1
|
Hu Q, Wu J, Fan C, Luo Y, Liu J, Deng Z, Li Q. Comparative analysis of codon usage bias in the chloroplast genomes of eighteen Ampelopsideae species (Vitaceae). BMC Genom Data 2024; 25:80. [PMID: 39223463 PMCID: PMC11370015 DOI: 10.1186/s12863-024-01260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The tribe Ampelopsideae plants are important garden plants with both medicinal and ornamental values. The study of codon usage bias (CUB) facilitates a deeper comprehension of the molecular genetic evolution of species and their adaptive strategies. The joint analysis of CUB in chloroplast genomes (cpDNA) offers valuable insights for in-depth research on molecular genetic evolution, biological resource conservation, and elite breeding within this plant family. RESULTS The base composition and codon usage preferences of the eighteen chloroplast genomes were highly similar, with the GC content of bases at all positions of their codons being less than 50%. This indicates that they preferred A/T bases. Their effective codon numbers were all in the range of 35-61, which indicates that the codon preferences of the chloroplast genomes of the 18 Ampelopsideae plants were relatively weak. A series of analyses indicated that the codon preference of the chloroplast genomes of the 18 Ampelopsideae plants was influenced by a combination of multiple factors, with natural selection being the primary influence. The clustering tree generated based on the relative usage of synonymous codons is consistent with some of the results obtained from the phylogenetic tree of chloroplast genomes, which indicates that the clustering tree based on the relative usage of synonymous codons can be an important supplement to the results of the sequence-based phylogenetic analysis. Eventually, 10 shared best codons were screened on the basis of the chloroplast genomes of 18 species. CONCLUSION The codon preferences of the chloroplast genome in Ampelopsideae plants are relatively weak and are primarily influenced by natural selection. The codon composition of the chloroplast genomes of the eighteen Ampelopsideae plants and their usage preferences were sufficiently similar to demonstrate that the chloroplast genomes of Ampelopsideae plants are highly conserved. This study provides a scientific basis for the genetic evolution of chloroplast genes in Ampelopsideae species and their suitable strategies.
Collapse
Affiliation(s)
- Qun Hu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, Hubei, 445000, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Jiaqi Wu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Chengcheng Fan
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Yongjian Luo
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei, 445000, China.
- Research Center for Germplasm Engineering of Characteristic Plant Resources in Enshi Prefecture, Hubei Minzu University, Enshi, Hubei, 445000, China.
| | - Qing Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
2
|
Zhang T, Li M, Zhu X, Li S, Guo M, Guo C, Shu Y. Comparative Chloroplast Genomes Analysis Provided Adaptive Evolution Insights in Medicago ruthenica. Int J Mol Sci 2024; 25:8689. [PMID: 39201375 PMCID: PMC11354556 DOI: 10.3390/ijms25168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
A perennial leguminous forage, Medicago ruthenica has outstanding tolerance to abiotic stresses. The genome of Medicago ruthenica is large and has a complex genetic background, making it challenging to accurately determine genetic information. However, the chloroplast genome is widely used for researching issues related to evolution, genetic diversity, and other studies. To better understand its chloroplast characteristics and adaptive evolution, chloroplast genomes of 61 Medicago ruthenica were assembled (including 16 cultivated Medicago ruthenica germplasm and 45 wild Medicago ruthenica germplasm). These were used to construct the pan-chloroplast genome of Medicago ruthenica, and the chloroplast genomes of cultivated and wild Medicago ruthenica were compared and analyzed. Phylogenetic and haplotype analyses revealed two main clades of 61 Medicago ruthenica germplasm chloroplast genomes, distributed in eastern and western regions. Meanwhile, based on chloroplast variation information, 61 Medicago ruthenica germplasm can be divided into three genetic groups. Unlike the phylogenetic tree constructed from the chloroplast genome, a new intermediate group has been identified, mainly consisting of samples from the eastern region of Inner Mongolia, Shanxi Province, and Hebei Province. Transcriptomic analysis showed that 29 genes were upregulated and three genes were downregulated. The analysis of these genes mainly focuses on enhancing plant resilience and adapting adversity by stabilizing the photosystem structure and promoting protein synthesis. Additionally, in the analysis of adaptive evolution, the accD, clpP and ycf1 genes showed higher average Ka/Ks ratios and exhibited significant nucleotide diversity, indicating that these genes are strongly positively selected. The editing efficiency of the ycf1 and clpP genes significantly increases under abiotic stress, which may positively contribute to plant adaptation to the environment. In conclusion, the construction and comparative analysis of the complete chloroplast genomes of 61 Medicago ruthenica germplasm from different regions not only revealed new insights into the genetic variation and phylogenetic relationships of Medicago ruthenica germplasm, but also highlighted the importance of chloroplast transcriptome analysis in elucidating the model of chloroplast responses to abiotic stress. These provide valuable information for further research on the adaptive evolution of Medicago ruthenica.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (T.Z.); (M.L.); (X.Z.); (S.L.); (M.G.); (C.G.)
| |
Collapse
|
3
|
Ran Z, Li Z, Xiao X, Tang M. Camellia neriifolia and Camellia ilicifolia (Theaceae) as separate species: evidence from morphology, anatomy, palynology, molecular systematics. BOTANICAL STUDIES 2024; 65:23. [PMID: 39042341 PMCID: PMC11266325 DOI: 10.1186/s40529-024-00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND The systematic status of sect. Tuberculata and its taxonomy have recently attracted considerable attention. However, the different bases for defining the characteristics of sect. Tuberculata has led to many disagreements among the plants in this group. Camellia neriifolia and Camellia ilicifolia have been the subject of taxonomic controversy and have been treated as different species or varieties of the same species. Therefore, it is important to use multiple methods, i.e., integrative taxonomy, to determine the taxonomic status of C. neriifolia and C. ilicifolia. This is the first study to systematically explore the taxonomic position of these two plants on the basis of Morphology, Anatomy, Palynology and Molecular Systematics. RESULTS Extensive specimen reviews and field surveys showed that many differences exist in C. neriifolia and C. ilicifolia, such as the number of trunk (heavily debarked vs. slightly peeling), leaf type (smooth thin leathery, shiny vs. smooth leathery, obscure or slightly shiny), leaf margin (entire vs. serrate), flower type (subsessile vs. sessile), number of styles (3-4 vs. 3), and sepal (ovate vs. round). Moreover, C. neriifolia has a more distinctive faint yellow flower color, and trunk molting was more severe in C. neriifolia than that in C. ilicifolia. In addition, micromorphological analysis of the leaf epidermis showed that the two species differed in the anticlinal wall, stomatal apparatus, and stomatal cluster, and pollen morphology analyses based on pollen size, germination furrow, and polar and equatorial axes showed that they are both distinct from each other. The results of the phylogenetic tree constructed based on the whole chloroplast genome, protein-coding genes, and ITS2 showed that both C. ilicifolia and C. neriifolia were clustered in different branches and gained high support. CONCLUSIONS The results combine morphology, anatomy, palynology, and molecular systematics to treat both C. neriifolia and C. ilicifolia as separate species in the sect. Tuberculata, and the species names continue to be used as they were previously. In conclusion, clarifying the taxonomic status of C. neriifolia and C. ilicifolia deepens our understanding of the systematic classification of sect. Tuberculata.
