1
|
Yen FS, Wei JCC, Chiu LT, Hsu CC, Hwu CM. Cardiovascular outcomes of metformin use in patients with type 2 diabetes and chronic obstructive pulmonary disease. Front Pharmacol 2022; 13:919881. [PMID: 36071848 PMCID: PMC9441545 DOI: 10.3389/fphar.2022.919881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: To know whether metformin use has different influence on cardiovascular risks in patients with type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD) as compared with metformin no-use.Methods: This study employed a retrospective cohort study design. Using propensity score matching, we recruited 55 ,224 pairs of metformin users and nonusers from Taiwan’s National Health Insurance Research Database between 1 January 2000, and 31 December 2017. Cox proportional-hazards models with robust standard error estimates were used to compare the risks of cardiovascular outcomes.Results: The mean study period of metformin users and nonusers was 11.04 (5.46) and 12.30 (4.85) years, respectively. Compared with the nonuse of metformin, the adjusted hazard ratios (95% CI) of metformin use for composited cardiovascular events, stroke, coronary artery disease, and heart failure were 0.51 (0.48–0.53), 0.62 (0.59–0.64), 0.48 (0.46–0.50), and 0.61 (0.57–0.65), respectively. The longer cumulative duration of metformin use had even lower adjusted hazard ratios compared with metformin nonuse.Conclusion: In patients with coexisting T2DM and COPD, metformin use was associated with significantly lower risks of CVD; moreover, longer duration of metformin use was associated with a lower risk of CVD. A well-designed prospective study is required to verify the results.
Collapse
Affiliation(s)
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lu-Ting Chiu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Hsu
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin County, Taiwan
- *Correspondence: Chih-Cheng Hsu, ; Chii-Min Hwu,
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- *Correspondence: Chih-Cheng Hsu, ; Chii-Min Hwu,
| |
Collapse
|
2
|
Nielsen HK, DeChiaro S, Goldman B. Evaluation of Consistency of Treatment Response Across Regions-the LEADER Trial in Relation to the ICH E17 Guideline. Front Med (Lausanne) 2021; 8:662775. [PMID: 34136501 PMCID: PMC8201994 DOI: 10.3389/fmed.2021.662775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
The US Food and Drug Administration in 2008 required new type 2 diabetes (T2D) medications to be subject to cardiovascular outcomes safety requirements. Accordingly, the global LEADER trial investigated cardiovascular outcomes of T2D treatment with liraglutide, a glucagon-like peptide-1 receptor agonist. LEADER (NCT01179048) was a multiregional clinical trial (MRCT) conducted from 2010 to 2016, thus completed before publication of the International Council for Harmonization (ICH) E17 guideline on MRCTs in 2017. Novo Nordisk pre-specified analysis of regional cardiovascular outcomes of LEADER participants. This paper assesses the pre-specified regional outcomes based on the ICH E17 guidelines on consistency evaluation. Regional LEADER participant numbers were broadly aligned with ICH E17 guidance and equally balanced across Europe, Asia, North America, and rest of the world. Overall primary major adverse cardiovascular events (MACE) composite outcome for the trial: hazard ratio (HR) (95% CI) 0.87 (0.78; 0.97); regional results varied, ranging from HR (95% CI) 0.62 (0.37; 1.04) (Asia) to 1.01 (0.84; 1.22) (North America). However, pre-specified Cox proportional-hazard regression analyses did not show clear evidence of interaction between regions and primary outcome (p = 0.20). Furthermore, post hoc analysis of the US population in the North American region found that adjusting for extrinsic or intrinsic factors did not account for this difference [HR (95% CI) 1.03 (0.84; 1.25)]. LEADER data evaluation demonstrated general consistency in cardiovascular safety across regions, except for US participants. Discrepancies in the North American region may relate to drug exposure or chance, but, as these were post hoc findings, the overall primary result is valid, aligned with ICH E17 guidelines.
Collapse
|
3
|
Assessing the Impact on Health of Pharmacovigilance Activities: Example of Four Safety Signals. Drug Saf 2021; 44:589-600. [PMID: 33606201 DOI: 10.1007/s40264-021-01047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The impact of pharmacovigilance activities on public health remains under-investigated, and measuring the impact on health of pharmacovigilance activities for a specific safety signal is challenging. OBJECTIVE To gain more insight into the methodological challenges and the data required, we assessed the impact of pharmacovigilance on public health for four identified product-specific safety signals using publicly available data in the Netherlands. The assessment was on the impact of the intertwined and complementary steps of the pharmacovigilance pathways. METHODS The impact of pharmacovigilance on public health was assessed using the assessment support tool and 'open data' from the Netherlands for four different types of pharmacovigilance safety signals: (1) off-label use of cyproterone acetate/ethinyloestradiol (CPA/EE) and thrombotic risk after pharmacovigilance measures after 2014; (2) pergolide and the risk of cardiac valvulopathy after pharmacovigilance activities in 2003; (3) proton pump inhibitors and the risk of hypomagnesaemia after pharmacovigilance activities in 2011; (4) rosiglitazone withdrawal from the market because of cardiovascular effects in 2010. RESULTS For the signals on CPA/EE and pergolide, a crude estimation of the impact could be made with varying degrees of assumptions based on the risk described in the literature and utilisation data. CONCLUSION This article highlights the methodological challenges and the data required to assess the impact of product-specific safety signals. A structured assessment support tool can be used as a guide for the necessary data elements and steps needed for the measurement or estimation of impact of pharmacovigilance activities on public health, provided that the appropriate data are available.
