1
|
Li Y, Wang S, Liu L, Cai H, Huang Y, Gao M, Zhang X, Wu Q, Qiu G. (Apo)Lipoprotein Profiling with Multi-Omics Analysis Identified Medium-HDL-Targeting PSRC1 with Therapeutic Potential for Coronary Artery Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413491. [PMID: 39985383 DOI: 10.1002/advs.202413491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Identification of (apo)lipoprotein subclasses causally underpinning atherosclerosis may lead to identification of novel drug targets for treatment of atherosclerotic cardiovascular disease (ASCVD). In this study, observational and genetic associations between (apo)lipoprotein profile and carotid intima-media thickness-assessed atherosclerosis, and risks of coronary artery disease (CAD) and ischemic stroke (IS) are assessed, using data from the UK Biobank study, with further exploration of potential drug target for these two ASCVD subtypes through multi-omics analysis integrating genetic, transcriptomic, and proteomic data. Cholesteryl ester content in medium high-density lipoprotein causally protective of atherosclerosis is identified, plus a target gene, PSRC1, with therapeutic potential for CAD, but not IS, supported by consistent evidence from multi-omics layers of data, which also reveals that such therapeutic potential may be through downregulation of circulating proteins including TRP1, GRNs, and Pla2g12b, and upregulation of Neo1. The results provide strong evidence as well as mechanistic clues of PSRC1's therapeutic potential for CAD.
Collapse
Affiliation(s)
- Yingmei Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sihan Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacan Huang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjing Gao
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaogang Zhang
- SCIEX Application Support Center, Shanghai, 200050, China
| | - Qingqing Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430062, China
| | - Gaokun Qiu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Fang C, Chen Z, Zhang J, Jin X, Yang M. The predictive value of neutrophil-lymphocyte ratio combined with the Global Registry of Acute Coronary Events score for inhospital adverse cardiovascular events in patients with acute ST-elevation myocardial infarction. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:41. [PMID: 40224193 PMCID: PMC11992410 DOI: 10.4103/jrms.jrms_485_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 04/15/2025]
Abstract
Background The research explores the predictive efficacy of the neutrophil-to-lymphocyte ratio (NLR) in conjunction with the Global Registry of Acute Coronary Events (GRACEs) score for inhospital major adverse cardiovascular events (MACEs) among acute ST-segment elevation myocardial infarction (STEMI) subjects with primary percutaneous coronary intervention (PCI) history. Materials and Methods Patients were categorized into MACE (n = 58) and non-MACE cohorts (n = 184) based on MACE occurrence events during hospitalization. The predictive value of the NLR, GRACE score, and their combination for inhospital MACE events in STEMI subjects was assessed by the receiver operating characteristic curve (ROC). Results NLR (8.99 [5.06, 12.01] vs. 5.15 [3.13, 7.66]) and GRACE scores (159.62 ± 43.39 vs. 116.96 ± 28.15) within MACE group notably surpassed the non-MACE group (P < 0.05). ROC curve analysis demonstrated that the area under the curve (AUC) for NLR in forecasting inhospital MACE events was 0. 72 (95% confidence interval [CI]: 0.645-0.795), with 0.655 sensitivity and 0.723 specificity, and optimal cutoff value as 7.01. The AUC for the GRACE score was 0.791 (95% CI: 0.717-0.865), with 0.862 sensitivity and 0.598 specificity, and the optimal cutoff value was 121.5. The combined AUC of NLR and GRACE score was 0.814 (95% CI: 0.745-0.884), with 0.707 sensitivity and 0.837 specificity. Conclusion Both NLR and GRACE score independently predict inhospital MACE events in STEMI patients post-PCI. Integration of the NLR and GRACE score enhances accuracy in forecasting inhospital MACE event occurrences.
