1
|
Sarwer K, Lashari S, Rafaqat N, Maher, Raheem A, Rehman MU, Abbas SMI. Obstructive hypertrophic cardiomyopathy: from genetic insights to a multimodal therapeutic approach with mavacamten, aficamten, and beyond. Egypt Heart J 2024; 76:156. [PMID: 39645546 PMCID: PMC11625047 DOI: 10.1186/s43044-024-00587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND A cardiac condition marked by excessive growth of heart muscle cells, hypertrophic cardiomyopathy (HCM) is a complex genetic disorder characterized by left ventricular hypertrophy, microvascular ischemia, myocardial fibrosis, and diastolic dysfunction. Obstructive hypertrophic cardiomyopathy (oHCM), a subset of HCM, involves significant obstruction in the left ventricular outflow tract (LVOT), leading to symptoms like dyspnea, fatigue, and potentially life-threatening cardiac events. With advancements in genetic understanding and the introduction of novel pharmacologic agents, including cardiac myosin inhibitors like mavacamten and aficamten, there is a paradigm shift in the therapeutic approach to oHCM. MAIN BODY The underlying mechanisms of HCM are closely tied to genetic mutations affecting sarcomere proteins, particularly those encoded by the MYH7 and MYBPC3 genes. These mutations lead to disrupted sarcomere function, resulting in hypertrophic changes and LVOT obstruction. While genetic heterogeneity is a hallmark of HCM, clinical diagnosis relies heavily on imaging techniques such as Echocardiography and cardiac magnetic resonance imaging to assess the extent of hypertrophy and obstruction. Current pharmacological management of obstructive HCM (oHCM) focuses on alleviating symptoms rather than modifying disease progression. Beta-blockers and calcium channel blockers are primary treatment options, although their effectiveness varies among patients. Recent clinical trials have highlighted the potential of novel cardiac myosin inhibitors, including mavacamten and aficamten, in enhancing exercise capacity, reducing LVOT obstruction, and improving overall cardiac function. These innovative agents represent a significant breakthrough in targeting the fundamental pathophysiological mechanisms driving oHCM. A comprehensive literature review was conducted, utilizing top-tier databases such as PubMed, Scopus, and Google Scholar, to compile an authoritative and up-to-date overview of the current advancements in the field. This review sheds light on the updated 2024 American Heart Association (AHA) guidelines for HCM management, emphasizing the treatment cascade and tailored management for each stage of oHCM. By introducing a new paradigm for personalized medicine in oHCM, this research leverages advanced genomics, biomarkers, and imaging techniques to optimize treatment strategies. CONCLUSIONS The introduction of cardiac myosin inhibitors heralds a new era in the management of oHCM. By directly targeting the molecular mechanisms underpinning the disease, these novel therapies offer improved symptom relief and functional outcomes. Ongoing research into the genetic basis of HCM and the development of targeted treatments holds promise for further enhancing patient care. Future studies should continue to refine these therapeutic strategies and explore their long-term benefits and potential in diverse patient populations. This review makes a significant contribution to the field by synthesizing the most recent AHA guidelines, emphasizing the crucial role of tailored management strategies in optimizing outcomes for patients with oHCM, and promoting the incorporation of cutting-edge genomics and imaging modalities to enhance personalized care.
Collapse
Affiliation(s)
- Khadija Sarwer
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Saeeda Lashari
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Nida Rafaqat
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Maher
- Liaquat University of Medical and Health Sciences, Jamshoro, Hyderabad, Sindh, Pakistan
| | - Abdul Raheem
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan.
| | - Muneeb Ur Rehman
- CMH Lahore Medical College & IOD, Abdur Rehman Road, Lahore Cantt, Pakistan
| | - Syed Muhammad Iraj Abbas
- Baqai Medical University, 51, Deh Tor, Gadap Road, Near Toll Plaza, SuperHighway,, P.O. Box 2407, Karachi, 75340, Sindh, Pakistan
| |
Collapse
|
2
|
Xiong Y, Alnoud MAH, Ali H, Ali I, Ahmad S, Khan MU, Hassan SSU, Majid M, Khan MS, Ahmad RUS, Khan SU, Khan KA, White A. Beyond the silence: A comprehensive exploration of long non-coding RNAs as genetic whispers and their essential regulatory functions in cardiovascular disorders. Curr Probl Cardiol 2024; 49:102390. [PMID: 38232927 DOI: 10.1016/j.cpcardiol.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules that regulate gene expression at several levels, including transcriptional, post-transcriptional, and translational. They have a length of more than 200 nucleotides and cannot code. Many human diseases have been linked to aberrant lncRNA expression, highlighting the need for a better knowledge of disease etiology to drive improvements in diagnostic, prognostic, and therapeutic methods. Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. LncRNAs play an essential role in the complex process of heart formation, and their abnormalities have been associated with several CVDs. This Review article looks at the roles and relationships of long non-coding RNAs (lncRNAs) in a wide range of CVDs, such as heart failure, myocardial infarction, atherosclerosis, and cardiac hypertrophy. In addition, the review delves into the possible uses of lncRNAs in diagnostics, prognosis, and clinical treatments of cardiovascular diseases. Additionally, it considers the field's future prospects while examining how lncRNAs might be altered and its clinical applications.
Collapse
Affiliation(s)
- Yuchen Xiong
- Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University),410001,Hunan,China.
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000.
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait.
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, 70112, LA, USA
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, 45550, Pakistan
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Rafi U Shan Ahmad
- Department of Biomedical Engineering, City university of Hong Kong, Kowloon City, Hong Kong.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Alexandra White
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
3
|
Chen P, Yawar W, Farooqui AR, Ali S, Lathiya N, Ghous Z, Sultan R, Alhomrani M, Alghamdi SA, Almalki AA, Alghamdi AA, ALSuhaymi N, Razi Ul Islam Hashmi M, Hameed Y. Transcriptomics data integration and analysis to uncover hallmark genes in hypertrophic cardiomyopathy. Am J Transl Res 2024; 16:637-653. [PMID: 38463581 PMCID: PMC10918138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease that mainly affects the myocardium. In the current study, we aim to explore HCM-related hub genes through the analysis of differentially expressed genes (DEGs) between HCM and normal sample groups. METHODS The GSE68316 and GSE36961 expression profiles were obtained from the Gene Expression Omnibus (GEO) database for the identification of DEGs, to explore hub genes, and to perform their expression analysis. Clinical HCM and control tissue samples were taken for expression and promoter methylation validation analysis via RNA-sequencing (RNA-seq) and targeted bisulfite sequencing (bisulfite-seq) analyses. Then, other different bioinformatics tools were employed to perform STRING, lncRNA-miRNA-mRNA regulatory networks, gene enrichment, and drug prediction analyses. RESULTS In total, the top 20 DEGs, including 10 up-regulated and 10 down-regulated, were obtained from GSE68316. Out of the 20 DEGs, we subsequently identified the 8 most important hub genes including 5 up-regulated genes (EPB42, UQCRH, CA1, PFDN5, and LSM5) and 3 down-regulated genes (RPS24, TNS1, and RPL26). Expression and promoter methylation dysregulation of these genes were further validated on clinical HCM samples paired with controls. Next, we further investigated hub genes' regulatory 6 miRNAs (has-mir-1-3p, has-mir-129-5p, has-mir-16-5p, has-mir-23b-3p, has-mir-27-3p, and has-mir-182-5p) and miRNAs regulatory 4 lncRNAs (NUTMB2-AS1, NEAT1, XIST, and GABPB1-AS1) in this study via the lncRNA-cricRNA-miRNA-mRNA regulatory network. Later on, gene enrichment analysis revealed that hub genes were enriched in various important pathways including Nitrogen metabolism, Ribosome, RNA degradation, Cardiac muscle contraction, and Coronavirus disease, etc. Finally, the drug prediction analysis highlighted different potential candidate drugs for altering the expression of hub genes in the treatment of HCM. CONCLUSION In summary, the identification of key hub genes and their enrichment analysis in the current study may shed light on the mechanisms behind the occurrence and development of HCM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Cardiovascular Medicine, Taiyuan Central HospitalTaiyuan 030000, Shanxi, China