Collapse
|
4
|
Risk of sudden cardiac arrest and ventricular arrhythmia with sulfonylureas: An experience with conceptual replication in two independent populations. Sci Rep 2020; 10:10070. [PMID: 32572080 PMCID: PMC7308403 DOI: 10.1038/s41598-020-66668-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 11/12/2022] Open
Abstract
Sulfonylureas are commonly used to treat type 2 diabetes mellitus. Despite awareness of their effects on cardiac physiology, a knowledge gap exists regarding their effects on cardiovascular events in real-world populations. Prior studies reported sulfonylurea-associated cardiovascular death but not serious arrhythmogenic endpoints like sudden cardiac arrest (SCA) or ventricular arrhythmia (VA). We assessed the comparative real-world risk of SCA/VA among users of second-generation sulfonylureas: glimepiride, glyburide, and glipizide. We conducted two incident user cohort studies using five-state Medicaid claims (1999–2012) and Optum Clinformatics commercial claims (2000–2016). Outcomes were SCA/VA events precipitating hospital presentation. We used Cox proportional hazards models, adjusted for high-dimensional propensity scores, to generate adjusted hazard ratios (aHR). We identified 624,406 and 491,940 sulfonylurea users, and 714 and 385 SCA/VA events, in Medicaid and Optum, respectively. Dataset-specific associations with SCA/VA for both glimepiride and glyburide (vs. glipizide) were on opposite sides of and could not exclude the null (glimepiride: aHRMedicaid 1.17, 95% CI 0.96–1.42; aHROptum 0.84, 0.65–1.08; glyburide: aHRMedicaid 0.87, 0.74–1.03; aHROptum 1.11, 0.86–1.42). Database differences in data availability, populations, and documentation completeness may have contributed to the incongruous results. Emphasis should be placed on assessing potential causes of discrepancies between conflicting studies evaluating the same research question.
Collapse
|
5
|
Leonard CE, Brensinger CM, Dawwas GK, Deo R, Bilker WB, Soprano SE, Dhopeshwarkar N, Flory JH, Bloomgarden ZT, Gagne JJ, Aquilante CL, Kimmel SE, Hennessy S. The risk of sudden cardiac arrest and ventricular arrhythmia with rosiglitazone versus pioglitazone: real-world evidence on thiazolidinedione safety. Cardiovasc Diabetol 2020; 19:25. [PMID: 32098624 PMCID: PMC7041286 DOI: 10.1186/s12933-020-00999-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The low cost of thiazolidinediones makes them a potentially valuable therapeutic option for the > 300 million economically disadvantaged persons worldwide with type 2 diabetes mellitus. Differential selectivity of thiazolidinediones for peroxisome proliferator-activated receptors in the myocardium may lead to disparate arrhythmogenic effects. We examined real-world effects of thiazolidinediones on outpatient-originating sudden cardiac arrest (SCA) and ventricular arrhythmia (VA). METHODS We conducted population-based high-dimensional propensity score-matched cohort studies in five Medicaid programs (California, Florida, New York, Ohio, Pennsylvania | 1999-2012) and a commercial health insurance plan (Optum Clinformatics | 2000-2016). We defined exposure based on incident rosiglitazone or pioglitazone dispensings; the latter served as an active comparator. We controlled for confounding by matching exposure groups on propensity score, informed by baseline covariates identified via a data adaptive approach. We ascertained SCA/VA outcomes precipitating hospital presentation using a validated, diagnosis-based algorithm. We generated marginal hazard ratios (HRs) via Cox proportional hazards regression that accounted for clustering within matched pairs. We prespecified Medicaid and Optum findings as primary and secondary, respectively; the latter served as a conceptual replication dataset. RESULTS The adjusted HR for SCA/VA among rosiglitazone (vs. pioglitazone) users was 0.91 (0.75-1.10) in Medicaid and 0.88 (0.61-1.28) in Optum. Among Medicaid but not Optum enrollees, we found treatment effect heterogeneity by sex (adjusted HRs = 0.71 [0.54-0.93] and 1.16 [0.89-1.52] in men and women respectively, interaction term p-value = 0.01). CONCLUSIONS Rosiglitazone and pioglitazone appear to be associated with similar risks of SCA/VA.