Collapse
Affiliation(s)
- Caoyang Fang
- Department of Cardiology, Hefei Second People’s Hospital Affiliated to Bengbu Medical College, Anhui, Hefei, China
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Zhenfei Chen
- Department of Cardiology, Hefei Second People’s Hospital Affiliated to Bengbu Medical College, Anhui, Hefei, China
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiaoqin Jin
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Mengsi Yang
- Department of Cardiology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Guo S, Mao X, Liu J. Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis. Front Immunol 2023; 14:1253433. [PMID: 37901246 PMCID: PMC10611500 DOI: 10.3389/fimmu.2023.1253433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose of review C1q/TNF-related proteins (CTRPs) are involved in the modulation of the development and prognosis of atherosclerosis (AS). Here, we summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of AS. Currently, there is no specific efficacious treatment for AS-related diseases, therefore it is urgent to develop novel therapeutic strategies aiming to target key molecules involved in AS. Recent findings Recently, mounting studies verified the critical roles of the CTRP family, including CTRP1-7, CTRP9 and CTRP11-15, in the development and progression of AS by influencing inflammatory response, modulating glucose and lipid metabolism, regulating endothelial functions and the proliferation of vascular smooth muscle cells (VSMCs). Conclusions CTRP family regulate different pathophysiology stages of AS. CTRP3, CTRP9, CTRP12, CTRP13 and CTRP15 play a clear protective role in AS, while CTRP5 and CTRP7 play a pro-atherosclerotic role in AS. The remarkable progress in our understanding of CTRPs' role in AS will provide an attractive therapeutic target for AS.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Liu
- College of Life Science and Technology, Xinjiang University, Xinjiang, China
| |
Collapse
|
4
|
Nicolaus HF, Klonisch T, Paulsen F, Garreis F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int J Mol Sci 2023; 24:ijms24076839. [PMID: 37047812 PMCID: PMC10095411 DOI: 10.3390/ijms24076839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Hagen Fabian Nicolaus
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Wang Y, Li H, Yu XH, Tang CK. CTRP1: A novel player in cardiovascular and metabolic diseases. Cytokine 2023; 164:156162. [PMID: 36812667 DOI: 10.1016/j.cyto.2023.156162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cardiovascular diseases (CVDs) are a series of diseases induced by inflammation and lipid metabolism disorders, among others. Metabolic diseases can cause inflammation and abnormal lipid metabolism. C1q/TNF-related proteins 1 (CTRP1) is a paralog of adiponectin that belongs to the CTRP subfamily. CTRP1 is expressed and secreted in adipocytes, macrophages, cardiomyocytes, and other cells. It promotes lipid and glucose metabolism but has bidirectional effects on the regulation of inflammation. Inflammation can also inversely stimulate CTRP1 production. A vicious circle may exist between the two. This article introduces CTRP1 from the structure, expression, and different roles of CTRP1 in CVDs and metabolic diseases, to summarize the role of CTRP1 pleiotropy. Moreover, the proteins which may interact with CTRP1 are predicted through GeneCards and STRING, speculating their effects, to provide new ideas for the study of CTRP1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of clinical medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Serum complement C1q level is associated with left ventricular hypertrophy induced by coarctation of the aorta: A retrospective observational study. BMC Cardiovasc Disord 2022; 22:367. [PMID: 35948870 PMCID: PMC9364524 DOI: 10.1186/s12872-022-02807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/02/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The complement system plays an important role in the development of left ventricular hypertrophy. Complement C1q is an initial component of the classical complement pathway and is related to many inflammatory diseases. We aimed to determine whether there was an association between serum complement C1q and left ventricular hypertrophy induced by coarctation of the aorta (CoA). METHODS Based on whether CoA was combined with a large ventricular septal defect (VSD) or patent ductus arteriosus (PDA), the patients were divided into a simple CoA group (n = 15) and a complex CoA group (n = 13). Meanwhile, we selected simple large VSD (n = 14) patients and normal children (n = 28) as the control group. The serum complement C1q level was compared using immunity transmission turbidity among different groups. RESULTS The preoperative content of C1q in the simple CoA group was significantly lower than that in the complex CoA group and normal group (96.97 ± 20.66 vs. 130.73 ± 35.78, 96.97 ± 20.66 vs. 156.21 ± 29.14, P < 0.05). There was no significant difference in the preoperative content of C1q between the complex CoA group and the large VSD group (P > 0.05). There was a negative correlation between the preoperative complement C1q content and the interventricular septal thickness and left ventricular posterior wall thickness (r = - 0.035, r = - 0.288, P < 0.05). The percentage of postoperative decrease in C1q in children with simple CoA or complex CoA was positively correlated with the time of cardiopulmonary bypass and aortic cross clamp, respectively (r = 0.797, r = 0.622, r = 0.898, r = 0.920, P < 0.05). There was no significant difference in the content of preoperative triglycerides (TG), total cholesterol (TCHO), high-density lipoprotein cholesterol (HDL-C) or low-density lipoprotein cholesterol (LDL-C) among the different groups (P > 0.05). In the simple CoA group and complex CoA group, the preoperative complement C1q, TG, TCHO, HDL-C and LDL-C levels were significantly higher than those after the operation (P < 0.05). There was no significant correlation between preoperative complement C1q and TG, TCHO, HDL-C or LDL-C (P > 0.05). CONCLUSIONS Complement C1q has an inhibitory effect on the formation of left ventricular hypertrophy, which may not be mediated by regulating lipid metabolism. During cardiac surgery, complement C1q may have a protective effect against myocardial injury.