| | - Warda Yawar
- Department of Emergency, PPHISindh, Karachi 74800, Pakistan
| | | | - Saqib Ali
- Department of Computer Science, University of AgricultureFaisalabad 38040, Pakistan
| | - Nida Lathiya
- Department of Physiology, Jinnah Medical and Dental College, Sohail UniversityKarachi 74800, Pakistan
| | - Zeeshan Ghous
- Department of Cardiology, Punjab Institute of CardiologyLahore 54000, Pakistan
| | - Rizwana Sultan
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal SciencesBahawalpur, Pakistan
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
- Research Centre for Health Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Naif ALSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences - AlQunfudah, Umm Al-Qura UniversityMekkah, Saudi Arabia
| | | | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry Biotechnology and Bioinformatics, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| |
Collapse
|
4
|
Radu AD, Cojocaru C, Onciul S, Scarlatescu A, Zlibut A, Nastasa A, Dorobantu M. Cardiac Resynchronization Therapy and Hypertrophic Cardiomyopathy: A Comprehensive Review. Biomedicines 2023; 11:350. [PMID: 36830887 PMCID: PMC9952999 DOI: 10.3390/biomedicines11020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited primary myocardial disease characterized by asymmetrical/symmetrical left ventricle (LV) hypertrophy, with or without LV outflow tract (LVOT) dynamic obstruction, and poor prognosis. Cardiac resynchronization therapy (CRT) has emerged as a minimally invasive tool for patients with heart failure (HF) with decreased LV ejection fraction (LVEF) and prolonged QRS duration of over 120 ms with or without left bundle branch block (LBBB). Several HCM patients are at risk of developing LBBB because of disease progression or secondary to septal myomectomy, while others might develop HF with decreased LVEF, alleged end-stage/dilated HCM, especially those with thin myofilament mutations. Several studies have shown that patients with myectomy-induced LBBB might benefit from left bundle branch pacing or CRT to relieve symptoms, improve exercise capacity, and increase LVEF. Otherwise, patients with end-stage/dilated HCM and prolonged QRS interval could gain from CRT in terms of NYHA class improvement, LV systolic performance increase and, to some degree, LV reverse remodeling. Moreover, several electrical and imaging parameters might aid proper selection and stratification of HCM patients to benefit from CRT. Nonetheless, current available data are scarce and further studies are still required to accurately clarify the view. This review reassesses the importance of CRT in patients with HCM based on current research by contrasting and contextualizing data from various published studies.
Collapse
Affiliation(s)
- Andrei Dan Radu
- Cardiology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cosmin Cojocaru
- Cardiology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sebastian Onciul
- Cardiology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alina Scarlatescu
- Cardiology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Alexandru Zlibut
- Cardiology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandrina Nastasa
- Cardiology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Maria Dorobantu
- Cardiology Department, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
6
|
Shahzadi SK, Naidoo N, Alsheikh-Ali A, Rizzo M, Rizvi AA, Santos RD, Banerjee Y. Reconnoitering the Role of Long-Noncoding RNAs in Hypertrophic Cardiomyopathy: A Descriptive Review. Int J Mol Sci 2021; 22:ijms22179378. [PMID: 34502285 PMCID: PMC8430576 DOI: 10.3390/ijms22179378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy. It is characterized by an unexplained non-dilated hypertrophy of the left ventricle with a conserved or elevated ejection fraction. It is a genetically heterogeneous disease largely caused by variants of genes encoding for cardiac sarcomere proteins, including MYH7, MYBPC3, ACTC1, TPM1, MYL2, MYL3, TNNI3, and TNNT23. Preclinical evidence indicates that the enhanced calcium sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric variations but may also result from secondary mutation-driven alterations. Long non-coding RNAs (lncRNAs) are a large class of transcripts ≥200 nucleotides in length that do not encode proteins. Compared to coding mRNAs, most lncRNAs are not as well-annotated and their functions are greatly unexplored. Nevertheless, increasing evidence shows that lncRNAs are involved in a variety of biological processes and diseases including HCM. Accumulating evidence has indicated that lncRNAs are dysregulated in HCM, and closely related to sarcomere construction, calcium channeling and homeostasis of mitochondria. In this review, we have summarized the known regulatory and functional roles of lncRNAs in HCM.
Collapse
Affiliation(s)
- Syeda K. Shahzadi
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
| | - Nerissa Naidoo
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Correspondence: (N.N.); (Y.B.); Tel.: +971-4383-8728 (N.N.); +971-4383-8710 (Y.B.)
| | - Alawi Alsheikh-Ali
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Dubai Health Authority, Dubai 66566, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion Sciences, Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Raul D. Santos
- The Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo 01000, Brazil;
| | - Yajnavalka Banerjee
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.K.S.); (A.A.-A.)
- Centre of Medical Education, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: (N.N.); (Y.B.); Tel.: +971-4383-8728 (N.N.); +971-4383-8710 (Y.B.)
| |
Collapse
|
7
|
Qin X, Huang L, Chen S, Chen S, Wen P, Wu Y, Zhuang J. Multi-factor regulatory network and different clusters in hypertrophic obstructive cardiomyopathy. BMC Med Genomics 2021; 14:199. [PMID: 34362365 PMCID: PMC8348869 DOI: 10.1186/s12920-021-01036-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Practical biosignatures and thorough understanding of regulatory processes of hypertrophic obstructive cardiomyopathy (HOCM) are still lacking. METHODS Firstly, public data from GSE36961 and GSE89714 datasets of Gene Expression Omnibus (GEO), Gene database of NCBI (National Center of Biotechnology Information) and Online Mendelian Inheritance in Man (OMIM) database were merged into a candidate gene set of HOCM. Secondly, weighted gene co-expression network analysis (WGCNA) for the candidate gene set was carried out to determine premier co-expressed genes. Thirdly, significant regulators were found out by virtue of a multi-factor regulatory network of long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and transcription factors (TFs) with molecule interreactions from starBase v2.0 database and TRRUST v2 database. Ultimately, HOCM unsupervised clustering and "tsne" dimensionality reduction was employed to gain hub genes, whose classification performance was evaluated by a multinomial model of lasso logistic regression analysis binded with receiver operating characteristic (ROC) curve. RESULTS Two HOCM remarkably-interrelated modules were from WGCNA, followed by the recognition of 32 crucial co-expressed genes. The multi-factor regulatory network disclosed 7 primary regulatory agents, containing lncRNAs (XIST, MALAT1, and H19), TFs (SPI1 and SP1) and miRNAs (hsa-miR-29b-39 and has-miR-29a-3p). Four clusters of HOCM and 4 hub genes (COMP, FMOD, AEBP1 and SULF1) significantly expressing in preceding four subtypes were obtained, while ROC curve demonstrated satisfactory performance of clustering and 4 genes. CONCLUSIONS Our consequences furnish valuable resource which may bring about prospective mechanistic and therapeutic anatomization in HOCM.
Collapse
Affiliation(s)
- Xianyu Qin
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Lei Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Sicheng Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Pengju Wen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China.