Collapse
MESH Headings
- Adult
- Aged
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/epidemiology
- Arrhythmias, Cardiac/prevention & control
- Databases, Factual
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/prevention & control
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/epidemiology
- Female
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Incidence
- Male
- Medicaid
- Middle Aged
- Pioglitazone/adverse effects
- Pioglitazone/therapeutic use
- Protective Factors
- Risk Assessment
- Risk Factors
- Rosiglitazone/adverse effects
- Rosiglitazone/therapeutic use
- Time Factors
- Treatment Outcome
- United States/epidemiology
Collapse
Affiliation(s)
- Charles E. Leonard
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Colleen M. Brensinger
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Ghadeer K. Dawwas
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Rajat Deo
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Warren B. Bilker
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Samantha E. Soprano
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Neil Dhopeshwarkar
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - James H. Flory
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
- Endocrinology Service, Department of Subspecialty Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Zachary T. Bloomgarden
- Division of Endocrinology and Metabolism, Department of Medicine, Icahn School of Medicine at Mount Sinai, 35 East 85th Street, New York, NY 10028 USA
| | - Joshua J. Gagne
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Harvard University, 1620 Tremont Street, Boston, MA 02120 USA
| | - Christina L. Aquilante
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, 12850 E. Montview Boulevard, Aurora, CO 80045 USA
| | - Stephen E. Kimmel
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104 USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
6
|
Boeckmans J, Natale A, Rombaut M, Buyl K, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Anti-NASH Drug Development Hitches a Lift on PPAR Agonism. Cells 2019; 9:E37. [PMID: 31877771 PMCID: PMC7016963 DOI: 10.3390/cells9010037] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects one-third of the population worldwide, of which a substantial number of patients suffer from non-alcoholic steatohepatitis (NASH). NASH is a severe condition characterized by steatosis and concomitant liver inflammation and fibrosis, for which no drug is yet available. NAFLD is also generally conceived as the hepatic manifestation of the metabolic syndrome. Consequently, well-established drugs that are indicated for the treatment of type 2 diabetes and hyperlipidemia are thought to exert effects that alleviate the pathological features of NASH. One class of these drugs targets peroxisome proliferator-activated receptors (PPARs), which are nuclear receptors that play a regulatory role in lipid metabolism and inflammation. Therefore, PPARs are now also being investigated as potential anti-NASH druggable targets. In this paper, we review the mechanisms of action and physiological functions of PPARs and discuss the position of the different PPAR agonists in the therapeutic landscape of NASH. We particularly focus on the PPAR agonists currently under evaluation in clinical phase II and III trials. Preclinical strategies and how refinement and optimization may improve PPAR-targeted anti-NASH drug testing are also discussed. Finally, potential caveats related to PPAR agonism in anti-NASH therapy are stipulated.
Collapse
|
7
|
Deed G, Atherton JJ, d'Emden M, Rasalam R, Sharma A, Sindone A. Managing Cardiovascular Risk in Type 2 Diabetes: What Do the Cardiovascular Outcome Trials Mean for Australian Practice? Diabetes Ther 2019; 10:1625-1643. [PMID: 31292928 PMCID: PMC6778570 DOI: 10.1007/s13300-019-0663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/06/2022] Open
Abstract
Understanding the implications of cardiovascular (CV) outcomes data of glucose-lowering agents on the management of type 2 diabetes mellitus can be challenging for many primary practitioners. Amongst different classes of diabetes medications assessed for CV safety, several agents within the sodium-glucose transport protein-2 inhibitor and glucagon-like peptide-1 receptor agonists classes have demonstrated CV risk reduction. Applying the trial findings to patients typically seen in clinical practice, such as those with established CV disease and those with multiple CV risk factors without established CV disease, requires further clarity. To bridge this gap in our current knowledge, the aim of this review was to utilise expert-driven opinions on common case scenarios and practical recommendations on the most appropriate choice of agents, according to an individual patient's clinical risk profile (CV and kidney disease), treatment preference and reimbursement environment from an Australian perspective.Funding: Boehringer Ingelheim Australia.
Collapse
Affiliation(s)
- Gary Deed
- Mediwell Medical Clinic, Coorparoo, QLD, Australia.
| | - John J Atherton
- Royal Brisbane and Women's Hospital, University of Queensland School of Medicine, Herston, QLD, Australia
| | - Michael d'Emden
- Royal Brisbane and Women's Hospital, University of Queensland School of Medicine, Herston, QLD, Australia
| | - Roy Rasalam
- James Cook University, Douglas, QLD, Australia
| | - Anita Sharma
- Platinum Medical Centre, Chermside, QLD, Australia
| | - Andrew Sindone
- Concord Hospital, University of Sydney, Concord, NSW, Australia
| |
Collapse
|
8
|
Xu W, Zhang Y, Xiao H. AMP-activated protein kinase activation: therapeutic potential in human diseases. Sci Bull (Beijing) 2019; 64:1303-1305. [PMID: 36659658 DOI: 10.1016/j.scib.2019.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenli Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
9
|
Patorno E, Gopalakrishnan C, Brodovicz KG, Meyers A, Bartels DB, Liu J, Kulldorff M, Schneeweiss S. Cardiovascular safety of linagliptin compared with other oral glucose-lowering agents in patients with type 2 diabetes: A sequential monitoring programme in routine care. Diabetes Obes Metab 2019; 21:1824-1836. [PMID: 30941884 PMCID: PMC6785989 DOI: 10.1111/dom.13735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 01/07/2023]
Abstract
AIM To evaluate the safety of linagliptin versus other glucose-lowering medications in a multi-year monitoring programme using insurance claims data. METHODS In two commercial US claims databases, we identified three pairwise 1:1 propensity-score (PS)-matched cohorts of patients with type 2 diabetes (T2D) aged ≥18 years initiating linagliptin or a comparator (other dipeptidyl peptidase-4 [DPP-4] inhibitors [n = 31 492 pairs], pioglitazone [n = 23 316 pairs], or second-generation sulphonylureas [n = 19 731 pairs]) between May 2011 and December 2015. The primary endpoint was the risk of a composite cardiovascular (CV) outcome (hospitalization for myocardial infarction, stroke, unstable angina, or coronary revascularization). We estimated pooled hazard ratios (HRs) and 95% confidence intervals (CIs), controlling for >100 baseline characteristics. RESULTS Patient characteristics were well balanced after PS-matching. The mean age was 55 years and mean follow-up was 0.8 years. Linagliptin conferred a similar risk of the composite CV outcome compared to other DPP-4 inhibitors (HR 0.91, 95% CI 0.79-1.05) and pioglitazone (HR 0.98, 95% CI 0.84-1.15), and showed a reduced risk of CV outcomes compared to second-generation sulphonylureas (HR 0.76, 95% CI 0.64--0.92). Key findings were signalled at the first interim analysis in June 2013 and solidified during ongoing monitoring until 2015. CONCLUSION Analyses from a large monitoring programme in routine care of patients with T2D, showed that linagliptin had similar CV safety compared to other DPP-4 inhibitors and pioglitazone, and a reduced CV risk compared to sulphonylureas.