Collapse
|
7
|
Karason K, Girerd N, Andersson-Asssarsson J, Duarte K, Taube M, Svensson PA, Huby AC, Peltonen M, Carlsson LM, Zannad F. Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery. Int J Obes (Lond) 2022; 46:2088-2094. [PMID: 35945262 DOI: 10.1038/s41366-022-01194-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Obesity is associated with incident heart failure (HF), but the underlying mechanisms are unclear. METHODS We performed a nested case-control study within the Swedish-Obese-Subjects study, by identifying 411 cases who developed HF and matched them with respect to age, sex, weight-loss-surgery and length of follow-up with 410 controls who did not develop HF. In analyses corrected for multiple testing, we studied 182 plasma proteins known to be related to cardiovascular disease to investigate whether they could add to the understanding of the processes underlying obesity-related HF. RESULTS A total of 821 subjects were followed for 16 ± 6 years. Multivariable analysis adjusted for matching variables revealed that 32 proteins were significantly associated with HF. Twelve proteins were related to HF ≥ 80% of the time using a bootstrap resampling approach (false-discovery-rate [FDR] < 0.05): 11 were associated with increased HF-risk: TNFRSF10A*, ST6GAL1, PRCP, MMP12, TIMP1, CCL3, QPCT, ANG, C1QTNF1, SERPINA5 and GAL-9; and one was related to reduced HF-risk: LPL. An further 20 proteins were associated with onset of HF 50-80% of the time using bootstrap resampling (FDR < 0.05). A pathway analysis including all significant 32 proteins suggested that these biomarkers were related to inflammation, matrix remodeling, cardiometabolic hormones and hemostasis. Three proteins, C1QTNF1, FGF-21 and CST3, reflecting dyslipidemia and kidney disease, displayed a higher association with HF in patients who did not undergo weight-loss-surgery and maintained with obesity. CONCLUSION Pathways associated with HF in obesity include inflammation, matrix remodeling, cardiometabolic hormones and hemostasis; three protein biomarkers predicting HF appeared to be obesity-specific.
Collapse
Affiliation(s)
- Kristjan Karason
- Department of Cardiology and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden. .,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Nicolas Girerd
- Centre d'Investigation Clinique 1433 module Plurithématique, CHRU Nancy-Hopitaux de Brabois, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre les Nancy, France
| | - Johanna Andersson-Asssarsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kevin Duarte
- Centre d'Investigation Clinique 1433 module Plurithématique, CHRU Nancy-Hopitaux de Brabois, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre les Nancy, France
| | - Magdalena Taube
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anne-Cecile Huby
- Centre d'Investigation Clinique 1433 module Plurithématique, CHRU Nancy-Hopitaux de Brabois, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre les Nancy, France
| | - Markku Peltonen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Lena M Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Faiez Zannad
- Centre d'Investigation Clinique 1433 module Plurithématique, CHRU Nancy-Hopitaux de Brabois, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre les Nancy, France
| |
Collapse
|
8
|
Moradi N, Fadaei R, Rashidbeygi E, Bagheri Kargasheh F, Malek M, Shokoohi Nahrkhalaji A, Fallah S. Evaluation of changing the pattern of CTRP5 and inflammatory markers levels in patients with coronary artery disease and type 2 diabetes mellitus. Arch Physiol Biochem 2022; 128:964-969. [PMID: 32202952 DOI: 10.1080/13813455.2020.1742164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE It has recently found that adipokines, play a numerous functional roles in inflammation, lipids and glucose metabolism and in the pathogenically conditions such as atherosclerosis and insulin resistance. Therefore, for the first time we aimed the present study to evaluating serum levels of CTRP5 and inflammatory cytokines patients with CAD and T2DM in comparison with controls. METHODS This study was done on 44 patients with CAD, 45 type 2 diabetes mellitus (T2DM), 41 CAD + T2DM and 41 controls. Serum levels of TNF-α, IL-6, MCP-1 and CTRP5 were investigated by ELISA method. RESULTS The CTRP5 levels of all patients groups were lower in comparison with control group. There was a significant negative relationship between CTRP5 levels and cytokines concentration in the studied patients. CONCLUSIONS Our findings suggested a potential role of CTRP5 in inflammatory process of underlying atherosclerosis and diabetes; however, more studies are needed to support these finding.
