfamily plays a key role in the flavonoid biosynthesis pathway and resists different kinds of stresses. Several CYP450 genes have been identified to be involved in the biosynthesis of crop protection agents. However, the CcCYP450 genes from pigeon pea have not been identified. Here, 226 CcCYP450 genes were identified at the genomic level by analysing the gene structure, distribution on chromosomes, gene duplication, and conserved motifs and were classified into 45 clades based on phylogenetic analysis. RNA-seq analysis revealed clear details of CcCYP450 genes that varied with time of MeJA (methyl jasmonate) induction. Among them, six CcCYP450 subfamily genes were found that might play important roles in the biosynthesis of flavonoids in pigeon pea. The overexpression of CcCYP75B165 in pigeon pea significantly induced the accumulation of genistin and downregulated the contents of cajaninstilbene acid, apigenin, isovitexin, and genistein and the expression of flavonoid synthase genes. This study provides theoretical guidance and plant genetic resources for cultivating new pigeon pea varieties with high flavonoid contents and exploring the molecular mechanisms of the biosynthesis of flavonoids under MeJA treatment.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ruijin Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yuanhang Chang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiangyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
26
|
Ariyarathne MA, Wone BWM. Overexpression of the Selaginella lepidophylla bHLH transcription factor enhances water-use efficiency, growth, and development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111129. [PMID: 35067299 DOI: 10.1016/j.plantsci.2021.111129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 05/20/2023]
Abstract
Abiotic stresses have the greatest impact on the growth and productivity of crops, especially under current and future extreme weather events due to climate change. Thus, it is vital to explore novel strategies to improve crop plant abiotic stress tolerance to feed an ever-growing world population. Selaginella lepidophylla is a desiccation-tolerant spike moss with specialized adaptations that allow it to tolerate water loss down to 4% relative water content. A candidate basic helix-loop-helix (bHLH) transcription factor was highly expressed at 4% relative water content in S. lepidophylla (SlbHLH). This SlbHLH gene was codon-optimized (SlbHLHopt) and overexpressed in Arabidopsis for functional characterization. Overexpression of the SlbHLHopt gene not only significantly increased plant growth, development, and integrated water-use efficiency, but also significantly increased seed germination and green cotyledon emergence rates under water-deficit stress and salt stress conditions. Under a 150 mM NaCl salt stress condition, SlbHLHopt-overexpressing lines increased primary root length, the number of lateral roots, and fresh and dry biomass at the seedling stage compared to control lines. Interestingly, SlbHLHopt-overexpressing lines also have significantly higher flavonoid content. Altogether, these results suggest that SlbHLH functions as an important regulator of plant growth, development, abiotic stress tolerance, and water-use efficiency.
Collapse
|
27
|
Yao H, Wang F, Bi Q, Liu H, Liu L, Xiao G, Zhu J, Shen H, Li H. Combined Analysis of Pharmaceutical Active Ingredients and Transcriptomes of Glycyrrhiza uralensis Under PEG6000-Induced Drought Stress Revealed Glycyrrhizic Acid and Flavonoids Accumulation via JA-Mediated Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:920172. [PMID: 35769299 PMCID: PMC9234494 DOI: 10.3389/fpls.2022.920172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 05/16/2023]
Abstract
Glycyrrhiza uralensis contains many secondary metabolites with a wide range of pharmacological activities. Drought stress acts as a positive regulator to stimulate the production of medicinal active component in G. uralensis, however, the underlying mechanism remains unclear. The aim of this work is to investigate the accumulation and regulatory mechanism of pharmaceutical active ingredients in G. uralensis under drought stress. The materials of the aerial and underground parts of G. uralensis seedlings treated by 10% PEG6000 for 0, 2, 6, 12, and 24 h were used for RNA sequencing and determination of phytohormones and pharmaceutical active ingredients. PEG6000, ibuprofen (IBU), and jasmonic acid (JA) were utilized to treat G. uralensis seedlings for content detection and gene expression analysis. The results showed that, the contents of glycyrrhizic acid, glycyrrhetinic acid, and flavonoids (licochalcone A, glabridin, liquiritigenin, isoliquiritigenin, and liquiritin) were significantly accumulated in G. uralensis underground parts under drought stress. Kyoto Encyclopedia of Genes and Genomes analysis of the transcriptome data of drought-treated G. uralensis indicated that up-regulated differentially expressed genes (UDEGs) involved in glycyrrhizic acid synthesis in the underground parts and flavonoids synthesis in both aerial and underground parts were significantly enriched. Interestingly, the UDEGs participating in jasmonic acid (JA) signal transduction in both aerial and underground parts were discovered. In addition, JA content in both aerial and underground parts under drought stress showed the most significantly accumulated. And drought stress stimulated the contents of JA, glycyrrhizic acid, and flavonoids, coupled with the induced expressions of genes regulating the synthesis and transduction pathway. Moreover, In PEG6000- and JA-treated G. uralensis, significant accumulations of glycyrrhizic acid and flavonoids, and induced expressions of corresponding genes in these pathways, were observed, while, these increases were significantly blocked by JA signaling inhibitor IBU. JA content and expression levels of genes related to JA biosynthesis and signal transduction were also significantly increased by PEG treatment. Our study concludes that drought stress might promote the accumulation of pharmaceutical active ingredients via JA-mediated signaling pathway, and lay a foundation for improving the medicinal component of G. uralensis through genetic engineering technology.