Collapse
Affiliation(s)
- Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Ming Tang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
- Lushan National Observation and Research Station of Chinese Forest Ecosystem, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
4
|
Kim JE, Kim KM, Kim YS, Chung GY, Che SH, Na CS. Chloroplast Genomes of Vitis flexuosa and Vitis amurensis: Molecular Structure, Phylogenetic, and Comparative Analyses for Wild Plant Conservation. Genes (Basel) 2024; 15:761. [PMID: 38927697 PMCID: PMC11203327 DOI: 10.3390/genes15060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The chloroplast genome plays a crucial role in elucidating genetic diversity and phylogenetic relationships. Vitis vinifera L. (grapevine) is an economically important species, prompting exploration of wild genetic resources to enhance stress resilience. We meticulously assembled the chloroplast genomes of two Korean Vitis L. species, V. flexuosa Thunb. and V. amurensis Rupr., contributing valuable data to the Korea Crop Wild Relatives inventory. Through exhaustive specimen collection spanning diverse ecological niches across South Korea, we ensured comprehensive representation of genetic diversity. Our analysis, which included rigorous codon usage bias assessment and repeat analysis, provides valuable insights into amino acid preferences and facilitates the identification of potential molecular markers. The assembled chloroplast genomes were subjected to meticulous annotation, revealing divergence hotspots enriched with nucleotide diversity, thereby presenting promising candidates for DNA barcodes. Additionally, phylogenetic analysis reaffirmed intra-genus relationships and identified related crops, shedding light on evolutionary patterns within the genus. Comparative examination with chloroplast genomes of other crops uncovered conserved sequences and variable regions, offering critical insights into genetic evolution and adaptation. Our study advances the understanding of chloroplast genomes, genetic diversity, and phylogenetic relationships within Vitis species, thereby laying a foundation for enhancing grapevine genetic diversity and resilience to environmental challenges.
Collapse
Affiliation(s)
- Ji Eun Kim
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| | - Keyong Min Kim
- Arboretum Education Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Yang Su Kim
- Department of General Affairs, General Affairs Team, Gangeung-Wonju National University, Gangeung 25457, Republic of Korea
| | - Gyu Young Chung
- Department of Forest Science, Andong National University, Andong 36729, Republic of Korea
| | - Sang Hoon Che
- Forest Bioresources Department, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Chae Sun Na
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| |
Collapse
|
5
|
Tao K, Tao L, Huang J, Duan H, Luo Y, Li L. Complete chloroplast genome structural characterization of two Aerides (Orchidaceae) species with a focus on phylogenetic position of Aerides flabellata. BMC Genomics 2024; 25:552. [PMID: 38825700 PMCID: PMC11145882 DOI: 10.1186/s12864-024-10458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.
Collapse
Affiliation(s)
- Kaifeng Tao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Lei Tao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Jialin Huang
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, China
| | - Hanning Duan
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
| | - Lu Li
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
6
|
Li DM, Pan YG, Wu XY, Zou SP, Wang L, Zhu GF. Comparative chloroplast genomics, phylogenetic relationships and molecular markers development of Aglaonema commutatum and seven green cultivars of Aglaonema. Sci Rep 2024; 14:11820. [PMID: 38783007 PMCID: PMC11116548 DOI: 10.1038/s41598-024-62586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Aglaonema commutatum is a famous species in the Aglaonema genus, which has important ornamental and economic value. However, its chloroplast genome information and phylogenetic relationships among popular green cultivars of Aglaonema in southern China have not been reported. Herein, chloroplast genomes of one variety of A. commutatum and seven green cultivars of Aglaonema, namely, A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Sapphire', 'Silver Queen', 'Snow White', 'White Gem', and 'White Horse Prince', were sequenced and assembled for comparative analysis and phylogeny. These eight genomes possessed a typical quadripartite structure that consisted of a LSC region (90,799-91,486 bp), an SSC region (20,508-21,137 bp) and a pair of IR regions (26,661-26,750 bp). Each genome contained 112 different genes, comprising 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The gene orders, GC contents, codon usage frequency, and IR/SC boundaries were highly conserved among these eight genomes. Long repeats, SSRs, SNPs and indels were analyzed among these eight genomes. Comparative analysis of 15 Aglaonema chloroplast genomes identified 7 highly variable regions, including trnH-GUG-exon1-psbA, trnS-GCU-trnG-UCC-exon1, trnY-GUA-trnE-UUC, psbC-trnS-UGA, trnF-GAA-ndhJ, ccsA-ndhD, and rps15-ycf1-D2. Reconstruction of the phylogenetic trees based on chloroplast genomes, strongly supported that Aglaonema was a sister to Anchomanes, and that the Aglaonema genus was classified into two sister clades including clade I and clade II, which corresponded to two sections, Aglaonema and Chamaecaulon, respectively. One variety and five cultivars, including A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Silver Queen', 'Snow White', and 'White Horse Prince', were classified into clade I; and the rest of the two cultivars, including 'Sapphire' and 'White Gem', were classified into clade II. Positive selection was observed in 34 protein-coding genes at the level of the amino acid sites among 77 chloroplast genomes of the Araceae family. Based on the highly variable regions and SSRs, 4 DNA markers were developed to differentiate the clade I and clade II in Aglaonema. In conclusion, this study provided chloroplast genomic resources for Aglaonema, which were useful for its classification and phylogeny.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Yan-Gu Pan
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao-Ye Wu
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., LTD, Dongguan, China
| | - Shui-Ping Zou
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., LTD, Dongguan, China
| | - Lan Wang
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., LTD, Dongguan, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
8
|
Lu Q, Tian Q, Gu W, Yang CX, Wang DJ, Yi TS. Comparative genomics on chloroplasts of Rubus (Rosaceae). Genomics 2024; 116:110845. [PMID: 38614287 DOI: 10.1016/j.ygeno.2024.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Rubus, the largest genus in Rosaceae, contains over 1400 species that distributed in multiple habitats across the world, with high species diversity in the temperate regions of Northern Hemisphere. Multiple Rubus species are cultivated for their valuable fruits. However, the intrageneric classification and phylogenetic relationships are still poorly understood. In this study, we sequenced, assembled, and characterized 17 plastomes of Rubus, and conducted comparative genomics integrating with 47 previously issued plastomes of this genus. The 64 plastomes of Rubus exhibited typical quadripartite structure with sizes ranging from 155,144 to 156,700 bp, and contained 132 genes including 87 protein-coding genes, 37 tRNA genes and eight rRNA genes. All plastomes are conservative in the gene order, the frequency of different types of long repeats and simple sequence repeats (SSRs), the codon usage, and the selection pressure of protein-coding genes. However, there are also some differences in the Rubus plastomes, including slight contraction and expansion of the IRs, a variation in the numbers of SSRs and long repeats, and some genes in certain clades undergoing intensified or relaxed purifying selection. Phylogenetic analysis based on whole plastomes showed that the monophyly of Rubus was strongly supported and resolved it into six clades corresponding to six subgenera. Moreover, we identified 12 highly variable regions that could be potential molecular markers for phylogenetic, population genetic, and barcoding studies. Overall, our study provided insight into plastomic structure and sequence diversification of Rubus, which could be beneficial for future studies on identification, evolution, and phylogeny in this genus.
Collapse
Affiliation(s)
- Qing Lu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Gu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Xuan Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding-Jie Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Feng Z, Zheng Y, Jiang Y, Pei J, Huang L. Phylogenetic relationships, selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes. Sci Rep 2024; 14:9783. [PMID: 38684694 PMCID: PMC11059183 DOI: 10.1038/s41598-024-58934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.
Collapse
Affiliation(s)
- Zhan Feng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
10
|
Liu L, Li H, Li J, Li X, Hu N, Sun J, Zhou W. Chloroplast genomes of Caragana tibetica and Caragana turkestanica: structures and comparative analysis. BMC PLANT BIOLOGY 2024; 24:254. [PMID: 38594633 PMCID: PMC11003120 DOI: 10.1186/s12870-024-04979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The genus Caragana encompasses multiple plant species that possess medicinal and ecological value. However, some species of Caragana are quite similar in morphology, so identifying species in this genus based on their morphological characteristics is considerably complex. In our research, illumina paired-end sequencing was employed to investigate the genetic organization and structure of Caragana tibetica and Caragana turkestanica, including the previously published chloroplast genome sequence of 7 Caragana plants. RESULTS The lengths of C. tibetica and C. turkestanica chloroplast genomes were 128,433 bp and 129,453 bp, respectively. The absence of inverted repeat sequences in these two species categorizes them under the inverted repeat loss clade (IRLC). They encode 110 and 111 genes (4 /4 rRNA genes, 30 /31tRNA genes, and 76 /76 protein-coding genes), respectively. Comparison of the chloroplast genomes of C. tibetica and C. turkestanica with 7 other Caragana species revealed a high overall sequence similarity. However, some divergence was observed between certain intergenic regions (matK-rbcL, psbD-psbM, atpA-psbI, and etc.). Nucleotide diversity (π) analysis revealed the detection of five highly likely variable regions, namely rps2-atpI, accD-psaI-ycf4, cemA-petA, psbN-psbH and rpoA-rps11. Phylogenetic analysis revealed that C. tibetica's sister species is Caragana jubata, whereas C. turkestanica's closest relative is Caragana arborescens. CONCLUSIONS The present study provides worthwhile information about the chloroplast genomes of C. tibetica and C. turkestanica, which aids in the identification and classification of Caragana species.