Collapse
Affiliation(s)
- Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elaheh Rashidbeygi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mojtaba Malek
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | | | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Sonn SK, Seo S, Yang J, Oh KS, Chen H, Chan DC, Rhee K, Lee KS, Yang Y, Oh GT. ER-associated CTRP1 regulates mitochondrial fission via interaction with DRP1. Exp Mol Med 2021; 53:1769-1780. [PMID: 34837016 PMCID: PMC8639813 DOI: 10.1038/s12276-021-00701-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
C1q/TNF-related protein 1 (CTRP1) is a CTRP family member that has collagenous and globular C1q-like domains. The secreted form of CTRP1 is known to be associated with cardiovascular and metabolic diseases, but its cellular roles have not yet been elucidated. Here, we showed that cytosolic CTRP1 localizes to the endoplasmic reticulum (ER) membrane and that knockout or depletion of CTRP1 leads to mitochondrial fission defects, as demonstrated by mitochondrial elongation. Mitochondrial fission events are known to occur through an interaction between mitochondria and the ER, but we do not know whether the ER and/or its associated proteins participate directly in the entire mitochondrial fission event. Interestingly, we herein showed that ablation of CTRP1 suppresses the recruitment of DRP1 to mitochondria and provided evidence suggesting that the ER-mitochondrion interaction is required for the proper regulation of mitochondrial morphology. We further report that CTRP1 inactivation-induced mitochondrial fission defects induce apoptotic resistance and neuronal degeneration, which are also associated with ablation of DRP1. These results demonstrate for the first time that cytosolic CTRP1 is an ER transmembrane protein that acts as a key regulator of mitochondrial fission, providing new insight into the etiology of metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Keun Sonn
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Seungwoon Seo
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Ki Sook Oh
- Department of Life Science, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David C Chan
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Young Yang
- Department of Life Science, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Goo Taeg Oh
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Woman's University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
10
|
Fei H, Xiang P, Luo W, Tan X, Gu C, Liu M, Chen M, Wang Q, Yang J. CTRP1 Attenuates Cerebral Ischemia/Reperfusion Injury via the PERK Signaling Pathway. Front Cell Dev Biol 2021; 9:700854. [PMID: 34422821 PMCID: PMC8371340 DOI: 10.3389/fcell.2021.700854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemic stroke is one of the leading causes of death worldwide. Previous studies have shown that circulating levels of CTRP1 are upregulated in patients with acute ischemic stroke. However, the function of CTRP1 in neurons remains unclear. The purpose of this study was to explore the role of CTRP1 in cerebral ischemia reperfusion injury (CIRI) and to elucidate the underlying mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used to simulate cerebral ischemic stroke in vivo and in vitro, respectively. CTRP1 overexpression lentivirus and CTRP1 siRNA were used to observe the effect of CTRP1 expression, and the PERK selective activator CCT020312 was used to activate the PERK signaling pathway. We found the decreased expression of CTRP1 in the cortex of MCAO/R-treated rats and OGD/R-treated primary cortical neurons. CTRP1 overexpression attenuated CIRI, accompanied by the reduction of apoptosis and suppression of the PERK signaling pathway. Interference with CTRP1 expression in vitro aggravated apoptotic activity and increased the expression of proteins involved in the PERK signaling pathway. Moreover, activating the PERK signaling pathway abolished the protective effects of CTRP1 on neuron injury induced by CIRI in vivo and in vitro. In conclusion, CTRP1 protects against CIRI by reducing apoptosis and endoplasmic reticulum stress (ERS) through inhibiting the PERK-dependent signaling pathway, suggesting that CTRP1 plays a crucial role in the pathogenesis of CIRI.
Collapse
Affiliation(s)
- Huizhi Fei
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Three Gorges Medical College, Chongqing, China
| | - Pu Xiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wen Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaodan Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Gu
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Maozhu Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mengyuan Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qiong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Chen Z, Zhang J, Feng J, Zhou G, Jin X, Pan J. Higher serum level of Cystatin C: An additional risk factor of CAD. Medicine (Baltimore) 2021; 100:e24269. [PMID: 33466214 PMCID: PMC7808466 DOI: 10.1097/md.0000000000024269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023] Open
Abstract
Cystatin C has been proposed as a useful biomarker of early impaired kidney function and a predictor of mortality risk. The present study is to investigate the association between serum Cystatin C and the severity of coronary artery lesions, Gensini score (GS), and the risk of coronary artery disease (CAD).A total of 682 CAD patients (230 females, 452 males; mean age 62.6 ± 10.7 years, range from 31 to 86 years) and 135 controls (41 females, 94 males; mean age 58.0 ± 10.3 years, range from 38 to 84 years) were recruited in the present study. Enzyme-linked immunosorbent assay was applied to measure serum cystatin C levels and other serum indexes. The estimated glomerular filtration rate and GS were calculated.Serum low-density lipoprotein cholesterol (LDL-C), uric acid, Cystatin C, and homocysteine (HCY) were significantly elevated in CAD patients compared to controls. There were significant differences regarding total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, cystatin C, eGFR and GS among stable angina pectoris (SAP), unstable angina group (UAP), and acute myocardial infarction (AMI) patients. AMI group had an elevated serum Cystatin C, LDL-C, HCY, and GS than SAP and UAP patients. When stratified patient groups by the quartiles of Cystatin C, we found age, the proportion of male and patients with diabetes, HCY, and GS were increased in Q4 than in other quartile groups. Spearman correlation test revealed a positive relationship between Cystatin C, HCY, and GS. Multivariate logistic regression analysis revealed that serum Cystatin C level, presence of hypertension and diabetes, HCY, age, and male were the risk factors for coronary artery lesions.In summary, our results suggested that cystatin C is a promising clinical biomarker that provides complementary information to the established risk determinants. The serum Cystatin C level is strongly associated with GS and could be used to evaluate the severity of coronary artery lesions.