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China.
| |
Collapse
|
8
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
9
|
Xu J, Liu X, Dai Q. Integration of transcriptomic data identifies key hallmark genes in hypertrophic cardiomyopathy. BMC Cardiovasc Disord 2021; 21:330. [PMID: 34225646 PMCID: PMC8259117 DOI: 10.1186/s12872-021-02147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) represents one of the most common inherited heart diseases. To identify key molecules involved in the development of HCM, gene expression patterns of the heart tissue samples in HCM patients from multiple microarray and RNA-seq platforms were investigated. METHODS The significant genes were obtained through the intersection of two gene sets, corresponding to the identified differentially expressed genes (DEGs) within the microarray data and within the RNA-Seq data. Those genes were further ranked using minimum-Redundancy Maximum-Relevance feature selection algorithm. Moreover, the genes were assessed by three different machine learning methods for classification, including support vector machines, random forest and k-Nearest Neighbor. RESULTS Outstanding results were achieved by taking exclusively the top eight genes of the ranking into consideration. Since the eight genes were identified as candidate HCM hallmark genes, the interactions between them and known HCM disease genes were explored through the protein-protein interaction (PPI) network. Most candidate HCM hallmark genes were found to have direct or indirect interactions with known HCM diseases genes in the PPI network, particularly the hub genes JAK2 and GADD45A. CONCLUSIONS This study highlights the transcriptomic data integration, in combination with machine learning methods, in providing insight into the key hallmark genes in the genetic etiology of HCM.
Collapse
Affiliation(s)
- Jing Xu
- Department of Clinical Laboratory, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Xiangdong Liu
- Institute of Life Science, Southeast University, Nanjing, China
| | - Qiming Dai
- Department of Cardiology, ZhongDa Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Tan Z, Wu L, Fang Y, Chen P, Wan R, Shen Y, Hu J, Jiang Z, Hong K. Systemic Bioinformatic Analyses of Nuclear-Encoded Mitochondrial Genes in Hypertrophic Cardiomyopathy. Front Genet 2021; 12:670787. [PMID: 34054926 PMCID: PMC8150003 DOI: 10.3389/fgene.2021.670787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease and mitochondria plays a key role in the progression in HCM. Here, we analyzed the expression pattern of nuclear-encoded mitochondrial genes (NMGenes) in HCM and found that the expression of NMGenes was significantly changed. A total of 316 differentially expressed NMGenes (DE-NMGenes) were identified. Pathway enrichment analyses showed that energy metabolism-related pathways such as "pyruvate metabolism" and "fatty acid degradation" were dysregulated, which highlighted the importance of energy metabolism in HCM. Next, we constructed a protein-protein interaction network based on 316 DE-NMGenes and identified thirteen hubs. Then, a total of 17 TFs (transcription factors) were predicted to potentially regulate the expression of 316 DE-NMGenes according to iRegulon, among which 8 TFs were already found involved in pathological hypertrophy. The remaining TFs (like GATA1, GATA5, and NFYA) were good candidates for further experimental verification. Finally, a mouse model of transverse aortic constriction (TAC) was established to validate the genes and results showed that DDIT4, TKT, CLIC1, DDOST, and SNCA were all upregulated in TAC mice. The present study represents the first effort to evaluate the global expression pattern of NMGenes in HCM and provides innovative insight into the molecular mechanism of HCM.
Collapse
Affiliation(s)
- Zhaochong Tan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Limeng Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingshan Chen
- Department of Science and Technology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Andrade RC, Boroni M, Amazonas MK, Vargas FR. New drug candidates for osteosarcoma: Drug repurposing based on gene expression signature. Comput Biol Med 2021; 134:104470. [PMID: 34004576 DOI: 10.1016/j.compbiomed.2021.104470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 02/03/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy and the third most common cancer in adolescence. Since the late 1970s, OS therapy and prognosis had only modest improvements, making it appealing to explore new tools that could help ameliorate the treatment. We present a meta-analysis of the gene expression signature of primary OS, and propose small molecules that could reverse this signature. The meta-analysis was performed using GEO microarray series. We first compared gene expression from eleven primary OS against osteoblasts to obtain the differentially expressed genes (DEGs). We later filtered those DEGs by verifying which ones had a concordant direction of differential expression in a validation group of 82 OS samples versus 30 bone marrow mesenchymal stem cells (BM-MSC) samples. A final gene expression signature of 266 genes (98 up and 168 down regulated) was obtained. The L1000CDS2 engine was used for drug repurposing. The top molecules predicted to reverse the signature were afatinib (PubChem CID 10184653), BRD-K95196255 (PubChem CID 3242434), DG-041 (PubChem CID 11296282) and CA-074 Me (PubChem CID 23760717). Afatinib (Gilotrif™) is currently used for metastatic non-small-cell lung cancer with EGFR mutations, and in vitro evidence shows antineoplastic potential in OS cells. The other three molecules have reports of antineoplastic effects, but are not currently FDA-approved. Further studies are necessary to establish the potential of these drugs in OS treatment. We believe our results can be an important contribution for the investigation of new therapeutic genetic targets and for selecting new drugs to be tested for OS.
Collapse
Affiliation(s)
- Raissa Coelho Andrade
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Genetics and Molecular Biology Department, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Fernando Regla Vargas
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil; Genetics and Molecular Biology Department, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
A critical approach for successful use of circulating microRNAs as biomarkers in cardiovascular diseases: the case of hypertrophic cardiomyopathy. Heart Fail Rev 2021; 27:281-294. [PMID: 33656618 DOI: 10.1007/s10741-021-10084-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that act as major regulators of gene expression at the post-transcriptional level. As the potential applications of miRNAs in the diagnosis and treatment of human diseases have become more evident, many studies of hypertrophic cardiomyopathy (HCM) have focused on the systemic identification and quantification of miRNAs in biofluids and myocardial tissues. HCM is a hereditary cardiomyopathy caused by mutations in genes encoding proteins of the sarcomere. Despite overall improvements in survival, progression to heart failure, stroke, and sudden cardiac death remain prominent features of living with HCM. Several miRNAs have been shown to be promising biomarkers of HCM; however, there are many challenges to ensuring the validity, consistency, and reproducibility of these biomarkers for clinical use. In particular, miRNA testing may be limited by pre-analytical and analytical caveats, making our interpretation of results challenging. Such factors that may affect miRNA testing include sample type selection, hemolysis, platelet activation, and renal dysfunction. Therefore, researchers should be careful when developing appropriate standards for the design of miRNA profiling studies in order to ensure that all results provided are both accurate and reliable. In this review, we discuss the application of miRNAs as biomarkers for HCM.
Collapse
|
13
|
Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments. Mol Biol 2021. [DOI: 10.1134/s0026893320060023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Guo Q, Wang J, Sun R, Gu W, He Z, Chen Q, Liu W, Chen Y, Wang J, Zhang Y. Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis. Mol Med Rep 2020; 22:4637-4644. [PMID: 33174017 PMCID: PMC7646839 DOI: 10.3892/mmr.2020.11566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited heart diseases and the leading cause of sudden cardiac death among adolescents and young adults. Circulating long noncoding RNAs (lncRNAs) have demonstrated potential as diagnostic and therapeutic targets in several cardiovascular diseases. However, the circulating extracellular lncRNA expression profile of patients with HCM remains unclear. Plasma lncRNA expression was evaluated in patients with HCM and healthy controls using a human lncRNA microarray. A weighted correlation network analysis (WGCNA) and linear models for microarray data (Limma) were used. GSE68316 data from cardiac tissue in the Gene Expression Omnibus database were analysed for further validation. Using WGCNA, two modules (referred to as the magenta and the light‑yellow module) were identified that were positively associated with HCM. Gene Ontology analysis revealed that lncRNAs in the magenta module targeted 'heart growth'. Using Limma, a total of 290 lncRNAs were differentially expressed (210 upregulated and 80 downregulated) in the plasma of HCM patients, compared with controls. Moreover, combined WGCNA and Limma analysis demonstrated that 27 hub lncRNAs in the magenta module and 13 hub lncRNAs in the light‑yellow module were significantly upregulated, compared with the controls. Moreover, of the 40 differentially expressed hub lncRNAs identified in the two modules, three circulating lncRNAs (lnc‑P2RY6‑1:1, ENST00000488040 and ENST00000588047) were also significantly upregulated in the HCM cardiac tissue validation dataset. These lncRNAs may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of HCM.