Collapse
Affiliation(s)
- Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chandrasekar Gopalakrishnan
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kimberly G Brodovicz
- Department of Global Epidemiology, Boehringer Ingelheim Pharmaceuticals, Inc (U.S), Ingelheim, Germany
| | - Andrea Meyers
- Department of Global Epidemiology, Boehringer Ingelheim Pharmaceuticals, Inc (U.S), Ingelheim, Germany
| | - Dorothee B Bartels
- Hannover Medical School, Institute for Epidemiology, Social Medicine and Health Systems Research, Hannover, Germany
- BI X, Boehringer Ingelheim GmbH, Ingelheim, Germany
| | - Jun Liu
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Kulldorff
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Fuller S, Yu Y, Mendoza T, Ribnicky DM, Cefalu WT, Floyd ZE. Potential adverse effects of botanical supplementation in high-fat-fed female mice. Biol Sex Differ 2018; 9:41. [PMID: 30208938 PMCID: PMC6134698 DOI: 10.1186/s13293-018-0199-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Insulin resistance underlies metabolic syndrome and is associated with excess adiposity and visceral fat accumulation, which is more frequently observed in males than females. However, in young females, the prevalence of metabolic syndrome is rising, mainly driven by accumulation of abdominal visceral fat. The degree to which sex-related differences could influence the development of insulin resistance remains unclear, and studies of potential therapeutic strategies to combat metabolic syndrome using rodent models have focused predominantly on males. We therefore evaluated the effects of two nutritional supplements derived from botanical sources, an extract of Artemisia dracunculus L. (termed PMI5011) and Momordica charantia (commonly known as bitter melon), on female mice challenged with a high-fat diet in order to determine if dietary intake of these supplements could ameliorate obesity-induced insulin resistance and metabolic inflexibility in skeletal muscle. METHODS Body composition, physical activity and energy expenditure, fatty acid oxidation, insulin signaling, and gene and protein expression of factors controlling lipid metabolism and ectopic lipid accumulation were evaluated in female mice fed a high-fat diet supplemented with either PMI5011 or bitter melon. Statistical significance was assessed by unpaired two-tailed t test and repeated measures ANOVA. RESULTS PMI5011 supplementation resulted in increased body weight and adiposity, while bitter melon did not induce changes in these parameters. Pyruvate tolerance testing indicated that both supplements increased hepatic glucose production. Both supplements induced a significant suppression in fatty acid oxidation in skeletal muscle homogenates treated with pyruvate, indicating enhanced metabolic flexibility. PMI5011 reduced lipid accumulation in skeletal muscle, while bitter melon induced a downward trend in lipid accumulation in the skeletal muscle and liver. This was accompanied by transcriptional regulation of autophagic genes by bitter melon in the liver. CONCLUSIONS Data from the current study indicates that dietary supplementation with PMI5011 and bitter melon evokes a divergent, and generally less favorable, set of metabolic responses in female mice compared to effects previously observed in males. Our findings underscore the importance of considering sex-related variations in responses to dietary supplementation aimed at combating metabolic syndrome.
Collapse
Affiliation(s)
- Scott Fuller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.,School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA, 70506, USA
| | - Yongmei Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - David M Ribnicky
- Biotech Center, Rutgers University, New Brunswick, NJ, 08901, USA
| | - William T Cefalu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
11
|
Kuo S, Ye W, Duong J, Herman WH. Are the favorable cardiovascular outcomes of empagliflozin treatment explained by its effects on multiple cardiometabolic risk factors? A simulation of the results of the EMPA-REG OUTCOME trial. Diabetes Res Clin Pract 2018; 141:181-189. [PMID: 29730388 DOI: 10.1016/j.diabres.2018.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
AIMS It is unclear whether the favorable impact of empagliflozin on cardiovascular outcomes (CVOs) is due to its effect on multiple cardiometabolic risk factors (CRFs). METHODS We used the Michigan Model for Diabetes, a validated computer simulation model, and published data from the EMPA-REG OUTCOME trial to estimate three-year CVOs in the placebo and pooled empagliflozin treatment groups to assess whether the observed benefits might be attributable to differences in CRFs. RESULTS When we programmed the model to match the baseline characteristics of the trial population and the reported trajectories of five CRFs (weight, HbA1c, systolic blood pressure, low- and high-density lipoprotein cholesterol), the simulated hazard ratio (HR) for the primary composite CVO did not differ from the reported result. The simulated HRs for fatal/nonfatal myocardial infarction and coronary revascularization procedure fell within the reported 95% confidence intervals (CIs), but those for fatal/nonfatal stroke, hospitalization for heart failure, cardiovascular death, and all-cause mortality fell outside the reported 95% CIs. The effects of empagliflozin on CRFs accounted for approximately half of the observed benefit for the primary composite CVO, but explained smaller proportions of risk reductions for hospitalization for heart failure, cardiovascular death, and all-cause mortality. CONCLUSIONS The effects of empagliflozin on multiple CRFs account for some but not all of reduced risks of CVOs in the EMPA-REG OUTCOME trial. More comparable control of established CRFs in type 2 diabetes CVO trials of antidiabetic agents with pleiotrophic effects would facilitate the interpretation of the observed outcomes.