Collapse
Affiliation(s)
- Zhenfei Chen
- Department of Cardiology, The Second Hospital of Hefei City, Hefei, Anhui, China
| | - Jing Zhang
- Department of Cardiology, The Second Hospital of Hefei City, Hefei, Anhui, China
| | - Jun Feng
- Department of Cardiology, The Second Hospital of Hefei City, Hefei, Anhui, China
| | - Gaoliang Zhou
- Department of Cardiology, The Second Hospital of Hefei City, Hefei, Anhui, China
| | - Xiaoqin Jin
- Department of Cardiology, The Second Hospital of Hefei City, Hefei, Anhui, China
| | - Jianyuan Pan
- Department of Cardiology, The Second Hospital of Hefei City, Hefei, Anhui, China
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg University, Germany
| |
Collapse
|
12
|
Rodriguez S, Little HC, Daneshpajouhnejad P, Fenaroli P, Tan SY, Sarver DC, Delannoy M, Talbot CC, Jandu S, Berkowitz DE, Pluznick JL, Rosenberg AZ, Wong GW. Aging and chronic high-fat feeding negatively affect kidney size, function, and gene expression in CTRP1-deficient mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R19-R35. [PMID: 33085906 PMCID: PMC7847058 DOI: 10.1152/ajpregu.00139.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
C1q/TNF-related protein 1 (CTRP1) is an endocrine factor with metabolic, cardiovascular, and renal functions. We previously showed that aged Ctrp1-knockout (KO) mice fed a control low-fat diet develop renal hypertrophy and dysfunction. Since aging and obesity adversely affect various organ systems, we hypothesized that aging, in combination with obesity induced by chronic high-fat feeding, would further exacerbate renal dysfunction in CTRP1-deficient animals. To test this, we fed wild-type and Ctrp1-KO mice a high-fat diet for 8 mo or longer. Contrary to our expectation, no differences were observed in blood pressure, heart function, or vascular stiffness between genotypes. Loss of CTRP1, however, resulted in an approximately twofold renal enlargement (relative to body weight), ∼60% increase in urinary total protein content, and elevated pH, and changes in renal gene expression affecting metabolism, signaling, transcription, cell adhesion, solute and metabolite transport, and inflammation. Assessment of glomerular integrity, the extent of podocyte foot process effacement, as well as renal response to water restriction and salt loading did not reveal significant differences between genotypes. Interestingly, blood platelet, white blood cell, neutrophil, lymphocyte, and eosinophil counts were significantly elevated, whereas mean corpuscular volume and hemoglobin were reduced in Ctrp1-KO mice. Cytokine profiling revealed increased circulating levels of CCL17 and TIMP-1 in KO mice. Compared with our previous study, current data suggest that chronic high-fat feeding affects renal phenotypes differently than similarly aged mice fed a control low-fat diet, highlighting a diet-dependent contribution of CTRP1 deficiency to age-related changes in renal structure and function.
Collapse
Affiliation(s)
- Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Paride Fenaroli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
14
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
15
|
CTRP9: An emerging potential anti-aging molecule in brain. Cell Signal 2020; 73:109694. [PMID: 32540339 DOI: 10.1016/j.cellsig.2020.109694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
C1q/tumor necrosis factor (TNF)-related proteins (CTRPs) particularly CTRP9, have been established to be as adiponectin (APN) highly conserved paralogs which assemble several APN regulatory functions. Recently, growing body of evidences drawn significant attention to evaluate metabolic and cardiovascular effect of CTRP9. However, the potential role of CTRP9 in brain tissue has not yet fully illustrated. Here, we aimed to uncover latest advances regarding the CTRP9 related signaling pathways and during brain aging process.
Collapse
|
16
|
Zhao X, Li Y, Yan Y, Ma X, Guo C. Methylation of CpG sites in C1QTNF1 (C1q and tumor necrosis factor related protein 1) differs by gender in acute coronary syndrome in Han population: a case-control study. Genes Genomics 2020; 42:681-689. [PMID: 32383048 DOI: 10.1007/s13258-020-00936-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND ACS (acute coronary syndrome), a subgroup of coronary artery disease (CHD), is a leading cause of death worldwide. Reports shown the association between methylation and CHD, while the abnormal expression of C1QTNF1 (C1q and tumor necrosis factor related protein 1) in CHD patients, but the underlying mechanisms are still unclear. OBJECTIVE To analyze the methylation of CpG sites of C1QTNF1 in ACS patients. METHODS Peripheral blood samples were collected from healthy controls and ACS patients. The methylation of total C1QTNF1, promoter sequence and CpG sites of C1QTNF1 were measured using methylation detection kits. The outcomes were compared between patients and controls based on gender, clinical classification and clinical stages. RESULTS The promoter sequences from 37 ACS patients and 20 controls indicate that the methylation rate of C1QTNF1 was significantly lower in male patients compared to healthy controls at + 63 CpG sites (p = 0.03). Whereas, the methylation rate of C1QTNF1 in female patients was significantly lower than female health controls at - 89, + 39 and + 167 CpG sites (p = 0.021, 0.042, 0.021). In addition, the methylation rate of C1QTNF1 was significantly higher in male patients than female patients at - 89, - 41 and + 39 CpG sites (p = 0.011, 0.043, 0.006). Moreover, the methylation rate significantly decreased at - 24 sites (p = 0.021), but it significantly increased at - 14 site (p = 0.048) in patients with UA, compared to patients with STEMI (ST-segment elevation myocardial infarction). CONCLUSIONS There were significant differences in the methylation rate + 63 CpG sites between controls and male ACS patients. The - 14 site methylation increased in patients with UA, compared to patients with STEMI.