Collapse
Affiliation(s)
- LiE Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - HongYan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - JiaXin Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - XinJuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Wu Zhou
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
11
|
Park H, Park JH, Kang YJ. Characterization of the complete chloroplast genome of Wolffia arrhiza and comparative genomic analysis with relative Wolffia species. Sci Rep 2024; 14:5873. [PMID: 38467810 PMCID: PMC10928178 DOI: 10.1038/s41598-024-56394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Lemnoideae, commonly referred to as the duckweed, are aquatic plants found worldwide. Wolffia species are known for their extreme reduction in size and complexity, lacking both roots and leaves, and they hold the distinction of being the smallest plants among angiosperms. Interestingly, it belongs to the Araceae family, despite its apparent morphological differences from land plants in the same family. Traditional morphological methods have limitations in classifying these plants, making molecular-level information essential. The chloroplast genome of Wolffia arrhiza is revealed that a total length of 169,602 bp and a total GC content of 35.78%. It follows the typical quadripartite structure, which includes a large single copy (LSC, 92,172 bp) region, a small single copy (SSC, 13,686 bp) region, and a pair of inverted repeat (IR, 31,872 bp each) regions. There are 131 genes characterized, comprising 86 Protein-Coding Genes, 37 Transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. Moreover, 48 simple sequence repeats and 32 long repeat sequences were detected. Comparative analysis between W. arrhiza and six other Lemnoideae species identified 12 hotspots of high nucleotide diversity. In addition, a phylogenetic analysis was performed using 14 species belonging to the Araceae family and one external species as an outgroup. This analysis unveiled W. arrhiza and Wolffia globosa as closely related sister species. Therefore, this research has revealed the complete chloroplast genome data of W. arrhiza, offering a more detailed understanding of its evolutionary position and phylogenetic categorization within the Lemnoideae subfamily.
Collapse
Affiliation(s)
- Halim Park
- Division of Bio and Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | | | - Yang Jae Kang
- Division of Bio and Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Life Science Department at Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
12
|
Wu Y, Zeng MY, Wang HX, Lan S, Liu ZJ, Zhang S, Li MH, Guan Y. The Complete Chloroplast Genomes of Bulbophyllum (Orchidaceae) Species: Insight into Genome Structure Divergence and Phylogenetic Analysis. Int J Mol Sci 2024; 25:2665. [PMID: 38473912 DOI: 10.3390/ijms25052665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.
Collapse
Affiliation(s)
- Yuwei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan-Xin Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shibao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunxiao Guan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Li YL, Nie LY, Deng SW, Duan L, Wang ZF, Charboneau JLM, Ho BC, Chen HF. Characterization of Firmiana danxiaensis plastomes and comparative analysis of Firmiana: insight into its phylogeny and evolution. BMC Genomics 2024; 25:203. [PMID: 38389079 PMCID: PMC10885454 DOI: 10.1186/s12864-024-10046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Firmiana danxiaensis is a critically endangered and ecologically important tree currently only found in four locations in Danxia or Karst habitats in northern Guangdong Province, China. The specialized habitat preference makes it an ideal model species for study of adaptive evolution. Meanwhile, the phylogenetic relationships of F. danxiaensis in four locations under two landforms are unclear. Therefore, we sequenced its complete chloroplast (cp.) genomes and conducted comprehensive interspecific and intrageneric plastome studies. RESULTS The F. danxiaensis plastomes in four locations showed a typical quadripartite and circular structure that ranged from 160,832 to 161,206 bp in size, with 112 unique genes encoded. Comparative genomics showed that the plastomes of F. danxiaensis were relatively conserved with high similarity of genome organization, gene number, GC content and SSRs. While the genomes revealed higher biased codon preferences in Karst habitat than those in Danxia habitats. Eighteen and 11 divergent hotpots were identified at interspecific and intrageneric levels for species identification and further phylogenetic studies. Seven genes (clpP, accD, ccsA, ndhH, rpl20, rpoC2, and rps4) were under positive selection and may be related to adaptation. Phylogenetic analysis revealed that F. danxiaensis is sister to F. major and F. simplex. However, the interspecific relationships are not consistent with the habitat types. CONCLUSIONS The characteristics and interspecific relationship of F. danxiaensis plastomes provide new insights into further integration of geographical factors, environmental factors, and genetic variations on the genomic study of F. danxiaensis. Together, our study will contribute to the study of species identification, population genetics, and conservation biology of F. danxiaensis.
Collapse
Affiliation(s)
- Ya-Li Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Yun Nie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Wen Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boon-Chuan Ho
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore, 259569, Republic of Singapore
| | - Hong-Feng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
14
|
Wang LL, Li Y, Zheng SS, Kozlowski G, Xu J, Song YG. Complete Chloroplast Genomes of Four Oaks from the Section Cyclobalanopsis Improve the Phylogenetic Analysis and Understanding of Evolutionary Processes in the Genus Quercus. Genes (Basel) 2024; 15:230. [PMID: 38397219 PMCID: PMC10888318 DOI: 10.3390/genes15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Quercus is a valuable genus ecologically, economically, and culturally. They are keystone species in many ecosystems. Species delimitation and phylogenetic studies of this genus are difficult owing to frequent hybridization. With an increasing number of genetic resources, we will gain a deeper understanding of this genus. In the present study, we collected four Quercus section Cyclobalanopsis species (Q. poilanei, Q. helferiana, Q. camusiae, and Q. semiserrata) distributed in Southeast Asia and sequenced their complete genomes. Following analysis, we compared the results with those of other species in the genus Quercus. These four chloroplast genomes ranged from 160,784 bp (Q. poilanei) to 161,632 bp (Q. camusiae) in length, with an overall guanine and cytosine (GC) content of 36.9%. Their chloroplast genomic organization and order, as well as their GC content, were similar to those of other Quercus species. We identified seven regions with relatively high variability (rps16, ndhk, accD, ycf1, psbZ-trnG-GCC, rbcL-accD, and rpl32-trnL-UAG) which could potentially serve as plastid markers for further taxonomic and phylogenetic studies within Quercus. Our phylogenetic tree supported the idea that the genus Quercus forms two well-differentiated lineages (corresponding to the subgenera Quercus and Cerris). Of the three sections in the subgenus Cerris, the section Ilex was split into two clusters, each nested in the other two sections. Moreover, Q. camusiae and Q. semiserrata detected in this study diverged first in the section Cyclobalanopsis and mixed with Q. engleriana in the section Ilex. In particular, 11 protein coding genes (atpF, ndhA, ndhD, ndhF, ndhK, petB, petD, rbcL, rpl22, ycf1, and ycf3) were subjected to positive selection pressure. Overall, this study enriches the chloroplast genome resources of Quercus, which will facilitate further analyses of phylogenetic relationships in this ecologically important tree genus.