Collapse
Affiliation(s)
- Shihchen Kuo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Wen Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Justin Duong
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - William H Herman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
12
|
Szeto V, Chen NH, Sun HS, Feng ZP. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin 2018; 39:683-694. [PMID: 29671418 PMCID: PMC5943906 DOI: 10.1038/aps.2018.10] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Vivian Szeto
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nai-hong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-shuo Sun
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Surgery
- Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
13
|
Leonard CE, Brensinger CM, Aquilante CL, Bilker WB, Boudreau DM, Deo R, Flory JH, Gagne JJ, Mangaali MJ, Hennessy S. Comparative Safety of Sulfonylureas and the Risk of Sudden Cardiac Arrest and Ventricular Arrhythmia. Diabetes Care 2018; 41:713-722. [PMID: 29437823 PMCID: PMC5860838 DOI: 10.2337/dc17-0294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine the association between individual antidiabetic sulfonylureas and outpatient-originating sudden cardiac arrest and ventricular arrhythmia (SCA/VA). RESEARCH DESIGN AND METHODS We conducted a retrospective cohort study using 1999-2010 U.S. Medicaid claims from five large states. Exposures were determined by incident use of glyburide, glimepiride, or glipizide. Glipizide served as the reference exposure, as its effects are believed to be highly pancreas specific. Outcomes were ascertained by a validated ICD-9-based algorithm indicative of SCA/VA (positive predictive value ∼85%). Potential confounding was addressed by adjustment for multinomial high-dimensional propensity scores included as continuous variables in a Cox proportional hazards model. RESULTS Of sulfonylurea users under study (N = 519,272), 60.3% were female and 34.9% non-Hispanic Caucasian, and the median age was 58.0 years. In 176,889 person-years of sulfonylurea exposure, we identified 632 SCA/VA events (50.5% were immediately fatal) for a crude incidence rate of 3.6 per 1,000 person-years. Compared with glipizide, propensity score-adjusted hazard ratios for SCA/VA were 0.82 (95% CI 0.69-0.98) for glyburide and 1.10 (0.89-1.36) for glimepiride. Numerous secondary analyses showed a very similar effect estimate for glyburide; yet, not all CIs excluded the null. CONCLUSIONS Glyburide may be associated with a lower risk of SCA/VA than glipizide, consistent with a very small clinical trial suggesting that glyburide may reduce ventricular tachycardia and isolated ventricular premature complexes. This potential benefit must be contextualized by considering putative effects of different sulfonylureas on other cardiovascular end points, cerebrovascular end points, all-cause death, and hypoglycemia.
Collapse
Affiliation(s)
- Charles E Leonard
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Colleen M Brensinger
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Warren B Bilker
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Neuropsychiatry Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Denise M Boudreau
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Rajat Deo
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James H Flory
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Comparative Effectiveness, Department of Healthcare Policy and Research, Weill Cornell Medical Center, Cornell University, New York, NY
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joshua J Gagne
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Margaret J Mangaali
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Raghavan S, Liu WG, Saxon DR, Grunwald GK, Maddox TM, Reusch JEB, Berkowitz SA, Caplan L. Oral diabetes medication monotherapy and short-term mortality in individuals with type 2 diabetes and coronary artery disease. BMJ Open Diabetes Res Care 2018; 6:e000516. [PMID: 29942524 PMCID: PMC6014184 DOI: 10.1136/bmjdrc-2018-000516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/27/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To determine whether sulfonylurea use, compared with non-sulfonylurea oral diabetes medication use, was associated with 2-year mortality in individuals with well-controlled diabetes and coronary artery disease (CAD). RESEARCH DESIGN AND METHODS We studied 5352 US veterans with type 2 diabetes, obstructive CAD on coronary angiography, hemoglobin A1c ≤7.5% at the time of catheterization, and taking zero or one oral diabetes medication (categorized as no medications, non-sulfonylurea medication, or sulfonylurea). We estimated the association between medication category and 2-year mortality using inverse probability of treatment-weighted (IPW) standardized mortality differences and IPW multivariable Cox proportional hazards regression. RESULTS 49%, 35%, and 16% of the participants were on no diabetes medications, non-sulfonylurea medications, and sulfonylureas, respectively. In individuals on no medications, non-sulfonylurea medications, and sulfonylureas, the unadjusted mortality rates were 6.6%, 5.2%, and 11.9%, respectively, and the IPW-standardized mortality rates were 5.9%, 6.5%, and 9.7%, respectively. The standardized absolute 2-year mortality difference between non-sulfonylurea and sulfonylurea groups was 3.2% (95% CI 0.7 to 5.7) (p=0.01). In Cox proportional hazards models, the point estimate suggested that sulfonylurea use might be associated with greater hazard of mortality than non-sulfonylurea medication use, but this finding was not statistically significant (HR 1.38 (95% CI 1.00 to 1.93), p=0.05). We did not observe significant mortality differences between individuals on no diabetes medications and non-sulfonylurea users. CONCLUSIONS Sulfonylurea use was common (nearly one-third of those taking medications) and was associated with increased 2-year mortality in individuals with obstructive CAD. The significance of the association between sulfonylurea use and mortality was attenuated in fully adjusted survival models. Caution with sulfonylurea use may be warranted for patients with well-controlled diabetes and CAD, and metformin or newer diabetes medications with cardiovascular safety data could be considered as alternatives when individualizing therapy.