Collapse
Affiliation(s)
- Xizhe Zhao
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, 119# Nansihuanxilu, Fentai District, Beijing, 100070, China.,Department of Cardiology, Beijing Electric Power Hospital, Beijing, China
| | - Yi Li
- Department of Clinical Laboratory, Beijing Electric Power Hospital, Beijing, China
| | - Yan Yan
- Department of Physical Examination, Beijing Electric Power Hospital, Beijing, China
| | - Xuelian Ma
- Department of Physical Examination, Beijing Electric Power Hospital, Beijing, China
| | - Caixia Guo
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, 119# Nansihuanxilu, Fentai District, Beijing, 100070, China.
| |
Collapse
|
17
|
Weng H, Pei Q, Yang M, Zhang J, Cheng Z, Yi Q. Hypomethylation of C1q/tumor necrosis factor-related protein-1 promoter region in whole blood and risks for coronary artery aneurysms in Kawasaki disease. Int J Cardiol 2020; 307:159-163. [PMID: 32081468 DOI: 10.1016/j.ijcard.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is characterized as a self-limited systemic vasculitis. C1q/tumor necrosis factor-related protein-1 (CTRP1) had been associated with the occurrence of vasculitis in KD. Methylation at the promoter region of certain genes was reported to be involved in the development process of KD. This study aims to investigate the methylation levels of CTRP1 in KD, as well as, its potential to predict coronary artery aneurysms (CAAs). METHODS 31 patients with KD and 14 healthy controls (HCs) were recruited into this study. The KD group was further divided into KD with CAA (KD-CAAs) group and KD without NCAAs (KD-NCAAs) group. Methylation levels of CpG sites were determined by MethylTarget sequencing, a method that uses multiple targeted CpG methylation analysis. RESULTS The methylation levels of CTRP1 promoter region in the KD group were lower than that in the HC group at all predicted CpG sites, especially at sites 34, 51, 69, 79, 176 and 206. Compared with KD-CAAs group, the methylation levels of almost every CpG sites of CTRP1 were increased in the KD-NCAAs group, with site 69 and 154 found to be strongly related to the occurrence of CAAs. CONCLUSIONS The difference in methylation levels of CTRP1 promoter may be involved in the development process of KD, and may be a potential predictive marker for the occurrence of CAAs.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Jing Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|
18
|
Serum C1q/TNF-Related Protein-2 (CTRP2) Levels are Associated with Coronary Artery Disease. Arch Med Res 2020; 51:167-172. [DOI: 10.1016/j.arcmed.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022]
|
19
|
Rodriguez S, Little HC, Daneshpajouhnejad P, Shepard BD, Tan SY, Wolfe A, Cheema MU, Jandu S, Woodward OM, Talbot CC, Berkowitz DE, Rosenberg AZ, Pluznick JL, Wong GW. Late-onset renal hypertrophy and dysfunction in mice lacking CTRP1. FASEB J 2020; 34:2657-2676. [PMID: 31908037 PMCID: PMC7739198 DOI: 10.1096/fj.201900558rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Local and systemic factors that influence renal structure and function in aging are not well understood. The secretory protein C1q/TNF-related protein 1 (CTRP1) regulates systemic metabolism and cardiovascular function. We provide evidence here that CTRP1 also modulates renal physiology in an age- and sex-dependent manner. In mice lacking CTRP1, we observed significantly increased kidney weight and glomerular hypertrophy in aged male but not female or young mice. Although glomerular filtration rate, plasma renin and aldosterone levels, and renal response to water restriction did not differ between genotypes, CTRP1-deficient male mice had elevated blood pressure. Echocardiogram and pulse wave velocity measurements indicated normal heart function and vascular stiffness in CTRP1-deficient animals, and increased blood pressure was not due to greater salt retention. Paradoxically, CTRP1-deficient mice had elevated urinary sodium and potassium excretion, partially resulting from reduced expression of genes involved in renal sodium and potassium reabsorption. Despite renal hypertrophy, markers of inflammation, fibrosis, and oxidative stress were reduced in CTRP1-deficient mice. RNA sequencing revealed alterations and enrichments of genes in metabolic processes in CTRP1-deficient animals. These results highlight novel contributions of CTRP1 to aging-associated changes in renal physiology.
Collapse
Affiliation(s)
- Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C. Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y. Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Umar Cheema
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan E. Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Shimada H, Noro E, Suzuki S, Sakamoto J, Sato I, Parvin R, Yokoyama A, Sugawara A. Effects of Adipocyte-derived Factors on the Adrenal Cortex. Curr Mol Pharmacol 2020; 13:2-6. [DOI: 10.2174/1874467212666191015161334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 01/26/2023]
Abstract
Background and Objective:
Obesity is highly complicated by hypertension and hyperglycemia.