Collapse
Affiliation(s)
- Hua Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Department of Pharmacology, Institute of Materia Medica of Xinjiang, Urumqi, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Quan Bi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Liu
- Cotton Institute, Xingjiang Academy of Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding, Shihezi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Jianbo Zhu,
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Haitao Shen,
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
- Hongbin Li,
| |
Collapse
|
28
|
Luo Y, Teng S, Yin H, Zhang S, Tuo X, Tran LSP. Transcriptome Analysis Reveals Roles of Anthocyanin- and Jasmonic Acid-Biosynthetic Pathways in Rapeseed in Response to High Light Stress. Int J Mol Sci 2021; 22:ijms222313027. [PMID: 34884828 PMCID: PMC8657659 DOI: 10.3390/ijms222313027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Rapeseed (Brassica napus) is one of the major important oil crops worldwide and is largely cultivated in the Qinghai-Tibetan plateau (QTP), where long and strong solar-radiation is well-known. However, the molecular mechanisms underlying rapeseed's response to light stress are largely unknown. In the present study, the color of rapeseed seedlings changed from green to purple under high light (HL) stress conditions. Therefore, changes in anthocyanin metabolism and the transcriptome of rapeseed seedlings cultured under normal light (NL) and HL conditions were analyzed to dissect how rapeseed responds to HL at the molecular level. Results indicated that the contents of anthocyanins, especially glucosides of cyanidin, delphinidin, and petunidin, which were determined by liquid chromatography-mass spectrometry (LC-MS), increased by 9.6-, 4.2-, and 59.7-fold in rapeseed seedlings exposed to HL conditions, respectively. Next, RNA-sequencing analysis identified 7390 differentially expressed genes (DEGs), which included 4393 up-regulated and 2997 down-regulated genes. Among the up-regulated genes, many genes related to the anthocyanin-biosynthetic pathway were enriched. For example, genes encoding dihydroflavonol reductase (BnDFR) and anthocyanin synthase (BnANS) were especially induced by HL conditions, which was also confirmed by RT-qPCR analysis. In addition, two PRODUCTION OF ANTHOCYANIN PIGMENTATION 2 (BnPAP2) and GLABRA3 (BnGL3) genes encoding MYB-type and bHLH-type transcription factors, respectively, whose expression was also up-regulated by HL stress, were found to be associated with the changes in anthocyanin biosynthesis. Many genes involved in the jasmonic acid (JA)-biosynthetic pathway were also up-regulated under HL conditions. This finding, which is in agreement with the well-known positive regulatory role of JA in anthocyanin biosynthesis, suggests that the JA may also play a key role in the responses of rapeseed seedlings to HL. Collectively, these data indicate that anthocyanin biosynthesis-related and JA biosynthesis-related pathways mediate HL responses in rapeseed. These findings collectively provide mechanistic insights into the mechanisms involved in the response of rapeseed to HL stress, and the identified key genes may potentially be used to improve HL tolerance of rapeseed cultivars through genetic engineering or breeding strategies.