Collapse
Affiliation(s)
- Sridharan Raghavan
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Colorado Cardiovascular Outcomes Research Consortium, Aurora, Colorado, USA
| | - Wenhui G Liu
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, USA
| | - David R Saxon
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, USA
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gary K Grunwald
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Thomas M Maddox
- Division of Cardiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jane E B Reusch
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, USA
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Seth A Berkowitz
- Division of General Medicine and Clinical Epidemiology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Liron Caplan
- Section of Hospital Medicine, Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
15
|
Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res Rev 2017; 40:31-44. [PMID: 28802803 DOI: 10.1016/j.arr.2017.08.003] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
This systematic review investigated whether the insulin sensitiser metformin has a geroprotective effect in humans. Pubmed and Embase were searched along with databases of unpublished studies. Eligible research investigated the effect of metformin on all-cause mortality or diseases of ageing relative to non-diabetic populations or diabetics receiving other therapies with adjustment for disease control achieved. Overall, 260 full-texts were reviewed and 53 met the inclusion criteria. Diabetics taking metformin had significantly lower all-cause mortality than non-diabetics (hazard ratio (HR)=0.93, 95%CI 0.88-0.99), as did diabetics taking metformin compared to diabetics receiving non-metformin therapies (HR=0.72, 95%CI 0.65-0.80), insulin (HR=0.68, 95%CI 0.63-0.75) or sulphonylurea (HR=0.80, 95%CI 0.66-0.97). Metformin users also had reduced cancer compared to non-diabetics (rate ratio=0.94, 95%CI 0.92-0.97) and cardiovascular disease (CVD) compared to diabetics receiving non-metformin therapies (HR=0.76, 95%CI 0.66-0.87) or insulin (HR=0.78, 95%CI 0.73-0.83). Differences in baseline characteristics were observed which had the potential to bias findings, although statistical adjustments were made. The apparent reductions in all-cause mortality and diseases of ageing associated with metformin use suggest that metformin could be extending life and healthspans by acting as a geroprotective agent.
Collapse
Affiliation(s)
- Jared M Campbell
- The Joanna Briggs Institute, The University of Adelaide, Adelaide, South Australia, Australia; Centre for Nanoscale BioPhotonics, Macquarie University, Sydney, New South Wales, Australia.
| | - Susan M Bellman
- The Joanna Briggs Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew D Stephenson
- The Joanna Briggs Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karolina Lisy
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia 2017; 60:1620-1629. [PMID: 28770324 PMCID: PMC5552849 DOI: 10.1007/s00125-017-4337-9] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/24/2017] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS Metformin is the most-prescribed oral medication to lower blood glucose worldwide. Yet previous systematic reviews have raised doubts about its effectiveness in reducing risk of cardiovascular disease, the most costly complication of type 2 diabetes. We aimed to systematically identify and pool randomised trials reporting cardiovascular outcomes in which the effect of metformin was 'isolated' through comparison to diet, lifestyle or placebo. METHODS We performed an electronic literature search of MEDLINE, EMBASE and the Cochrane Library. We also manually screened the reference lists of previous meta-analyses of trials of metformin identified through a MEDLINE search. We included randomised controlled trials of adults with type 2 diabetes comparing any dose and preparation of oral metformin with no intervention, placebo or a lifestyle intervention and reporting mortality or a cardiovascular outcome. RESULTS We included ten articles reporting 13 trials (including a total of 2079 individuals with type 2 diabetes allocated to metformin and a similar number to comparison groups) of which only four compared metformin with placebo and collected data on cardiovascular outcomes. Participants were mainly white, aged ≤65 years, overweight/obese and with poor glycaemic control. Summary estimates were based on a small number of events: 416 myocardial infarctions/ischaemic heart disease events in seven studies and 111 strokes in four studies. The UK Prospective Diabetes Study (UKPDS) contributed the majority of data to the summary estimates, with weights ranging from 52.3% for myocardial infarction to 70.5% for stroke. All outcomes, with the exception of stroke, favoured metformin, with limited heterogeneity between studies, but none achieved statistical significance. Effect sizes (Mantel-Haenszel RR) were: all-cause mortality 0.96 (95% CI 0.84, 1.09); cardiovascular death 0.97 (95% CI 0.80, 1.16); myocardial infarction 0.89 (95% CI 0.75, 1.06); stroke 1.04 (95% CI 0.73, 1.48); and peripheral vascular disease 0.81 (95% CI 0.50, 1.31). CONCLUSIONS/INTERPRETATION There remains uncertainty about whether metformin reduces risk of cardiovascular disease among patients with type 2 diabetes, for whom it is the recommended first-line drug. Although this is mainly due to absence of evidence, it is unlikely that a definitive placebo-controlled cardiovascular endpoint trial among people with diabetes will be forthcoming. Alternative approaches to reduce the uncertainty include the use of electronic health records in long-term pragmatic evaluations, inclusion of metformin in factorial trials, publication of cardiovascular outcome data from adverse event reporting in trials of metformin and a cardiovascular endpoint trial of metformin among people without diabetes.