In particular, it has been proposed that obesity-related hypertension is caused by adipocyte-derived
factors that are recognized as undetermined proteins secreted from adipocytes. Adipocyte-derived factors
have been known to be related to aldosterone secretion in the adrenal gland. So far, Wnt proteins,
CTRP-1, VLDL, LDL, HDL and leptin have been demonstrated to stimulate aldosterone secretion. In
contrast, it has not yet been clarified whether adipocyte-derived factors also affect adrenal cortisol secretion.
Methods and Results:
In the present study, we investigated the effect of adipocyte-derived factors on
cortisol synthase gene CYP11B1 mRNA expression in vitro study using adrenocortical carcinoma
H295R cells and mouse fibroblast 3T3-L1cells. Interestingly, adipocyte-derived factors were demonstrated
to have the ability to stimulate CYP11B1 mRNA expression.
Conclusion:
Since CYP11B1 is well known as a limiting enzyme of cortisol synthesis, our study suggests
that adipocyte-derived factors may stimulate cortisol secretion, as well as aldosterone secretion.
Taken together, adipocyte-derived factors may be the cause of metabolic syndrome due to their stimulating
effects on aldosterone/cortisol secretion. Therefore, the innovation of novel drugs against them
may possibly be a new approach against metabolic syndrome.
Collapse
Affiliation(s)
- Hiroki Shimada
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Erika Noro
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Jun Sakamoto
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Ikuko Sato
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Rehana Parvin
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
21
|
The novel adipokine CTRP1 is significantly associated with the incidence of major adverse cardiovascular events. Atherosclerosis 2019; 286:1-6. [DOI: 10.1016/j.atherosclerosis.2019.04.222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/23/2022]
|
22
|
Circulating CTRP1 Levels Are Increased and Associated with the STOD in Essential Hypertension in Chinese Patients. Cardiovasc Ther 2019; 2019:4183781. [PMID: 31772610 PMCID: PMC6739797 DOI: 10.1155/2019/4183781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the correlation between complement C1q tumor necrosis factor-related protein 1 (CTRP1) and subclinical target organ damage (STOD) in essential hypertension (EH). 720 patients were enrolled in this study, including 360 healthy subjects and 360 patients with EH. The EH group included 183 patients complicated with STOD and 177 patients without STOD. In the STOD group, there were 87 patients with left ventricular hypertrophy (LVH), 32 patients with microalbuminuria (MAU), and 58 patients with complication of LVH and MAU. Enzyme-linked immunosorbent assay (ELISA) was used to detect the CTRP1, adiponectin (APN), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). We found that CTRP1 levels were higher in patients with EH than those in healthy subjects; moreover, the level of CTRP1 of patients in the group complicated with EH and STOD was increased compared with EH patients without STOD. CTRP1 levels in the group complicated with LVH and MAU were significantly higher than those in the LVH group and the MAU group. Furthermore, APN, CTRP1, and IL-6 were three factors that influenced the STOD of EH patients, among which CTRP1 and IL6 were positively related with the complication of hypertension and STOD. In conclusion, CTRP1 levels are increased and associated with the STOD (heart and kidney) in essential hypertension, which can be regarded as a novel biomarker in the prediction of prognosis for patients with essential hypertension.
Collapse
|
23
|
Elsaid HH, Elgohary MN, Elshabrawy AM. Complement c1q tumor necrosis factor-related protein 3 a novel adipokine, protect against diabetes mellitus in young adult Egyptians. Diabetes Metab Syndr 2019; 13:434-438. [PMID: 30641739 DOI: 10.1016/j.dsx.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
UNLABELLED C1q/TNF-related protein-3 (CTRP3) is a novel adipokine with anti-inflammatory and a multitude of biological effects on glucose and lipid metabolism however, the influence of CTRP3 on incidence of diabetes mellitus remain unclear. This study investigated the effects of CTRP3 levels in obese and normal body weight young adults on insulin resistance and occurrence of diabetes mellitus. SUBJECTS AND METHODS In this case control study, Serum levels of CTRP3, HbA1c, Lipid profile, glucose and insulin levels were determined in 75 obese and 68 normal body weight individuals. RESULTS In obese young adults CTRP3 concentrations were decreased compared to normal body weight young adults (NBW). The association between reduction of CTRP3 concentrations and the presence of diabetes is statistically significant. CTRP3 showed significant negative correlation with BMI, HOMA-IR and triglycerides as well as positive correlations with HDL - cholesterol while there is no association between CTRP3 and BMI within the NBW group. Higher HbA1C, HOMA-IR, and risk of diabetes development within obese subjects were related to lower CTRP3 concentration. CONCLUSIONS This study shows that reduction of CTRP3 concentrations is likely to bring a concomitant increase in risk of diabetes in obese and normal body weight young adults. Decrease in CTRP3 concentration may have an essential role in the pathophysiology of metabolic disorders concomitant to obesity.