Collapse
Affiliation(s)
- Qi Guo
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Junjie Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Wenli Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhijian He
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Qian Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Wenhao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
15
|
Wang Y, Sun X. The functions of LncRNA in the heart. Diabetes Res Clin Pract 2020; 168:108249. [PMID: 32531328 DOI: 10.1016/j.diabres.2020.108249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease is a major cause of death and disability worldwide. Recently, increasing evidence has demonstrated that various lncRNAs play critical roles in the pathogenesis of cardiovascular diseases, including myocardial ischemia and reperfusion (I/R) injury. LncRNAs are transcripts longer than 200 nucleotides. They are considered a class of dynamic noncoding RNAs known to be involved in physiological and pathological conditions with regulatory and structural roles in numerous biological processes, including genomic imprinting, epigenetic regulation, cell proliferation, development, aging and apoptosis. They are emerging as potential key regulators of a variety of cardiovascular diseases. However, the roles of lncRNAs in the heart function remain largely unknown. The purpose of this review was to summarize the functions of lncRNAs in the heart and discuss the challenges and possible strategies of lncRNA research for cardiovascular disease.
Collapse
Affiliation(s)
- Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, ShanDong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
16
|
Wang H, Wang X, Xu L, Cao H. Identification of transcription factors MYC and C/EBPβ mediated regulatory networks in heart failure based on gene expression omnibus datasets. BMC Cardiovasc Disord 2020; 20:250. [PMID: 32460775 PMCID: PMC7251862 DOI: 10.1186/s12872-020-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Heart failure is one of leading cause of death worldwide. However, the transcriptional profiling of heart failure is unclear. Moreover, the signaling pathways and transcription factors involving the heart failure development also are largely unknown. Using published Gene Expression Omnibus (GEO) datasets, in the present study, we aim to comprehensively analyze the differentially expressed genes in failing heart tissues, and identified the critical signaling pathways and transcription factors involving heart failure development. Methods The transcriptional profiling of heart failure was identified from previously published gene expression datasets deposited in GSE5406, GSE16499 and GSE68316. The enriched signaling pathways and transcription factors were analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) website and gene set enrichment analysis (GSEA) assay. The transcriptional networks were created by Cytoscape. Results Compared with the normal heart tissues, 90 genes were particularly differentially expressed in failing heart tissues, and those genes were associated with multiple metabolism signaling pathways and insulin signaling pathway. Metabolism and insulin signaling pathway were both inactivated in failing heart tissues. Transcription factors MYC and C/EBPβ were both negatively associated with the expression profiling of failing heart tissues in GSEA assay. Moreover, compared with normal heart tissues, MYC and C/EBPβ were down regulated in failing heart tissues. Furthermore, MYC and C/EBPβ mediated downstream target genes were also decreased in failing heart tissues. MYC and C/EBPβ were positively correlated with each other. At last, we constructed MYC and C/EBPβ mediated regulatory networks in failing heart tissues, and identified the MYC and C/EBPβ target genes which had been reported involving the heart failure developmental progress. Conclusions Our results suggested that metabolism pathways and insulin signaling pathway, transcription factors MYC and C/EBPβ played critical roles in heart failure developmental progress.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China
| | - Hua Cao
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, FuZhou, 350001, FuJian, China.
| |
Collapse
|
17
|
Tao L, Shi J, Huang X, Hua F, Yang L. Identification of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA theory reveals functional lncRNAs in hypertrophic cardiomyopathy. Exp Ther Med 2020; 20:1176-1190. [PMID: 32742356 DOI: 10.3892/etm.2020.8748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease that affects 1 in every 200 people in the general population, leading to cardiac ischemia, heart failure and increased risk of sudden death. Recently, accumulating evidence has suggested that long noncoding RNAs (lncRNAs) may serve specific roles in various biological processes and participate in the pathology of various diseases, including HCM. Although a large number of lncRNAs have been detected, the functions of lncRNAs in HCM are still unknown. In the present study, a global triple network based on competitive endogenous RNA (ceRNA) theory was constructed using data from the National Center for Biotechnology Information Gene Expression Omnibus. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of mRNAs in the lncRNA-microRNA (miRNA)-mRNA network were performed using the Cytoscape plugins, BiNGO and Database. The lncRNA-miRNA-mRNA network was composed of 30 lncRNA nodes, 94 mRNA nodes and 8 miRNA nodes. Subsequently, hub nodes and the number of relationship pairs were analyzed and showed that 5 lncRNAs (ENST00000597346.1, ENST00000458178.1, ENST00000544461.1, ENST00000567093.1 and ENST00000571219.1) were closely related to HCM. Cluster module analysis and Random Walk with Restart of the ceRNA network further confirmed the potential role of two lncRNAs (ENST00000458178.1 and ENST00000567093.1) in HCM. The present study provides a new strategy for identifying potential pathways associated with HCM or other diseases. Furthermore, lncRNA-miRNA pairs may be regarded as candidate diagnostic biomarkers or potential therapeutic targets for HCM.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
18
|
Nguyen Q, Lim KRQ, Yokota T. Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies. Int J Mol Sci 2020; 21:E733. [PMID: 31979133 PMCID: PMC7036815 DOI: 10.3390/ijms21030733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathies are diseases of heart muscle, a significant percentage of which are genetic in origin. Cardiomyopathies can be classified as dilated, hypertrophic, restrictive, arrhythmogenic right ventricular or left ventricular non-compaction, although mixed morphologies are possible. A subset of neuromuscular disorders, notably Duchenne and Becker muscular dystrophies, are also characterized by cardiomyopathy aside from skeletal myopathy. The global burden of cardiomyopathies is certainly high, necessitating further research and novel therapies. Genome editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as increasingly important technologies in studying this group of cardiovascular disorders. In this review, we discuss the applications of genome editing in the understanding and treatment of cardiomyopathy. We also describe recent advances in genome editing that may help improve these applications, and some future prospects for genome editing in cardiomyopathy treatment.
Collapse
Affiliation(s)
- Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (Q.N.); (K.R.Q.L.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
19
|
Wu D, Zhou Y, Fan Y, Zhang Q, Gu F, Mao W, Zhang M. LncRNA CAIF was downregulated in end-stage cardiomyopathy and is a promising diagnostic and prognostic marker for this disease. Biomarkers 2019; 24:735-738. [PMID: 31587591 DOI: 10.1080/1354750x.2019.1677778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac autophagy inhibitory factor (CAIF) is a novel lncRNA with protective effects on myocardial infarction. We explored the involvement of CAIF in end-stage cardiomyopathy. Patients with end-stage cardiomyopathy and healthy volunteers were included in this study. Myocardial tissues and serum were collected. CAIF was detected by RT-qPCR. ROC curve was used for diagnostic analysis. Prognostic value of CAIF expression for end-stage cardiomyopathy was evaluated by survival curve analysis. Correlations between CAIF expression and clinicopathological data of patients with end-stage cardiomyopathy were analysed by chi-square test. Downregulated CAIF was observed in end-stage cardiomyopathy patients than in healthy controls. CAIF expression distinguished end-stage cardiomyopathy patients from healthy controls and predict the survival of patients. LncRNA CAIF was downregulated in end-stage cardiomyopathy and may serve as a promising prognostic and diagnostic marker for this disease.