Collapse
Affiliation(s)
- Simon J Griffin
- The Primary Care Unit, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Box 113 Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.
- MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - James K Leaver
- The Primary Care Unit, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Box 113 Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK
| | - Greg J Irving
- The Primary Care Unit, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Box 113 Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK
| |
Collapse
|
17
|
Leonard CE, Hennessy S, Han X, Siscovick DS, Flory JH, Deo R. Pro- and Antiarrhythmic Actions of Sulfonylureas: Mechanistic and Clinical Evidence. Trends Endocrinol Metab 2017; 28:561-586. [PMID: 28545784 PMCID: PMC5522643 DOI: 10.1016/j.tem.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
Sulfonylureas are the most commonly used second-line drug class for treating type 2 diabetes mellitus (T2DM). While the cardiovascular safety of sulfonylureas has been examined in several trials and nonrandomized studies, little is known of their specific effects on sudden cardiac arrest (SCA) and related serious arrhythmic outcomes. This knowledge gap is striking, because persons with DM are at increased risk of SCA. In this review, we explore the influence of sulfonylureas on the risk of serious arrhythmias, with specific foci on ischemic preconditioning, cardiac excitability, and serious hypoglycemia as putative mechanisms. Elucidating the relationship between individual sulfonylureas and serious arrhythmias is critical, especially as the diabetes epidemic intensifies and SCA incidence increases in persons with diabetes.
Collapse
Affiliation(s)
- Charles E Leonard
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David S Siscovick
- The New York Academy of Medicine, New York, NY 10029, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - James H Flory
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Healthcare Policy and Research, Division of Comparative Effectiveness, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - Rajat Deo
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis 2017; 27:657-669. [PMID: 28709719 DOI: 10.1016/j.numecd.2017.04.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metformin, the eldest and most widely used glucose lowering drug, is likely to be effective also on cardiac and vascular disease prevention. Nonetheless, uncertainty still exists with regard to its effects on the cardiovascular system as a whole and specifically on the myocardium, both at the organ and cellular levels. METHODS We reviewed the available data on the cardiac and vascular effects of metformin, encompassing both in vitro, either tissue or isolated organ, and in vivo studies in experimental animals and humans, as well as the evidence generated by major clinical trials. RESULTS At the cellular level metformin's produces both AMP-activated kinase (AMPK) dependent and independent effects. At the systemic level, possibly also through other pathways, this drug improves endothelial function, protects from oxidative stress and inflammation, and from the negative effects of angiotensin II. On the myocardium it attenuates ischemia-reperfusion injury and prevents adverse remodeling induced by humoral and hemodynamic factors. The effects on myocardial cell metabolism and contractile function being not evident at rest or in more advanced stages of cardiac dysfunction, could be relevant during transient ischemia, during an acute increase in workload and in the early stages of diabetic/hypertensive cardiomyopathy as confirmed by few small clinical trials and some observational studies. The overall evidence emerging from both clinical trials and real world registry is in favor of a protective effect of metformin with respect to both coronary events and progression to heart failure. CONCLUSIONS Given this potential, its efficacy and its safety (and also its low cost) metformin remains the central pillar of the therapy of diabetes.
Collapse
Affiliation(s)
- L Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - A Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
19
|
Abdul-Ghani M, DeFronzo RA, Del Prato S, Chilton R, Singh R, Ryder RE. Cardiovascular Disease and Type 2 Diabetes: Has the Dawn of a New Era Arrived? Diabetes Care 2017; 40:813-820. [PMID: 28637886 PMCID: PMC5481984 DOI: 10.2337/dc16-2736] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023]
Abstract
Hyperglycemia is the major risk factor for microvascular complications in patients with type 2 diabetes (T2D). However, cardiovascular disease (CVD) is the principal cause of death, and lowering HbA1c has only a modest effect on reducing CVD risk and mortality. The recently published LEADER and SUSTAIN-6 trials demonstrate that, in T2D patients with high CVD risk, the glucagon-like peptide 1 receptor agonists liraglutide and semaglutide reduce the primary major adverse cardiac events (MACE) end point (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke) by 13% and 24%, respectively. The EMPA-REG OUTCOME, IRIS (subjects without diabetes), and PROactive (second principal end point) studies also demonstrated a significant reduction in cardiovascular events in T2D patients treated with empagliflozin and pioglitazone. However, the benefit of these four antidiabetes agents (liraglutide, semaglutide, empagliflozin, and pioglitazone) on the three individual MACE end points differed, suggesting that different underlying mechanisms were responsible for the reduction in cardiovascular events. Since liraglutide, semaglutide, pioglitazone, and empagliflozin similarly lower the plasma glucose concentration but appear to reduce CVD risk by different mechanisms, there emerges the intriguing possibility that, if used in combination, the effects of these antidiabetes agents may be additive or even multiplicative with regard to cardiovascular benefit.