Collapse
Affiliation(s)
- Yuxiu Luo
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Shoulian Teng
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: (H.Y.); or (L.-S.P.T.); Tel.: +86-971-531-0086 (H.Y.)
| | - Shengping Zhang
- Qinghai Academy of Agriculture and Forestry, Qinghai University, Xining 810016, China;
| | - Xiaoyun Tuo
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (Y.L.); (S.T.); (X.T.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: (H.Y.); or (L.-S.P.T.); Tel.: +86-971-531-0086 (H.Y.)
| |
Collapse
|
29
|
Combined transcriptome and metabolome integrated analysis of Acer mandshuricum to reveal candidate genes involved in anthocyanin accumulation. Sci Rep 2021; 11:23148. [PMID: 34848790 PMCID: PMC8633053 DOI: 10.1038/s41598-021-02607-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
The red color formation of Acer mandshuricum leaves is caused by the accumulation of anthocyanins primarily, but the molecular mechanism researches which underlie anthocyanin biosynthesis in A. mandshuricum were still lacking. Therefore, we combined the transcriptome and metabolome and analyzed the regulatory mechanism and accumulation pattern of anthocyanins in three different leaf color states. In our results, 26 anthocyanins were identified. Notably, the metabolite cyanidin 3-O-glucoside was found that significantly correlated with the color formation, was the predominant metabolite in anthocyanin biosynthesis of A. mandshuricum. By the way, two key structural genes ANS (Cluster-20561.86285) and BZ1 (Cluster-20561.99238) in anthocyanidin biosynthesis pathway were significantly up-regulated in RL, suggesting that they might enhance accumulation of cyanidin 3-O-glucoside which is their downstream metabolite, and contributed the red formation of A. mandshuricum leaves. Additionally, most TFs (e.g., MYBs, bZIPs and bHLHs) were detected differentially expressed in three leaf color stages that could participate in anthocyanin accumulation. This study sheds light on the anthocyanin molecular regulation of anthocyanidin biosynthesis and accumulation underlying the different leaf color change periods in A. mandshuricum, and it could provide basic theory and new insight for the leaf color related genetic improvement of A. mandshuricum.
Collapse
|
30
|
Zheng J, Liu L, Tao H, An Y, Wang L. Transcriptomic Profiling of Apple Calli With a Focus on the Key Genes for ALA-Induced Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:640606. [PMID: 33841467 PMCID: PMC8033201 DOI: 10.3389/fpls.2021.640606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 05/30/2023]
Abstract
The red color is an attractive trait of fruit and determines its market acceptance. 5-Aminolevulinic acid (ALA), an eco-friendly plant growth regulator, has played a universal role in plant secondary metabolism regulation, particularly in flavonoid biosynthesis. It has been widely reported that ALA can up-regulate expression levels of several structural genes related to flavonoid metabolism and anthocyanin accumulation. However, the molecular mechanisms behind ALA-induced expression of these genes are complicated and still far from being completely understood. In this study, transcriptome analysis identified the differentially expressed genes (DEGs) associated with ALA-induced anthocyanin accumulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the flavonoid biosynthesis (ko00941) pathway was significantly enhanced in the ALA-treated apple calli at 24, 48, and 72 h after the treatment. Expression pattern revealed that ALA up-regulated the expression of the structural genes related to not only anthocyanin biosynthesis (MdCHS, MdCHI, MdF3'H, MdDFR, MdANS, and MdUFGT) but also anthocyanin transport (MdGST and MdMATE). Two R2R3-MYB transcription factors (MdMYB10 and MdMYB9), which are the known positive regulators of anthocyanin biosynthesis, were significantly induced by ALA. Gene overexpression and RNA interference assays demonstrated that MdMYB10 and MdMYB9 were involved in ALA-induced anthocyanin biosynthesis. Moreover, MdMYB10 and MdMYB9 might positively regulate the transcription of MdMATE8 by binding to the promoter region. These results indicate that MdMYB10 and MdMYB9 modulated structural gene expression of anthocyanin biosynthesis and transport in response to ALA-mediated apple calli coloration at the transcript level. We herein provide new details regarding transcriptional regulation of ALA-induced color development.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Longbo Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Huihui Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|