Collapse
Affiliation(s)
- Ling-Ling Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, 1700 Fribourg, Switzerland
| | - Jin Xu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| |
Collapse
|
15
|
Wang J, Wang J, Shang M, Dai G, Liao B, Zheng J, Hu Z, Duan B. Comparatively analyzing of chloroplast genome and new insights into phylogenetic relationships regarding the genus Stephania. Gene 2024; 893:147931. [PMID: 37898453 DOI: 10.1016/j.gene.2023.147931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The medicinal plant of the genus Stephania holds significant economic importance in the pharmaceutical industry. However, accurately classifying and subdividing this genus remains a challenge. Herein, the chloroplast (cp) genomes of Stephania and Cyclea were sequenced, and the primary characteristics, repeat sequences, inverted repeats regions, simple sequence repeats, and codon usage bias of 17 species were comparatively analyzed. Twelve markers were identified through genome alignment and sliding window analysis. Moreover, a molecular clock analysis revealed the divergence between subgenus (subg.) Botryodiscia and the combined Cyclea, subg. Stephania and Tuberiphania during the early Oligocene epoch. Notably, the raceme-type inflorescence represents the ancestral state of the Stephania and Cyclea. The genetic relationships inferred from the cp genome and protein-coding genes exhibited similar topologies. Additionally, the paraphyletic relationship between the genera Cyclea and Stephania was confirmed. Bayesian inference, maximum likelihood, and neighbor-joining trees consistently showed that section Tuberiphania and Transcostula were non-monophyletic. In conclusion, this research provides valuable insights for further investigations into species identification, evolution, and phylogenetics within the Stephania genus.
Collapse
Affiliation(s)
- Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jing Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Zhigang Hu
- College of Pharmaceutical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
16
|
Li DM, Pan YG, Liu HL, Yu B, Huang D, Zhu GF. Thirteen complete chloroplast genomes of the costaceae family: insights into genome structure, selective pressure and phylogenetic relationships. BMC Genomics 2024; 25:68. [PMID: 38233753 PMCID: PMC10792896 DOI: 10.1186/s12864-024-09996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships. RESULT The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya). CONCLUSION The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan-Gu Pan
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hai-Lin Liu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bo Yu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dan Huang
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Zhou CY, Lin WJ, Li R, Wu Y, Liu ZJ, Li MH. Characterization of Angraecum (Angraecinae, Orchidaceae) Plastomes and Utility of Sequence Variability Hotspots. Int J Mol Sci 2023; 25:184. [PMID: 38203355 PMCID: PMC10779182 DOI: 10.3390/ijms25010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Angraecum, commonly known as Darwin's orchid, is the largest genus of Angraecinae (Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly reported and the potential variability hotspots were explored. The plastomes possessed the typical quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine-cytosine (GC) content of 36.6-36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified. Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome evolution and DNA barcoding for Angraecum.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Wen-Jun Lin
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
18
|
Ma L, Zhou CY, Chen JL, Liu DK, Lan S, Liu ZJ. Comparative Analysis of Luisia (Aeridinae, Orchidaceae) Plastomes Shed Light on Plastomes Evolution and Barcodes Investigation. Genes (Basel) 2023; 15:20. [PMID: 38254910 PMCID: PMC10815154 DOI: 10.3390/genes15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Luisia, a genus of the subtribe Aeridinae of Orchidaceae, comprises ca. 40 species. Members of Luisia exhibit unique morphological characteristics and represent a valuable ornamental orchid genus. However, due to the scarcity of distinct morphological characters, species identification within this genus is ambiguous and controversial. In the present study, next-generation sequencing (NGS) methods were used to assemble the plastomes of five Luisia species and compare them with one publicly available Luisia plastid genome data. The plastomes of Luisia possessed a quadripartite structure, with sizes ranging from 146,243 bp to 147,430 bp. The plastomes of six Luisia species contained a total of 120 genes, comprising 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. Notably, all ndh genes were pseudogenized or lost. An analysis of codon usage bias showed that leucine (Leu) exhibited the highest frequency, while cysteine (Cys) exhibited the lowest frequency. A total of 57 to 64 SSRs and 42 to 49 long repeats were identified. Five regions and five coding sequences were identified for DNA barcodes, based on the nucleotide diversity (Pi) analysis. The species of Luisia constituted a monophyletic group and were sister to Paraphalaenopsis with strong support. Our study deepens the understanding of species identification, plastome evolution and the phylogenetic positions of Luisia.
Collapse
Affiliation(s)
- Liang Ma
- Fujian Health College, Fuzhou 350101, China;
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Jin-Liao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (J.-L.C.); (D.-K.L.); (S.L.)
| |
Collapse
|
19
|
Liu DK, Zhou CY, Tu XD, Zhao Z, Chen JL, Gao XY, Xu SW, Zeng MY, Ma L, Ahmad S, Li MH, Lan S, Liu ZJ. Comparative and phylogenetic analysis of Chiloschista (Orchidaceae) species and DNA barcoding investigation based on plastid genomes. BMC Genomics 2023; 24:749. [PMID: 38057701 DOI: 10.1186/s12864-023-09847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Chiloschista (Orchidaceae, Aeridinae) is an epiphytic leafless orchid that is mainly distributed in tropical or subtropical forest canopies. This rare and threatened orchid lacks molecular resources for phylogenetic and barcoding analysis. Therefore, we sequenced and assembled seven complete plastomes of Chiloschista to analyse the plastome characteristics and phylogenetic relationships and conduct a barcoding investigation. RESULTS We are the first to publish seven Chiloschista plastomes, which possessed the typical quadripartite structure and ranged from 143,233 bp to 145,463 bp in size. The plastomes all contained 120 genes, consisting of 74 protein-coding genes, 38 tRNA genes and eight rRNA genes. The ndh genes were pseudogenes or lost in the genus, and the genes petG and psbF were under positive selection. The seven Chiloschista plastomes displayed stable plastome structures with no large inversions or rearrangements. A total of 14 small inversions (SIs) were identified in the seven Chiloschista plastomes but were all similar within the genus. Six noncoding mutational hotspots (trnNGUU-rpl32 > rpoB-trnCGCA > psbK-psbI > psaC-rps15 > trnEUUC-trnTGGU > accD-psaI) and five coding sequences (ycf1 > rps15 > matK > psbK > ccsA) were selected as potential barcodes based on nucleotide diversity and species discrimination analysis, which suggested that the potential barcode ycf1 was most suitable for species discrimination. A total of 47-56 SSRs and 11-14 long repeats (> 20 bp) were identified in Chiloschista plastomes, and they were mostly located in the large single copy intergenic region. Phylogenetic analysis indicated that Chiloschista was monophyletic. It was clustered with Phalaenopsis and formed the basic clade of the subtribe Aeridinae with a moderate support value. The results also showed that seven Chiloschista species were divided into three major clades with full support. CONCLUSION This study was the first to analyse the plastome characteristics of the genus Chiloschista in Orchidaceae, and the results showed that Chiloschista plastomes have conserved plastome structures. Based on the plastome hotspots of nucleotide diversity, several genes and noncoding regions are suitable for phylogenetic and population studies. Chiloschista may provide an ideal system to investigate the dynamics of plastome evolution and DNA barcoding investigation for orchid studies.
Collapse
Affiliation(s)
- Ding-Kun Liu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong-De Tu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhuang Zhao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin-Liao Chen
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu-Yong Gao
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shao-Wei Xu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Ma
- Fujian Health College, Fuzhou, 350101, Fujian, China
| | - Sagheer Ahmad
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming-He Li
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Siren Lan
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
20
|
Francisconi AF, Marroquín JAM, Cauz-Santos LA, van den Berg C, Martins KKM, Costa MF, Picanço-Rodrigues D, de Alencar LD, Zanello CA, Colombo CA, Hernández BGD, Amaral DT, Lopes MTG, Veasey EA, Zucchi MI. Complete chloroplast genomes of six neotropical palm species, structural comparison, and evolutionary dynamic patterns. Sci Rep 2023; 13:20635. [PMID: 37996522 PMCID: PMC10667357 DOI: 10.1038/s41598-023-44631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023] Open
Abstract
The Arecaceae family has a worldwide distribution, especially in tropical and subtropical regions. We sequenced the chloroplast genomes of Acrocomia intumescens and A. totai, widely used in the food and energy industries; Bactris gasipaes, important for palm heart; Copernicia alba and C. prunifera, worldwide known for wax utilization; and Syagrus romanzoffiana, of great ornamental potential. Copernicia spp. showed the largest chloroplast genomes (C. prunifera: 157,323 bp and C. alba: 157,192 bp), while S. romanzoffiana and B. gasipaes var. gasipaes presented the smallest (155,078 bp and 155,604 bp). Structurally, great synteny was detected among palms. Conservation was also observed in the distribution of single sequence repeats (SSR). Copernicia spp. presented less dispersed repeats, without occurrence in the small single copy (SSC). All RNA editing sites were C (cytidine) to U (uridine) conversions. Overall, closely phylogenetically related species shared more sites. Almost all nodes of the phylogenetic analysis showed a posterior probability (PP) of 1.0, reaffirming the close relationship between Acrocomia species. These results elucidate the conservation among palm chloroplast genomes, but point to subtle structural changes, providing support for the evolutionary dynamics of the Arecaceae family.