Collapse
Affiliation(s)
- Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, San Antonio, TX
- Diabetes Clinical Research Center, Academic Health System, Hamad General Hospital, Doha, Qatar
| | - Ralph A. DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, San Antonio, TX
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Robert Chilton
- Division of Cardiology, University of Texas Health Science Center at San Antonio, and South Texas Veterans Health Care System, San Antonio, TX
| | - Rajvir Singh
- Diabetes Clinical Research Center, Academic Health System, Hamad General Hospital, Doha, Qatar
| | - Robert E.J. Ryder
- Sandwell and West Birmingham Hospitals National Health Service Trust, Birmingham, U.K
| |
Collapse
|
20
|
Bonnet F, Scheen AJ. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. DIABETES & METABOLISM 2017; 43:299-313. [PMID: 28522196 DOI: 10.1016/j.diabet.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Patients with type 2 diabetes (T2D) have an increased risk of stroke compared with people without diabetes. However, the effects of glucose-lowering drugs on risk of ischaemic stroke in T2D have been less extensively investigated than in coronary heart disease. Some evidence, including the UKPDS, has suggested a reduced risk of stroke with metformin, although the number of studies is limited. Inhibition of the KATP channels increases ischaemic brain lesions in animals. This is in agreement with a recent meta-analysis showing an increased risk of stroke with sulphonylureas vs. various comparators as both mono- and combination therapy. Pioglitazone can prevent recurrence of stroke in patients with previous stroke, as already shown in PROactive, although results are less clear for first strokes. As for DPP-4 inhibitors, there was a non-significant trend towards benefit for stroke, whereas a possible increased risk of stroke with SGLT2 inhibitors-and in particular, empagliflozin in the EMPA-REG OUTCOME trial-has been suggested and requires clarification. Experimental results support a potential protective effect of GLP-1 receptor agonists against stroke that has, at least in part, been translated to clinical benefits in T2D patients in the LEADER and SUSTAIN-6 trials. Further interventional studies are now warranted to confirm the effects of glucose-lowering agents on risk of stroke in patients with T2D. In summary, the effects of antidiabetic drugs on risk of stroke appear to be heterogeneous, with some therapies (pioglitazone, GLP-1 receptor agonists) conferring possible protection against ischaemic stroke, other classes showing a neutral impact (DPP-4 inhibitors, insulin) and some glucose-lowering agents being associated with an increased risk of stroke (sulphonylureas, possibly SGLT2 inhibitors, high-dose insulin in the presence of insulin resistance).
Collapse
Affiliation(s)
- F Bonnet
- Centre Hospitalier Universitaire de Rennes, Université Rennes 1, Rennes, France; INSERM U1018, Villejuif, France.
| | - A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU, Liège, Belgium
| |
Collapse
|
21
|
Azoulay L, Suissa S. Sulfonylureas and the Risks of Cardiovascular Events and Death: A Methodological Meta-Regression Analysis of the Observational Studies. Diabetes Care 2017; 40:706-714. [PMID: 28428321 DOI: 10.2337/dc16-1943] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/07/2017] [Indexed: 02/03/2023]
Abstract
Recent randomized trials have compared the newer antidiabetic agents to treatments involving sulfonylureas, drugs associated with increased cardiovascular risks and mortality in some observational studies with conflicting results. We reviewed the methodology of these observational studies by searching MEDLINE from inception to December 2015 for all studies of the association between sulfonylureas and cardiovascular events or mortality. Each study was appraised with respect to the comparator, the outcome, and study design-related sources of bias. A meta-regression analysis was used to evaluate heterogeneity. A total of 19 studies were identified, of which six had no major design-related biases. Sulfonylureas were associated with an increased risk of cardiovascular events and mortality in five of these studies (relative risks 1.16-1.55). Overall, the 19 studies resulted in 36 relative risks as some studies assessed multiple outcomes or comparators. Of the 36 analyses, metformin was the comparator in 27 (75%) and death was the outcome in 24 (67%). The relative risk was higher by 13% when the comparator was metformin, by 20% when death was the outcome, and by 7% when the studies had design-related biases. The lowest predicted relative risk was for studies with no major bias, comparator other than metformin, and cardiovascular outcome (1.06 [95% CI 0.92-1.23]), whereas the highest was for studies with bias, metformin comparator, and mortality outcome (1.53 [95% CI 1.43-1.65]). In summary, sulfonylureas were associated with an increased risk of cardiovascular events and mortality in the majority of studies with no major design-related biases. Among studies with important biases, the association varied significantly with respect to the comparator, the outcome, and the type of bias. With the introduction of new antidiabetic drugs, the use of appropriate design and analytical tools will provide their more accurate cardiovascular safety assessment in the real-world setting.
Collapse
Affiliation(s)
- Laurent Azoulay
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada .,Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Samy Suissa
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| |
Collapse
|
23
|
Cusi K. Diabetes medications improve cardiovascular outcomes: the paradigm shifts. Curr Opin Lipidol 2016; 27:633-635. [PMID: 27805974 DOI: 10.1097/mol.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Rizos CV, Kei A, Elisaf MS. The current role of thiazolidinediones in diabetes management. Arch Toxicol 2016; 90:1861-81. [DOI: 10.1007/s00204-016-1737-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
|