Collapse
Affiliation(s)
- Di Wu
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Yanqiu Zhou
- Central Laboratory, China Meitan General Hospital, Beijing City, P.R. China
| | - Yudong Fan
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Qingjun Zhang
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Feifei Gu
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Wen Mao
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Miaomiao Zhang
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| |
Collapse
|
20
|
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and defined by unexplained isolated progressive myocardial hypertrophy, systolic and diastolic ventricular dysfunction, arrhythmias, sudden cardiac death and histopathologic changes, such as myocyte disarray and myocardial fibrosis. Mutations in genes encoding for proteins of the contractile apparatus of the cardiomyocyte, such as β-myosin heavy chain and myosin binding protein C, have been identified as cause of the disease. Disease is caused by altered biophysical properties of the cardiomyocyte, disturbed calcium handling, and abnormal cellular metabolism. Mutations in sarcomere genes can also activate other signaling pathways via transcriptional activation and can influence non-cardiac cells, such as fibroblasts. Additional environmental, genetic and epigenetic factors result in heterogeneous disease expression. The clinical course of the disease varies greatly with some patients presenting during childhood while others remain asymptomatic until late in life. Patients can present with either heart failure symptoms or the first symptom can be sudden death due to malignant ventricular arrhythmias. The morphological and pathological heterogeneity results in prognosis uncertainty and makes patient management challenging. Current standard therapeutic measures include the prevention of sudden death by prohibition of competitive sport participation and the implantation of cardioverter-defibrillators if indicated, as well as symptomatic heart failure therapies or cardiac transplantation. There exists no causal therapy for this monogenic autosomal-dominant inherited disorder, so that the focus of current management is on early identification of asymptomatic patients at risk through molecular diagnostic and clinical cascade screening of family members, optimal sudden death risk stratification, and timely initiation of preventative therapies to avoid disease progression to the irreversible adverse myocardial remodeling stage. Genetic diagnosis allowing identification of asymptomatic affected patients prior to clinical disease onset, new imaging technologies, and the establishment of international guidelines have optimized treatment and sudden death risk stratification lowering mortality dramatically within the last decade. However, a thorough understanding of underlying disease pathogenesis, regular clinical follow-up, family counseling, and preventative treatment is required to minimize morbidity and mortality of affected patients. This review summarizes current knowledge about molecular genetics and pathogenesis of HCM secondary to mutations in the sarcomere and provides an overview about current evidence and guidelines in clinical patient management. The overview will focus on clinical staging based on disease mechanism allowing timely initiation of preventative measures. An outlook about so far experimental treatments and potential for future therapies will be provided.
Collapse
Affiliation(s)
- Cordula Maria Wolf
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University Munich, Munich, Germany
| |
Collapse
|
21
|
Meng L, Lin H, Zhang J, Lin N, Sun Z, Gao F, Luo H, Ni T, Luo W, Chi J, Guo H. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol 2019; 136:15-26. [PMID: 31445005 DOI: 10.1016/j.yjmcc.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/09/2023]
Abstract
AIMS Doxorubicin (DOX), a widely used powerful chemotherapeutic component for cancer treatment, can give rise to severe cardiotoxicity that limits its clinical use. Pyroptosis is characterized by proinflammation and has been defined as a new type of programmed cell death in recent years. However, whether the DOX-induced cardiotoxicity is related to pyroptosis, and if so, which genes are involved in this process is largely unknown. In this study, we sought to identify the effect of DOX on cardiomyocyte pyroptosis and further reveal the underlying regulatory mechanism. METHODS AND RESULTS In vitro and in vivo experiments showed that DOX treatment induced cardiomyocyte pyroptosis as evidenced by increased cell death and upregulated expression levels of NLR family pyrin domain containing 3 (NLRP3), caspase-3, IL-1β, IL-18 and GMDSD-N. Inhibition of NLRP3 rescued the DOX-induced pyroptosis. qRT-PCR showed that TINCR lncRNA was upregulated by DOX treatment and knockdown of TINCR reversed the DOX-induced pyroptosis both in vitro and in vivo. Mechanistic investigations revealed that TINCR increased NLRP3 level via recruiting IGF2BP1 to enhance NLRP3 mRNA. And the effect of TINCR on cardiomyocyte pyroptosis was attenuated by the inhibition of NLRP3 or IGF2BP1. Finally, TINCR was not involved in DOX-induced pyroptosis in cancer cells. CONCLUSION TINCR mediates the DOX-induced cardiotoxicity and pyroptosis in an IGF2BP1-dependent manner. Therefore, TINCR may serve as a promising therapeutic target to overcome the cardiotoxicity of chemotherapy for cancer therapy.
Collapse
Affiliation(s)
- Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Na Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Zhenzhu Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Wenqiang Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
22
|
Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019; 25:775-790. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease where cardiac dysfunction often associates with mutations in sarcomeric genes. Various models based on tissue explants, isolated cardiomyocytes, skinned myofibrils, and purified actin/myosin preparations have uncovered disease hallmarks, enabling the development of putative therapeutics, with some reaching clinical trials. Newly developed human pluripotent stem cell (hPSC)-based models could be complementary by overcoming some of the inconsistencies of earlier systems, whilst challenging and/or clarifying previous findings. In this article we compare recent progress in unveiling multiple HCM mechanisms in different models, highlighting similarities and discrepancies. We explore how insight is facilitating the design of new HCM therapeutics, including those that regulate metabolism, contraction and heart rhythm, providing a future perspective for treatment of HCM.
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
23
|
Popa-Fotea NM, Micheu MM, Bataila V, Scafa-Udriste A, Dorobantu L, Scarlatescu AI, Zamfir D, Stoian M, Onciul S, Dorobantu M. Exploring the Continuum of Hypertrophic Cardiomyopathy-From DNA to Clinical Expression. ACTA ACUST UNITED AC 2019; 55:medicina55060299. [PMID: 31234582 PMCID: PMC6630598 DOI: 10.3390/medicina55060299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
The concepts underlying hypertrophic cardiomyopathy (HCM) pathogenesis have evolved greatly over the last 60 years since the pioneering work of the British pathologist Donald Teare, presenting the autopsy findings of “asymmetric hypertrophy of the heart in young adults”. Advances in human genome analysis and cardiac imaging techniques have enriched our understanding of the complex architecture of the malady and shaped the way we perceive the illness continuum. Presently, HCM is acknowledged as “a disease of the sarcomere”, where the relationship between genotype and phenotype is not straightforward but subject to various genetic and nongenetic influences. The focus of this review is to discuss key aspects related to molecular mechanisms and imaging aspects that have prompted genotype–phenotype correlations, which will hopefully empower patient-tailored health interventions.
Collapse
Affiliation(s)
- Nicoleta Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Vlad Bataila
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Lucian Dorobantu
- Cardiomyopathy Center, Monza Hospital, Tony Bulandra Street 27, 021968 Bucharest, Romania.
| | - Alina Ioana Scarlatescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Diana Zamfir
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Monica Stoian
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Sebastian Onciul
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| |
Collapse
|
24
|
Liu X, Ma Y, Yin K, Li W, Chen W, Zhang Y, Zhu C, Li T, Han B, Liu X, Wang S, Zhou Z. Long non-coding and coding RNA profiling using strand-specific RNA-seq in human hypertrophic cardiomyopathy. Sci Data 2019; 6:90. [PMID: 31197155 PMCID: PMC6565738 DOI: 10.1038/s41597-019-0094-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) represents one of the most common heritable heart diseases. However, the signalling pathways and regulatory networks underlying the pathogenesis of HCM remain largely unknown. Here, we present a strand-specific RNA-seq dataset for both coding and lncRNA profiling in myocardial tissues from 28 HCM patients and 9 healthy donors. This dataset constitutes a valuable resource for the community to examine the dysregulated coding and lncRNA genes in HCM versus normal conditions.