Collapse
Affiliation(s)
- Ana Flávia Francisconi
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Jonathan Andre Morales Marroquín
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Luiz Augusto Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Wien, Austria
| | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina S/N-Novo Horizonte, Feira de SantanaFeira de Santana, Bahia, CEP 44036-900, Brazil
| | - Kauanne Karolline Moreno Martins
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Marcones Ferreira Costa
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
- Universidade Federal do Piauí, BR-343 Km 3.5, Floriano, Piauí, CEP 64808-605, Brazil
| | - Doriane Picanço-Rodrigues
- Departamento de Biologia, Universidade Federal do Amazonas, Avenida Gen. Rodrigo Octávio Jordão Ramos, 3000-Coroado I-Campus Universitário-Senador Arthur Virgílio Filho-Setor Sul, Bloco H, Manaus, Amazonas, CEP 69077-000, Brazil
| | - Luciano Delmodes de Alencar
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Cesar Augusto Zanello
- Programa de Pós-Gradução em Genética e Biologia Molecular, Universidade Estadual de Campinas, R. Monteiro Lobato, 255-Barão Geraldo, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Carlos Augusto Colombo
- Instituto Agronômico, Av. Theodureto de Almeida Camargo, 1500, Campinas, São Paulo, CEP 13075-630, Brazil
| | | | - Danilo Trabuco Amaral
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo, CEP 09040-040, Brazil
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3000-Bairro Coroado, Manaus, Amazonas, CEP 69077-000, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Avenida Pádua Dias, 11-Bairro São Dimas, Piracicaba, São Paulo, CEP 13418-900, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Polo Centro Sul, Rodovia SP 127 Km 30, CP 28, Piracicaba, São Paulo, CEP 13400-970, Brazil.
| |
Collapse
|
21
|
Yi R, Bao W, Ao D, Bai YE, Wang L, Wuyun TN. Sequencing and Phylogenetic Analysis of the Chloroplast Genome of Three Apricot Species. Genes (Basel) 2023; 14:1959. [PMID: 37895308 PMCID: PMC10606377 DOI: 10.3390/genes14101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The production and quality of apricots in China is currently limited by the availability of germplasm resource characterizations, including identification at the species and cultivar level. To help address this issue, the complete chloroplast genomes of Prunus armeniaca L., P. sibirica L. and kernel consumption apricot were sequenced, characterized, and phylogenetically analyzed. The three chloroplast (cp) genomes ranged from 157,951 to 158,224 bp, and 131 genes were identified, including 86 protein-coding genes, 37 rRNAs, and 8 tRNAs. The GC content ranged from 36.70% to 36.75%. Of the 170 repetitive sequences detected, 42 were shared by all three species, and 53-57 simple sequence repeats were detected with AT base preferences. Comparative genomic analysis revealed high similarity in overall structure and gene content as well as seven variation hotspot regions, including psbA-trnK-UUU, rpoC1-rpoB, rpl32-trnL-UAG, trnK-rps16, ndhG-ndhI, ccsA-ndhD, and ndhF-trnL. Phylogenetic analysis showed that the three apricot species clustered into one group, and the genetic relationship between P. armeniaca and kernel consumption apricot was the closest. The results of this study provide a theoretical basis for further research on the genetic diversity of apricots and the development and utilization of molecular markers for the genetic engineering and breeding of apricots.
Collapse
Affiliation(s)
- Ru Yi
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China; (R.Y.); (W.B.); (D.A.); (Y.-e.B.)
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China; (R.Y.); (W.B.); (D.A.); (Y.-e.B.)
| | - Dun Ao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China; (R.Y.); (W.B.); (D.A.); (Y.-e.B.)
| | - Yu-e Bai
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China; (R.Y.); (W.B.); (D.A.); (Y.-e.B.)
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China;
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Ta-na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China;
- Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
22
|
Sun X, Zhan Y, Li S, Liu Y, Fu Q, Quan X, Xiong J, Gang H, Zhang L, Qi H, Wang A, Huo J, Qin D, Zhu C. Complete chloroplast genome assembly and phylogenetic analysis of blackcurrant ( Ribes nigrum), red and white currant ( Ribes rubrum), and gooseberry ( Ribes uva-crispa) provide new insights into the phylogeny of Grossulariaceae. PeerJ 2023; 11:e16272. [PMID: 37842068 PMCID: PMC10573389 DOI: 10.7717/peerj.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background Blackcurrant (Ribes nigrum), red currant (R. rubrum), white currant (R. rubrum), and gooseberry (R. uva-crispa) belong to Grossulariaceae and are popular small-berry crops worldwide. The lack of genomic data has severely limited their systematic classification and molecular breeding. Methods The complete chloroplast (cp) genomes of these four taxa were assembled for the first time using MGI-DNBSEQ reads, and their genome structures, repeat elements and protein-coding genes were annotated. By genomic comparison of the present four and previous released five Ribes cp genomes, the genomic variations were identified. By phylogenetic analysis based on maximum-likelihood and Bayesian methods, the phylogeny of Grossulariaceae and the infrageneric relationships of the Ribes were revealed. Results The four cp genomes have lengths ranging from 157,450 to 157,802 bp and 131 shared genes. A total of 3,322 SNPs and 485 Indels were identified from the nine released Ribes cp genomes. Red currant and white currant have 100% identical cp genomes partially supporting the hypothesis that white currant (R. rubrum) is a fruit color variant of red currant (R. rubrum). The most polymorphic genic and intergenic region is ycf1 and trnT-psbD, respectively. The phylogenetic analysis demonstrated the monophyly of Grossulariaceae in Saxifragales and the paraphyletic relationship between Saxifragaceae and Grossulariaceae. Notably, the Grossularia subgenus is well nested within the Ribes subgenus and shows a paraphyletic relationship with the co-ancestor of Calobotrya and Coreosma sections, which challenges the dichotomous subclassification of the Ribes genus based on morphology (subgenus Ribes and subgenus Grossularia). These data, results, and insights lay a foundation for the phylogenetic research and breeding of Ribes species.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Songlin Li
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Fu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huixin Gang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Lijun Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Heilongjiang Institute of Green Food Science, Harbin, Heilongjiang, China
| | - Huijuan Qi
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Heilongjiang Institute of Green Food Science, Harbin, Heilongjiang, China
| | - Aoxue Wang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Zhou CY, Zeng MY, Gao X, Zhao Z, Li R, Wu Y, Liu ZJ, Zhang D, Li MH. Characteristics and Comparative Analysis of Seven Complete Plastomes of Trichoglottis s.l. (Aeridinae, Orchidaceae). Int J Mol Sci 2023; 24:14544. [PMID: 37833995 PMCID: PMC10572978 DOI: 10.3390/ijms241914544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Trichoglottis exhibits a range of rich variations in colors and shapes of flower and is a valuable ornamental orchid genus. The genus Trichoglottis has been expanded by the inclusion of Staurochilus, but this Trichoglottis sensu lato (s.l.) was recovered as a non-monophyletic genus based on molecular sequences from one or a few DNA regions. Here, we present phylogenomic data sets, incorporating complete plastome sequences from seven species (including five species sequenced in this study) of Trichoglottis s.l. (including two species formerly treated as Staurochilus), to compare plastome structure and to reconstruct the phylogenetic relationships of this genus. The seven plastomes possessed the typical quadripartite structure of angiosperms and ranged from 149,402 bp to 149,841 bp with a GC content of 36.6-36.7%. These plastomes contain 120 genes, which comprise 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes, all ndh genes were pseudogenized or lost. A total of 98 (T. philippinensis) to 134 (T. ionosma) SSRs and 33 (T. subviolacea) to 46 (T. ionosma) long repeats were detected. The consistent and robust phylogenetic relationships of Trichoglottis were established using a total of 25 plastid genomes from the Aeridinae subtribe. The genus Trichoglottis s.l. was strongly supported as a monophyletic group, and two species formerly treated as Staurochilus were revealed as successively basal lineages. In addition, five mutational hotspots (trnNGUU-rpl32, trnLUAA, trnSGCU-trnGUCC, rbcL-accD, and trnTGGU-psbD) were identified based on the ranking of PI values. Our research indicates that plastome data is a valuable source for molecular identification and evolutionary studies of Trichoglottis and its related genera.