Collapse
Affiliation(s)
- Xuanyu Liu
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi Ma
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Kunlun Yin
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenke Li
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wen Chen
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yujing Zhang
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Changsheng Zhu
- Departments of Cardiovascular Surgery, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Tianjiao Li
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bianmei Han
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xuewen Liu
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shuiyun Wang
- Departments of Cardiovascular Surgery, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Zhou Zhou
- Center of Laboratory Medicine, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
25
|
Li J, Wu Z, Zheng D, Sun Y, Wang S, Yan Y. Bioinformatics analysis of the regulatory lncRNA‑miRNA‑mRNA network and drug prediction in patients with hypertrophic cardiomyopathy. Mol Med Rep 2019; 20:549-558. [PMID: 31180540 PMCID: PMC6579968 DOI: 10.3892/mmr.2019.10289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a complex inherited cardiovascular disease. The present study investigated the long noncoding (lnc)RNA/microRNA (mi)RNA/mRNA expression pattern of patients with HCM and aimed to identify key molecules involved in the development of this condition. An integrated strategy was conducted to identify differentially expressed miRNAs (DEmiRs), differentially expressed lncRNAs (DElncs) and differentially expressed genes (DEGs) based on the GSE36961 (mRNA), GSE36946 (miRNA), GSE68316 (lncRNA/mRNA) and GSE32453 (mRNA) expression profiles downloaded from the Gene Expression Omnibus datasets. Bioinformatics tools were employed to perform function and pathway enrichment analysis, protein-protein interaction, lncRNA-miRNA-mRNA and hub gene networks. Subsequently, DEGs were used as targets to predict drugs. The results indicated that a total of 2,234 DElncs (1,120 upregulated and 1,114 downregulated), 5 DEmiRs (2 upregulated and 3 downregulated) and 42 DEGs (35 upregulated and 7 downregulated) were identified in 4 microarray profiles. Gene ontology analysis revealed that DEGs were mainly involved in actin filament and stress fiber formation and in calcium ion binding, whereas Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the hypoxia inducible factor-1, transforming growth factor-β and tumor necrosis factor signaling pathways as the main pathways involved in these processes. The hub genes were screened using cytoHubba. A total of 1,086 lncRNA-miRNA-mRNA interactions including 67 lncRNAs, 5 miRNAs and 25 mRNAs were mined in the present study based on prediction websites. Drug prediction indicated that the targeted drugs mainly included angiotensin converting enzyme inhibitors or β-blockers. A comprehensive bioinformatics analysis of the molecular regulatory lncRNA-miRNA-mRNA network was performed and potential therapeutic applications of drugs were predicted in HCM patients. The data may unravel the future molecular mechanism of HCM.
Collapse
Affiliation(s)
- Jiajianghui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Zining Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Deqiang Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Yue Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Sisi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Yuxiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
26
|
Hu X, Shen G, Lu X, Ding G, Shen L. Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis. Arch Med Sci 2019; 15:484-497. [PMID: 30899302 PMCID: PMC6425197 DOI: 10.5114/aoms.2018.75593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/02/2018] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM), a genetically heterogeneous disorder of cardiac myocytes, is one of the main causes of sudden cardiac death of young people. However, the molecular mechanism involved in HCM has remained largely unclear. Of note, non-coding RNAs were reported to play an important role in human diseases. In this study, we focused on identifying differentially expressed long non-coding RNA (lncRNAs) and mRNAs in HCM by analyzing a public dataset (GSE36961). MATERIAL AND METHODS We performed bioinformatics analysis to explore key pathways underlying HCM progression. Gene Ontology (GO) analysis was first performed to evaluate the potential roles of differentially expressed genes and lncRNAs in HCM. Moreover, protein-protein interaction (PPI) networks were constructed to reveal interactions among differentially expressed proteins. Specifically, co-expression networks were also constructed to identify hub lncRNAs in HCM. RESULTS A total of 6147 mRNAs (p < 0.001) and 126 lncRNAs (p < 0.001) were found to be dysregulated in HCM. Gene Ontology (GO) analysis showed that these differentially expressed genes and lncRNAs were associated with metabolism, energy pathways, signal transduction, and cell communication. Moreover, TSPYL3, LOC401431, LOC158376, LOC606724, PDIA3P and LOH3CR2A (p < 0.001) were identified as key lncRNAs in HCM progression. CONCLUSIONS Taken together, our analysis revealed a series of lncRNAs and mRNAs that were differentially expressed in HCM and which were involved in HCM progression by regulating pathways, such as metabolism, energy pathways, signal transduction, and cell communication. This study will provide useful information to explore the mechanisms underlying HCM progression and to provide potential candidate biomarkers for diagnosis in HCM.
Collapse
Affiliation(s)
- Xiaofeng Hu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Guilin Shen
- Department of Cardiology, Anji People’s Hospital, Huzhou, Zhejiang Province, China
| | - Xiaoli Lu
- Department of Cardiology, Anji People’s Hospital, Huzhou, Zhejiang Province, China
| | - Guomin Ding
- Department of Cardiology, Anji People’s Hospital, Huzhou, Zhejiang Province, China
| | - Lishui Shen
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
27
|
Liu K, Zhang Y, Liu L, Yuan Q. MALAT1 promotes proliferation, migration, and invasion of MG63 cells by upregulation of TGIF2 via negatively regulating miR-129. Onco Targets Ther 2018; 11:8729-8740. [PMID: 30584331 PMCID: PMC6287664 DOI: 10.2147/ott.s182993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose This article aimed to investigate the mechanism by which MALAT1 and miR-129 affected the development of osteosarcoma. Methods Tumor tissues and adjacent tissues of 23 osteosarcoma patients were collected. Normal osteoblasts hFOB1.19 and osteosarcoma cells MG63 were cultured. MG63 cells were transfected and grouped: si-negative control (NC) group, si-MALAT1 group, miR-129 NC group, miR-129 mimics group, p-Empty vector group, p-MALAT1 group, p-MALAT1+ miR-129 mimics group, and p-MALAT1+ si-TGIF2 group. Luciferase reporter assay, Cell Counting Kit-8 assay, Transwell assay, quantitative reverse transcription PCR, Western blot, and Pearson correlation analysis were performed. Results MALAT1 expression in tumor tissues and MG63 cells was increased (P<0.01). High MALAT1 expression predicted poor prognosis of osteosarcoma patients. MG63 cells of si-MALAT1 group exhibited much lower cell viability, migration, and invasive cell numbers when compared with si-NC group (P<0.01). For MG63 cells of miR-129 mimics group, they had markedly lower cell viability, migration, and invasive cell numbers than miR-129 NC group (P<0.01). miR-129 was targetedly and negatively regulated by MALAT1. TGIF2, which was targetedly and negatively regulated by miR-129, was overexpressed in tumor tissues and MG63 cells (P<0.01). miR-129 overexpresison and TGIF2 downregulation significantly reversed the enhanced cell viability, migration, and invasion induced by MALAT1 (P<0.01). Conclusion MALAT1 promotes TGIF2 expression through negative regulation of miR-129, which further promotes the proliferation, migration, and invasion of MG63 cells.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Yingang Zhang
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Liang Liu
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| | - Qiling Yuan
- Department of Orthopedics, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
28
|
Ma C, Luo H, Liu B, Li F, Tschöpe C, Fa X. Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy? Diabetes Metab Res Rev 2018; 34:e3056. [PMID: 30160026 DOI: 10.1002/dmrr.3056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Diabetic cardiomyopathy (DCM) can cause extensive necrosis of the heart muscle by metabolic disorders and microangiopathy, with subclinical cardiac dysfunction, and eventually progress to heart failure, arrhythmia, and cardiogenic shock; severe patients may even die suddenly. Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding RNAs longer than 200 nucleotides. They have critical roles in various biological processes, including gene expression regulation, genomic imprinting, nuclear-cytoplasmic trafficking, RNA splicing, and translational control. Recent studies indicated that lncRNAs extensively participate in the development of diverse cardiac diseases, such as cardiac ischaemia, hypertrophy, and heart failure. Little is known about lncRNA in DCM. In this review, we summarize the current literature on lncRNAs in DCM studies, aiming to provide new methods for DCM's future prevention and treatment strategies.