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Xuyong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (M.-Y.Z.); (X.G.); (Z.Z.); (R.L.); (Y.W.); (Z.-J.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Zhao Z, Zeng MY, Wu YW, Li JW, Zhou Z, Liu ZJ, Li MH. Characterization and Comparative Analysis of the Complete Plastomes of Five Epidendrum (Epidendreae, Orchidaceae) Species. Int J Mol Sci 2023; 24:14437. [PMID: 37833887 PMCID: PMC10572996 DOI: 10.3390/ijms241914437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Epidendrum, one of the three largest genera of Orchidaceae, exhibits significant horticultural and ornamental value and serves as an important research model in conservation, ecology, and evolutionary biology. Given the ambiguous identification of germplasm and complex evolutionary relationships within the genus, the complete plastome of this genus (including five species) were firstly sequenced and assembled to explore their characterizations. The plastomes exhibited a typical quadripartite structure. The lengths of the plastomes ranged from 147,902 bp to 150,986 bp, with a GC content of 37.16% to 37.33%. Gene annotation revealed the presence of 78-82 protein-coding genes, 38 tRNAs, and 8 rRNAs. A total of 25-38 long repeats and 130-149 SSRs were detected. Analysis of relative synonymous codon usage (RSCU) indicated that leucine (Leu) was the most and cysteine (Cys) was the least. The consistent and robust phylogenetic relationships of Epidendrum and its closely related taxa were established using a total of 43 plastid genomes from the tribe Epidendreae. The genus Epidendrum was supported as a monophyletic group and as a sister to Cattleya. Meanwhile, four mutational hotspots (trnCGCA-petN, trnDGUC-trnYGUA, trnSGCU-trnGUCC, and rpl32-trnLUAG) were identified for further phylogenetic studies. Our analysis demonstrates the promising utility of plastomes in inferring the phylogenetic relationships of Epidendrum.
Collapse
Affiliation(s)
- Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
| | - Yu-Wei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
| | - Jin-Wei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
25
|
Kim SC, Ha YH, Park BK, Jang JE, Kang ES, Kim YS, Kimspe TH, Kim HJ. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome. PLoS One 2023; 18:e0289625. [PMID: 37733832 PMCID: PMC10513226 DOI: 10.1371/journal.pone.0289625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Chloroplast genomes are valuable for inferring evolutionary relationships. We report the complete chloroplast genomes of 36 Corydalis spp. and one Fumaria species. We compared these genomes with 22 other taxa and investigated the genome structure, gene content, and evolutionary dynamics of the chloroplast genomes of 58 species, explored the structure, size, repeat sequences, and divergent hotspots of these genomes, conducted phylogenetic analysis, and identified nine types of chloroplast genome structures among Corydalis spp. The ndh gene family suffered inversion and rearrangement or was lost or pseudogenized throughout the chloroplast genomes of various Corydalis species. Analysis of five protein-coding genes revealed simple sequence repeats and repetitive sequences that can be potential molecular markers for species identification. Phylogenetic analysis revealed three subgenera in Corydalis. Subgenera Cremnocapnos and Sophorocapnos represented the Type 2 and 3 genome structures, respectively. Subgenus Corydalis included all types except type 3, suggesting that chloroplast genome structural diversity increased during its differentiation. Despite the explosive diversification of this subgenus, most endemic species collected from the Korean Peninsula shared only one type of genome structure, suggesting recent divergence. These findings will greatly improve our understanding of the chloroplast genome of Corydalis and may help develop effective molecular markers.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Beom Kyun Park
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Ju Eun Jang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Eun Su Kang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Soo Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Tae-Hee Kimspe
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| |
Collapse
|
26
|
Tao L, Duan H, Tao K, Luo Y, Li Q, Li L. Complete chloroplast genome structural characterization of two Phalaenopsis (Orchidaceae) species and comparative analysis with their alliance. BMC Genomics 2023; 24:359. [PMID: 37369999 DOI: 10.1186/s12864-023-09448-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The taxonomy and infrageneric delimitation of Phalaenopsis Blume has been significantly disputed due to some overlapping morphological features between species related, which needed further evidence for clarification. The structural characterization of complete chloroplast genomes of P. storbatiana and P. wilsonii were analyzed and compared with those of related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. RESULTS It was shown that chloroplast genomes of Phalaenopsis storbatiana and P. wilsonii had a typical quadripartite structure with conserved genome arrangements and moderate divergence. The chloroplast genomes of P. storbatiana and P. wilsonii were 145,885 bp and 145,445 bp in length, respectively, and shared a similar GC content of 36.8%. Gene annotations of two species revealed 109 single-copy genes consistently. In addition, 20 genes duplicated in the inverted regions, 16 genes each possessed one or more introns, and five ndh (NA (D)H dehydrogenase) genes were observed in both. Comparative analysis of the total cp genomes of P. storbatiana and P. wilsonii with those of other six related Phalaenopsis species confirmed the stable sequence identity for coding and non-coding regions and higher sequence variation in SC regions than IR regions. Most of their protein-coding genes had a high degree of codon preference. Moreover, 45 genes were discovered with significantly positive selection. However, different amplifications in IR regions were observed in these eight species. Phylogenetic analysis based on CDS from 60 species representing main clades in Orchidaceae indicated that Phalaenopsis species including P. stobartiana and P. wilsonii formed a monophyletic clade with high bootstrap nested in tribe Vandeae of Epidendroideae, which was consistent with those from previous studies. CONCLUSIONS The results could provide insight into understanding the plastome evolution and phylogenetic relationships of Phalaenopsis.
Collapse
Affiliation(s)
- Lei Tao
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China
- Department of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hanning Duan
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Kaifeng Tao
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Luo
- Department of Horticulture and Gardening, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Qingqing Li
- Department of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
- Kunming Xianghao Technology Co. Ltd., Kunming, Yunnan, 650204, China
| | - Lu Li
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
27
|
Zhang D, Ren J, Jiang H, Wanga VO, Dong X, Hu G. Comparative and phylogenetic analysis of the complete chloroplast genomes of six Polygonatum species (Asparagaceae). Sci Rep 2023; 13:7237. [PMID: 37142659 PMCID: PMC10160070 DOI: 10.1038/s41598-023-34083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.
Collapse
Affiliation(s)
- Dongjuan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ren
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hui Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Senapati A, Chetri BK, Mitra S, Shelke RG, Rangan L. Decoding the complete chloroplast genome of Cissus quadrangularis: insights into molecular structure, comparative genome analysis and mining of mutational hotspot regions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:709-724. [PMID: 37363414 PMCID: PMC10284753 DOI: 10.1007/s12298-023-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Cissus quadrangularis L., a member of the Vitaceae family, is an important medicinal plant with widespread application in Indian traditional medicines. C. quadrangularis L. whole chloroplast genome of 160,404 bp was assembled using a genome skimming approach from the whole genome library. The assembled chloroplast genome contained a large single-copy region (88,987 bp), a small single-copy region (18,621 bp), and pairs of inverted repeat regions (26,398 bp). It also comprised 133 genes, including 37 tRNAs, eight rRNAs, and 88 protein-coding genes. Aside from that, we annotated three genes atpH, petB, and psbL, as well as one duplicated copy of the ycf1 gene in C. quadrangularis L. that had previously been missing from the annotation of compared Cissus chloroplast genomes. Five divergent hotspot regions such as petA_psbJ (0.1237), rps16_trnQ-UUG (0.0913), psbC_trnS-UGA (0.0847), rps15_ycf1 (0.0788), and rps2_rpoC2 (0.0788) were identified in the investigation that could aid in future species discrimination. Surprisingly, we found the overlapping genes ycf1 and ndhF on the IRb/SSC junction, rarely seen in angiosperms. The results of the phylogenetic study showed that the genomes of the Cissus species under study formed a single distinct clade. The detailed annotations given in this study could be useful in the future for genome annotations of Cissus species. The current findings of the study have the potential to serve as a useful resource for future research in the field of population genetics and the evolutionary relationships in the Cissus genus. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01312-w.
Collapse
Affiliation(s)
- Alok Senapati
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bimal K. Chetri
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Sudip Mitra
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Rahul G. Shelke
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Latha Rangan
- Applied Biodiversity Laboratory, O Block, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
29
|
Zhang D, Tu J, Ding X, Guan W, Gong L, Qiu X, Huang Z, Su H. Analysis of the chloroplast genome and phylogenetic evolution of Bidens pilosa. BMC Genomics 2023; 24:113. [PMID: 36918765 PMCID: PMC10015693 DOI: 10.1186/s12864-023-09195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Chloroplast genomes for 3 Bidens plants endemic to China (Bidens bipinnata Linn., Bidens pilosa Linn., and Bidens alba var. radiata) have been sequenced, assembled and annotated in this study to distinguish their molecular characterization and phylogenetic relationships. The chloroplast genomes are in typical quadripartite structure with two inverted repeat regions separating a large single copy region and a small single copy region, and ranged from 151,599 to 154,478 bp in length. Similar number of SSRs and long repeats were found in Bidens, wherein mononucleotide repeats (A/T), forward and palindromic repeats were the most in abundance. Gene loss of clpP and psbD, IR expansion and contraction were detected in these Bidens plants. It seems that ndhE, ndhF, ndhG, and rpl32 from the Bidens plants were under positive selection while the majority of chloroplast genes were under purifying selection. Phylogenetic analysis revealed that 3 Bidens plants clustered together and further formed molophyletic clade with other Bidens species, indicating Bidens plants might be under radiation adaptive selection to the changing environment world-widely. Moreover, mutation hotspot analysis and in silico PCR analysis indicated that inter-genic regions of ndhD-ccsA, ndhI-ndhG, ndhF-rpl32, trnL_UAG-rpl32, ndhE-psaC, matK-rps16, rps2-atpI, cemA-petA, petN-psbM were candidate markers of molecular identification for Bidens plants. This study may provide useful information for genetic diversity analysis and molecular identification for Bidens species.
Collapse
Affiliation(s)
- Danchun Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiajun Tu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxia Ding
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wan Guan
- Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318050, Zhejiang, China
| | - Lu Gong
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318050, Zhejiang, China
| | - Xiaohui Qiu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China.
| | - He Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
30
|
Jin G, Li W, Song F, Yang L, Wen Z, Feng Y. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae: Anthemideae) chloroplast genomes: insights into structural divergence and phylogenetic relationships. BMC PLANT BIOLOGY 2023; 23:136. [PMID: 36899296 PMCID: PMC9999589 DOI: 10.1186/s12870-023-04113-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Artemisia subg. Seriphidium, one of the most species-diverse groups within Artemisia, grows mainly in arid or semi-arid regions in temperate climates. Some members have considerable medicinal, ecological, and economic value. Previous studies on this subgenus have been limited by a dearth of genetic information and inadequate sampling, hampering our understanding of their phylogenetics and evolutionary history. We therefore sequenced and compared the chloroplast genomes of this subgenus, and evaluated their phylogenetic relationships. RESULTS We newly sequenced 18 chloroplast genomes of 16 subg. Seriphidium species and compared them with one previously published taxon. The chloroplast genomes, at 150,586-151,256 bp in length, comprised 133 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and one pseudogene, with GC content of 37.40-37.46%. Comparative analysis showed that genomic structures and gene order were relatively conserved, with only some variation in IR borders. A total of 2203 repeats (1385 SSRs and 818 LDRs) and 8 highly variable loci (trnK - rps16, trnE - ropB, trnT, ndhC - trnV, ndhF, rpl32 - trnL, ndhG - ndhI and ycf1) were detected in subg. Seriphidium chloroplast genomes. Phylogenetic analysis of the whole chloroplast genomes based on maximum likelihood and Bayesian inference analyses resolved subg. Seriphidium as polyphyletic, and segregated into two main clades, with the monospecific sect. Minchunensa embedded within sect. Seriphidium, suggesting that the whole chloroplast genomes can be used as molecular markers to infer the interspecific relationship of subg. Seriphidium taxa. CONCLUSION Our findings reveal inconsistencies between the molecular phylogeny and traditional taxonomy of the subg. Seriphidium and provide new insights into the evolutionary development of this complex taxon. Meanwhile, the whole chloroplast genomes with sufficiently polymorphic can be used as superbarcodes to resolve interspecific relationships in subg. Seriphidium.
Collapse
Affiliation(s)
- Guangzhao Jin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Feng Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ying Feng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- The Herbarium of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
31
|
Xu Y, Liu Y, Yu Z, Jia X. Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia 'Xiari Qixin': Genome Features, Comparative and Phylogenetic Analysis. Genes (Basel) 2023; 14:460. [PMID: 36833387 PMCID: PMC9956581 DOI: 10.3390/genes14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.
Collapse
Affiliation(s)
| | | | | | - Xiaocheng Jia
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
32
|
Kamra K, Jung J, Kim JH. A phylogenomic study of Iridaceae Juss. based on complete plastid genome sequences. FRONTIERS IN PLANT SCIENCE 2023; 14:1066708. [PMID: 36844099 PMCID: PMC9948625 DOI: 10.3389/fpls.2023.1066708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The plastid genome has proven to be an effective tool for examining deep correlations in plant phylogenetics, owing to its highly conserved structure, uniparental inheritance, and limited variation in evolutionary rates. Iridaceae, comprising more than 2,000 species, includes numerous economically significant taxa that are frequently utilized in food industries and medicines and for ornamental and horticulture purposes. Molecular studies on chloroplast DNA have confirmed the position of this family in the order Asparagales with non-asparagoids. The current subfamilial classification of Iridaceae recognizes seven subfamilies-Isophysioideae, Nivenioideae, Iridoideae, Crocoideae, Geosiridaceae, Aristeoideae, and Patersonioideae-which are supported by limited plastid DNA regions. To date, no comparative phylogenomic studies have been conducted on the family Iridaceae. We assembled and annotated (de novo) the plastid genomes of 24 taxa together with seven published species representing all the seven subfamilies of Iridaceae and performed comparative genomics using the Illumina MiSeq platform. The plastomes of the autotrophic Iridaceae represent 79 protein-coding, 30 tRNA, and four rRNA genes, with lengths ranging from 150,062 to 164,622 bp. The phylogenetic analysis of the plastome sequences based on maximum parsimony, maximum likelihood, and Bayesian inference analyses suggested that Watsonia and Gladiolus were closely related, supported by strong support values, which differed considerably from recent phylogenetic studies. In addition, we identified genomic events, such as sequence inversions, deletions, mutations, and pseudogenization, in some species. Furthermore, the largest nucleotide variability was found in the seven plastome regions, which can be used in future phylogenetic studies. Notably, three subfamilies-Crocoideae, Nivenioideae, and Aristeoideae-shared a common ycf2 gene locus deletion. Our study is a preliminary report of a comparative study of the complete plastid genomes of 7/7 subfamilies and 9/10 tribes, elucidating the structural characteristics and shedding light on plastome evolution and phylogenetic relationships within Iridaceae. Additionally, further research is required to update the relative position of Watsonia within the tribal classification of the subfamily Crocoideae.