Collapse
Affiliation(s)
- Chao Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Huan Luo
- Department of Ophthalmology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bing Liu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Xianen Fa
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Zhang X, Xu Y, Fu L, Li D, Dai X, Liu L, Zhang J, Zheng L, Cui M. Identification of mRNAs related to endometrium function regulated by lncRNA CD36-005 in rat endometrial stromal cells. Reprod Biol Endocrinol 2018; 16:96. [PMID: 30322386 PMCID: PMC6190555 DOI: 10.1186/s12958-018-0412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder in women of reproductive age and is commonly complicated by adverse endometrial outcomes. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding transcripts that are more than 200 nucleotides in length. Accumulating evidence indicates that lncRNAs are involved in the development of various human diseases. Among these lncRNAs, lncRNA CD36-005 (CD36-005) is indicated to be associated with the pathogenesis of PCOS. However, the mechanisms of action of CD36-005 have not yet been elucidated. METHODS This study determined the CD36-005 expression level in the uteri of PCOS rat model and its effect on the proliferation activity of rat primary endometrial stromal cells. RNA sequencing (RNA-seq) and bioinformatics analysis were performed to detect the mRNA expression profiles and the biological pathways in which these differentially expressed mRNAs involved, after CD36-005 overexpression in the primary endometrial stromal cells. The differential expression of Hmgn5, Nr5a2, Dll4, Entpd1, Fam50a, and Brms1 were further validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS CD36-005 is highly expressed in the uteri of PCOS rat model and promotes the proliferation of rat primary endometrial stromal cells. A total of fifty-five mRNAs differentially expressed were identified in CD36-005 overexpressed stromal cells. Further analyses identified that these differentially expressed mRNAs participate in many biological processes and are associated with various human diseases. The results of qRT-PCR validation were consistent with the RNA-seq data. CONCLUSIONS These data provide a list of potential target mRNA genes of CD36-005 in endometrial stromal cells and laid a foundation for further studies on the molecular function and mechanism of CD36-005 in the endometrium.
Collapse
Affiliation(s)
- Xueying Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Ying Xu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lulu Fu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Dandan Li
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Xiaowei Dai
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lianlian Liu
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| | - Manhua Cui
- grid.452829.0Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041 Jilin China
| |
Collapse
|
30
|
Libisch MG, Faral-Tello P, Garg NJ, Radi R, Piacenza L, Robello C. Early Trypanosoma cruzi Infection Triggers mTORC1-Mediated Respiration Increase and Mitochondrial Biogenesis in Human Primary Cardiomyocytes. Front Microbiol 2018; 9:1889. [PMID: 30166980 PMCID: PMC6106620 DOI: 10.3389/fmicb.2018.01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Chagasic chronic cardiomyopathy is one of the most frequent and severe manifestations of Chagas disease, caused by the parasite Trypanosoma cruzi. The pathogenic and biochemical mechanisms responsible for cardiac lesions remain not completely understood, although it is clear that hypertrophy and subsequent heart dilatation is in part caused by the direct infection of cardiomyocytes. In this work, we evaluated the initial response of human cardiomyocytes to T. cruzi infection by transcriptomic profiling. Immediately after infection, cardiomyocytes dramatically change their gene expression patterns, up regulating most of the genes encoding for respiratory chain, oxidative phosphorylation and protein synthesis. We found that these changes correlate with an increase in basal and maximal respiration, as well as in spare respiratory capacity, which is accompanied by mitochondrial biogenesis pgc-1α independent. We also demonstrate that these changes are mediated by mTORC1 and reversed by rapamycin, resembling the molecular mechanisms described for the non-chagasic hypertrophic cardiomyopathy. The results of the present work identify that early during infection, the activation of mTORC1, mitochondrial biogenesis and improvement in oxidative phosphorylation are key biochemical changes that provide new insights into the host response to parasite infection and the pathogenesis of chronic chagasic cardiomyopathy. The finding that this phenotype can be reversed opens a new perspective in the treatment of Chagas disease, through the identification of host targets, and the use of combined parasite and host targeted therapies, in order to prevent chagasic cardiomyopathy.
Collapse
Affiliation(s)
- M Gabriela Libisch
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Salman OF, El-Rayess HM, Abi Khalil C, Nemer G, Refaat MM. Inherited Cardiomyopathies and the Role of Mutations in Non-coding Regions of the Genome. Front Cardiovasc Med 2018; 5:77. [PMID: 29998127 PMCID: PMC6028572 DOI: 10.3389/fcvm.2018.00077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
Cardiomyopathies (CMs) are a group of cardiac pathologies caused by an intrinsic defect within the myocardium. The relative contribution of genetic mutations in the pathogenesis of certain CMs, such as hypertrophic cardiomyopathy (HCM), arrythmogenic right/left ventricular cardiomyopathy (ARVC) and left ventricular non-compacted cardiomyopathy (LVNC) has been established in comparison to dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). The aim of this article is to review mutations in the non-coding parts of the genome, namely, microRNA, promoter elements, enhancer/silencer elements, 3′/5′UTRs and introns, that are involved in the pathogenesis CMs. Additionally, we will explore the role of some long non-coding RNAs in the pathogenesis of CMs.