Collapse
Affiliation(s)
| | | | - Joo-Hwan Kim
- Department of Life Sciences, Gachon University, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
33
|
Samji A, Eashwarlal K, Shanmugavel S, Kumar S, Warrier RR. Chloroplast genome skimming of a potential agroforestry species Melia dubia. Cav and its comparative phylogenetic analysis with major Meliaceae members. 3 Biotech 2023; 13:30. [PMID: 36597460 PMCID: PMC9805483 DOI: 10.1007/s13205-022-03447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 12/20/2022] [Indexed: 01/02/2023] Open
Abstract
Melia dubia Cav. is a fast-growing plywood species gaining popularity due to high economic returns. This study aimed to assemble and annotate the chloroplast (cp) genome of M. dubia and compare it with previously published cp genomes within the Meliaceae family. The chloroplast genome was constructed by the de novo and reference-based assembly of paired-end reads generated by long-read sequencing of genomic DNA. The cp genome, sized 171,956 bp, comprised a typical angiosperm quadripartite structure. The large single-copy (LSC) region of 76,055 bp and a small single-copy (SSC) region of 18,693 bp cover 55% of the genome. The pair of inverted repeats (IRA and IRB) were 38,604 bp each (covering 45% of the genome). We identified unique genes (112), including protein-coding genes (79), tRNA (29) and 4 rRNA genes. Phylogenetic analysis using complete cp genomes of 11 species from Meliaceae revealed that M. dubia and M. azedarach shared a sister clade. Comparative analysis using cp genome of M. dubia, M. azedarach and Azadirachta indica revealed a high sequence similarity (> 70%). Five intergenic regions were highly conserved among the three cp genomes. The gene trnG-UCC at LSC region was found to be more divergent in M. dubia and M. azedarach, while it shows complete conservation within M. dubia and A. indica. This is the first report of the chloroplast genome in M. dubia. The available levels of taxonomic expertise and clarity in species delineation within the Melia genus are low. The information generated provides scope for identifying new barcodes which increases the discriminatory power of the species within the genus beyond morphological identification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03447-1.
Collapse
Affiliation(s)
- Aghila Samji
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Komal Eashwarlal
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Senthil Shanmugavel
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Santhosh Kumar
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| | - Rekha Ravindranath Warrier
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, PB No. 1061, Forest Campus, Coimbatore, 641 002 India
| |
Collapse
|
34
|
Ding H, Han S, Ye Y, Bi D, Zhang S, Yi R, Gao J, Yang J, Wu L, Kan X. Ten Plastomes of Crassula (Crassulaceae) and Phylogenetic Implications. BIOLOGY 2022; 11:1779. [PMID: 36552287 PMCID: PMC9775174 DOI: 10.3390/biology11121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The genus Crassula is the second-largest genus in the family Crassulaceae, with about 200 species. As an acknowledged super-barcode, plastomes have been extensively utilized for plant evolutionary studies. Here, we first report 10 new plastomes of Crassula. We further focused on the structural characterizations, codon usage, aversion patterns, and evolutionary rates of plastomes. The IR junction patterns-IRb had 110 bp expansion to rps19-were conservative among Crassula species. Interestingly, we found the codon usage patterns of matK gene in Crassula species are unique among Crassulaceae species with elevated ENC values. Furthermore, subgenus Crassula species have specific GC-biases in the matK gene. In addition, the codon aversion motifs from matK, pafI, and rpl22 contained phylogenetic implications within Crassula. The evolutionary rates analyses indicated all plastid genes of Crassulaceae were under the purifying selection. Among plastid genes, ycf1 and ycf2 were the most rapidly evolving genes, whereas psaC was the most conserved gene. Additionally, our phylogenetic analyses strongly supported that Crassula is sister to all other Crassulaceae species. Our findings will be useful for further evolutionary studies within the Crassula and Crassulaceae.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
35
|
Xiao T, He L, Yue L, Zhang Y, Lee SY. Comparative phylogenetic analysis of complete plastid genomes of Renanthera (Orchidaceae). Front Genet 2022; 13:998575. [PMID: 36186481 PMCID: PMC9515656 DOI: 10.3389/fgene.2022.998575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to its attractive flower shape and color, Renanthera (Orchidaceae), comprising about 19 species, has significant ornamental value as a houseplant, in floral design and in landscape gardens. Two species of Renanthera are categorized as endangered and critically endangered in China’s Red List and international trade in these orchids is currently strictly monitored by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This paper reports on the de novo assembled and annotated plastome of four species of Renanthera; R. citrina, R. coccinea, R. imschootiana, and R. philippinensis. The length of the plastome sequences ranged from 144,673 bp (R. imschootiana) to 149,007 bp (R. coccinea) with GC content of 36.6–36.7%. The plastomes showed a typical quadripartite structure, including a large single-copy (84,241–86,404 bp), a small single-copy (11,468–12,167 bp), and a pair of inverted repeats (24,482–25,715 bp) regions. Of the 120 genes detected, 74 were protein coding, 38 were tRNA, and eight were rRNA genes. The plastome of Renanthera is rather conserved, but nucleotide variations that could distinguish them apart are noticeable—the total number of tandem repeats ranged from 62 (in R. imschootiana) to 74 (in R. citrina); while the number of long repeats ranged from 21 (in R. imschootiana and R. philippinensis) to 43 (in R. citrina). Three hypervariable regions (psbI-trnS-GCU, trnG-GCC, rpl32) were identified. Phylogenetic analyses based on the CDS using maximum likelihood (ML) and Bayesian inference (BI) revealed that Renanthera is closely related to Holcoglossum, Neofinetia, Pendulorchis, and Vanda. The relationship between the four species of Renanthera was fully resolved; a monophyletic clade was formed and R. coccinea was recorded as the first to diverge from the rest. The genetic data obtained from this study could serve as a useful resource for species identification in Renanthera as well as contribute to future research on the phylogenomics of Orchidaceae.
Collapse
Affiliation(s)
- Tao Xiao
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Liefen He
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Liangliang Yue
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China
- *Correspondence: Yonghong Zhang, ; Shiou Yih Lee,
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
- *Correspondence: Yonghong Zhang, ; Shiou Yih Lee,
| |
Collapse
|
36
|
Comparative Analyses of Chloroplast Genomes Provide Comprehensive Insights into the Adaptive Evolution of Paphiopedilum (Orchidaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An elucidation of how the selection pressures caused by habitat environments affect plant plastid genomes and lead to the adaptive evolution of plants, is a very intense area of research in evolutionary biology. The genus Paphiopedilum is a predominant group of orchids that includes over 66 species with high horticultural and ornamental value. However, owing to the destructive exploitation and habitat deterioration of wild germplasm resources of Paphiopedilum, it needs more molecular genetic resources and studies on this genus. The chloroplast is cytoplasmically inherited and often used in evolutionary studies. Thus, for this study, we newly sequenced, assembled and annotated five chloroplast genomes of the Paphiopedilum species. The size of these genomes ranged from 155,886 bp (P. henryanum) to 160,503 bp (P. ‘GZSLKY’ Youyou) and they contained 121–122 genes, which consisted of 76 protein coding genes, eight ribosomal RNAs, and 37–38 transfer RNAs. Combined with the other 14 Paphiopedilum species, the characteristics of the repeat sequences, divergent hotspot regions, and the condo usage bias were evaluated and identified, respectively. The gene transfer analysis showed that some fragments of the ndh and ycf gene families were shared by both the chloroplast and nucleus. Although the genomic structure and gene content was conserved, there was a significant boundary shift caused by the inverted repeat (IR) expansion and small single copy (SSC) contraction. The lower GC content and loss of ndh genes could be the result of adaptive evolutionary responses to its unique habitats. The genes under positive selection, including accD, matK, psbM, rpl20, rps12, ycf1, and ycf2 might be regarded as potential candidate genes for further study, which significantly contribute to the adaptive evolution of Paphiopedilum.
Collapse
|