Collapse
Affiliation(s)
- Oday F Salman
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hebah M El-Rayess
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Charbel Abi Khalil
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan M Refaat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
32
|
Wang X, Peng J, Wang J, Li M, Wu D, Wu S, Liao J, Dou J. Hepatitis C virus core impacts expression of miR122 and miR204 involved in carcinogenic progression via regulation of TGFBRAP1 and HOTTIP expression. Onco Targets Ther 2018. [PMID: 29535540 PMCID: PMC5841326 DOI: 10.2147/ott.s149254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Despite the breadth of understanding the noncoding RNAs' function in molecular biology, their functional roles in hepatocellular carcinoma (HCC) is poorly understood. In this study, we investigated the effect of hepatitis C virus (HCV) core upon the expression of noncoding RNAs. Methods The lncRNAs, mRNAs, and circRNAs were employed for identification of HCV core protein gene expression in human Huh7 hepatoma (Huh7) cell line. In data analysis, we applied a threshold that eliminated all genes that were not increased or decreased by at least a 2-fold change in a comparison between transfected and control cells. Hierarchical Clustering and the Kyoto encyclopedia of genes and genome pathway analyses were performed to show the distinguishable lncRNA, mRNAs, and circRNAs expression pattern among samples. Results The array data showed that 4,851 lncRNAs, 4,785 mRNAs, and 823 circRNAs were 2-fold up-regulated but 3,569 lncRNAs, 3,192 mRNAs, and 419 circRNAs were 2-fold down-regulated in Huh 7-core cells. The genes in the enriched set were associated with macromolecule and nucleic acid metabolic processes, DNA damage response and regulation of voltage-gated calcium channel. We identified 10 genes from the selected 14 genes that were higher or lower expression in Huh7-core cells than that of Huh7-vector cells by quantitative real-time polymerase chain reaction. Interestingly, overexpression of miR122 and miR204 partly abrogated the expression of TGFBRAP1 and HOTTIP, and increased the HPCAL1 expression in the predicted carcinogenic pathways. Conclusion Our data suggests that the pathways of miR204-HPCAL1-lncRNAHOTTIP and miR122-TGFBRAP1 were likely involved in the carcinogenic progress due to the presence of HCV core, and that overexpression of miR122 and miR204 might inhibit the HCC progress by down-regulation of TGFBRAP1 and HOTTIP expression.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Basis Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, People's Republic of China.,Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jiefu Peng
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China.,Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Jing Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Di Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Songyan Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jipei Liao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res 2017; 121:749-770. [PMID: 28912181 DOI: 10.1161/circresaha.117.311059] [Citation(s) in RCA: 803] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by left ventricular hypertrophy unexplained by secondary causes and a nondilated left ventricle with preserved or increased ejection fraction. It is commonly asymmetrical with the most severe hypertrophy involving the basal interventricular septum. Left ventricular outflow tract obstruction is present at rest in about one third of the patients and can be provoked in another third. The histological features of HCM include myocyte hypertrophy and disarray, as well as interstitial fibrosis. The hypertrophy is also frequently associated with left ventricular diastolic dysfunction. In the majority of patients, HCM has a relatively benign course. However, HCM is also an important cause of sudden cardiac death, particularly in adolescents and young adults. Nonsustained ventricular tachycardia, syncope, a family history of sudden cardiac death, and severe cardiac hypertrophy are major risk factors for sudden cardiac death. This complication can usually be averted by implantation of a cardioverter-defibrillator in appropriate high-risk patients. Atrial fibrillation is also a common complication and is not well tolerated. Mutations in over a dozen genes encoding sarcomere-associated proteins cause HCM. MYH7 and MYBPC3, encoding β-myosin heavy chain and myosin-binding protein C, respectively, are the 2 most common genes involved, together accounting for ≈50% of the HCM families. In ≈40% of HCM patients, the causal genes remain to be identified. Mutations in genes responsible for storage diseases also cause a phenotype resembling HCM (genocopy or phenocopy). The routine applications of genetic testing and preclinical identification of family members represents an important advance. The genetic discoveries have enhanced understanding of the molecular pathogenesis of HCM and have stimulated efforts designed to identify new therapeutic agents.
Collapse
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.).
| | - Eugene Braunwald
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston (A.J.M.); Texas Heart Institute, Houston (A.J.M.); and TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.B.)
| |
Collapse
|
34
|
Cui X, Sun X, Niu W, Kong L, He M, Zhong A, Chen S, Jiang K, Zhang L, Cheng Z. Long Non-Coding RNA: Potential Diagnostic and Therapeutic Biomarker for Major Depressive Disorder. Med Sci Monit 2016; 22:5240-5248. [PMID: 28039689 PMCID: PMC5221417 DOI: 10.12659/msm.899372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The criteria for diagnosing depression are based on behavioral observation and self-reporting of symptoms by the patients or guardians without any biological validation of the disease. This study aimed to identify long non-coding RNAs (lncRNAs) in peripheral blood mononuclear cells (PBMCs) as robust and predictive biomarkers for diagnosis and therapy response in major depressive disorder (MDD). Material/Methods We used human lncRNA 3.0 microarray profiling (which covers 30,586 human lncRNAs), using PBMCs from five MDD patients and five controls. Differentially expressed lncRNAs in the PBMCs of MDD patients were identified, of which 10 candidate lncRNAs were selected for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in a larger cohort of 138 MDD patients and 63 healthy controls. Then among the 138 MDD patients who received standard antidepressant treatment, 30 were randomly selected for lncRNAs expression retesting and symptomatology assessments after three-weeks and six-weeks of antidepressant treatment. Results Six lncRNAs (TCONS_00019174, ENST00000566208, NONHSAG045500, ENST00000517573, NONHSAT034045, and NONHSAT142707) were significantly downregulated in MDD patients compared to control patients, and the area under the receiver operator curve (ROC) of these six lncRNAs cases, combined, was 0.719 (95% confidence interval (CI): 0.617–0.821). There was no difference in the expression of these six lncRNAs based on gender (p>0.05) or age (p>0.05). Conclusions These results suggest that the combined expression of six lncRNAs in PBMCs may serve as a potential biomarker for diagnosis and therapy response of MDD in the clinical setting.
Collapse
Affiliation(s)
- Xuelian Cui
- Department of Women Health Care, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Xinyang Sun
- Department of Psychology and Psychiatry, PingAn Health Cloud Company Ltd. of China, Shanghai, China (mainland)
| | - Wei Niu
- Department of Rehabilitation, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Lingming Kong
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Mingjun He
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Aifang Zhong
- Department of Laboratory, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Shengdong Chen
- Department of Neurology, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Kunhong Jiang
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Liyi Zhang
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, China (mainland)
| | - Zaohuo Cheng
- Wuxi Mental Health Center Affiliated with Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
35
|
Kitow J, Derda AA, Beermann J, Kumarswarmy R, Pfanne A, Fendrich J, Lorenzen JM, Xiao K, Bavendiek U, Bauersachs J, Thum T. Mitochondrial long noncoding RNAs as blood based biomarkers for cardiac remodeling in patients with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2016; 311:H707-12. [DOI: 10.1152/ajpheart.00194.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a hereditary heart disease with a high risk for sudden cardiac death in young people. As a subtype, hypertrophic obstructive cardiomyopathy (HOCM) additionally has a left ventricular outflow gradient, showing stronger symptoms and requires a different treatment compared with hypertrophic nonobstructive cardiomyopathy (HNCM). In this study our aim was to investigate the regulation of mitochondrial and cardiac remodeling associated long noncoding RNAs (lncRNAs) in blood of patients affected with HOCM and HNCM. We included 28 HNCM, 57 HOCM, and 26 control inviduals. Already known mitochondrial and cardiac remodeling associated lncRNAs uc004cos.4, uc004coz.1, uc004cov.4, uc011mfi.2, uc022bqw.1, uc022bqs.1, and uc022bqu.1 were amplified in serum of these patients and correlated with clinical parameters. Long noncoding RNAs uc004cov.4 and uc022bqu.1 were significantly increased in patients with HOCM but not in patients with HNCM. With the use of receiver operator characteristic (ROC) curve analysis, lncRNAs uc004cov.4 and uc022bqu.1 were able to identify HOCM patients. In our study we evidenced that the specific mitochondrial long noncoding RNAs uc004cov.4 and uc022bqu.1 were upregulated in patients with HOCM and they were also able to identify HOCM and could be developed as useful clinical biomarkers in the future.
Collapse
Affiliation(s)
- Janina Kitow
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Julia Beermann
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Regalla Kumarswarmy
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Jasmin Fendrich
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Johan M. Lorenzen
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Udo Bavendiek
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
36
|
Jain S, Thakkar N, Chhatai J, Pal Bhadra M, Bhadra U. Long non-coding RNA: Functional agent for disease traits. RNA Biol 2016; 14:522-535. [PMID: 27229269 DOI: 10.1080/15476286.2016.1172756] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have attracted the attention of researchers with their involvement in all facets of life. LncRNAs are transcripts of more than 200 nucleotides which lack defined protein coding potential. Although they do not code for proteins, a large number of them are involved in regulating gene expression and translation. The presence of numerous lncRNAs in the human genome has prompted us to investigate the contribution of these molecules to human biology and medicine. In this review, we present the potential role of lncRNAs interlinked to different human diseases and genetic disorders. We also describe their role in cellular differentiation and aging and discuss their potential importance as biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- Sriyans Jain
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Nirav Thakkar
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Jagamohan Chhatai
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Manika Pal Bhadra
- b Centre for Chemical Biology , Indian Institute for Chemical Technology , Hyderabad , India
| | - Utpal Bhadra
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| |
Collapse
|