Collapse
Affiliation(s)
- Hanaa H Elsaid
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwan N Elgohary
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Arafa M Elshabrawy
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
24
|
C1q and TNF related protein 1 regulates expression of inflammatory genes in vascular smooth muscle cells. Genes Genomics 2018; 41:397-406. [PMID: 30474828 DOI: 10.1007/s13258-018-0770-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND C1q and TNF related protein 1 (C1QTNF1) is known to be associated with coronary artery diseases. However, the molecular function of C1QTNF1 on the vascular smooth muscles remains to be investigated. OBJECTIVE This study was therefore undertaken to investigate the effect of C1QTNF1 on gene expression of human smooth muscle cells and to reveal potential molecular mechanisms mediated by C1QTNF1. METHODS Vascular smooth muscle cells were incubated with recombinant C1QTNF1 for 16 h, followed by determining any change in mRNA expressions by Affymetrix genechip. Gene ontology (GO), KEGG pathway, and protein-protein interaction (PPI) network were analyzed in differentially expressed genes. In addition, validation of microarray data was performed using quantitative real-time PCR. RESULTS The mRNA expressions of annotated 74 genes were significantly altered after incubation with recombinant C1QTNF1; 41 genes were up-regulated and 33 down-regulated. The differentially expressed genes were enriched in biological processes and KEGG pathways associated with inflammatory responses. In the PPI network analysis, IL-6, CCL2, and ICAM1 were identified as potential key genes with relatively high degree. The cluster analysis in the PPI network identified a significant module composed of upregulated genes, such as IL-6, CCL2, NFKBIA, SOD2, and ICAM1. The quantitative real-time PCR results of potential key genes were consistent with microarray data. CONCLUSION The results in the present study provide insights on the effects of C1QTNF1 on gene expression of smooth muscle cells. We believe our findings will help to elucidate the molecular mechanisms regarding the functions of C1QTNF1 on smooth muscle cells in inflammatory diseases.
Collapse
|
25
|
Han S, Jeong AL, Lee S, Park JS, Buyanravjikh S, Kang W, Choi S, Park C, Han J, Son WC, Yoo KH, Cheong JH, Oh GT, Lee WY, Kim J, Suh SH, Lee SH, Lim JS, Lee MS, Yang Y. C1q/TNF-α–Related Protein 1 (CTRP1) Maintains Blood Pressure Under Dehydration Conditions. Circ Res 2018; 123:e5-e19. [DOI: 10.1161/circresaha.118.312871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sora Han
- From the Research Institute of Women’s Health (S.H.)
| | - Ae Lee Jeong
- Sookmyung Women’s University, Seoul, Korea; New Drug Development Center, Osong Medical Innovation Foundation, Korea (A.L.J.)
| | - Sunyi Lee
- Research and Development Center, CJ HealthCare, Icheon, Korea (S.L.)
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute (J.S.P.)
| | | | - Wonku Kang
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Seungmok Choi
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Changmin Park
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Jin Han
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea (J.H.)
| | - Woo-Chan Son
- Pathology Department, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (W.-C.S.)
| | - Kyung Hyun Yoo
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, Korea (J.H.C.)
| | | | - Won-Young Lee
- Ewha Womans University, Seoul, Korea; Department of Endocrinology (W.-Y.L.)
- Department of Metabolism (W.-Y.L.)
| | - Jongwan Kim
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea; and Department of Laboratory Medicine, Dankook University School of Medicine, Cheonan, Korea (J.K.)
| | - Suk Hyo Suh
- Department of Physiology, Medical School (S.H.S.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital (S.-H.L.)
| | - Jong-Seok Lim
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Myeong-Sok Lee
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Young Yang
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| |
Collapse
|
26
|
Wu L, Gao L, Zhang D, Yao R, Huang Z, Du B, Wang Z, Xiao L, Li P, Li Y, Liang C, Zhang Y. C1QTNF1 attenuates angiotensin II-induced cardiac hypertrophy via activation of the AMPKa pathway. Free Radic Biol Med 2018; 121:215-230. [PMID: 29733904 DOI: 10.1016/j.freeradbiomed.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022]
Abstract
RATIONALE Complement C1q tumor necrosis factor related proteins (C1QTNFs) have been reported to have diverse biological influence on the cardiovascular system. C1QTNF1 is a member of the CTRP superfamily. C1QTNF1 is expressed in the myocardium; however, its function in myocytes has not yet been investigated. OBJECTIVE To systematically investigate the roles of C1QTNF1 in angiotensin II (Ang II)-induced cardiac hypertrophy. METHODS AND RESULTS C1QTNF1 knock-out mice were used with the aim of determining the role of C1QTNF1 in cardiac hypertrophy in the adult heart. Data from experiments showed that C1QTNF1 was up-regulated during cardiac hypertrophic processes, which were triggered by increased reactive oxygen species. C1QTNF1 deficiency accelerated cardiac hypertrophy, fibrosis, inflammation responses, and oxidative stress with deteriorating cardiac dysfunction in the Ang II-induced cardiac hypertrophy mouse model. We identified C1QTNF1 as a negative regulator of cardiomyocyte hypertrophy in Ang II-stimulated neonatal rat cardiomyocytes using the recombinant human globular domain of C1QTNF1 and C1QTNF1 siRNA. Injection of the recombinant human globular domain of C1QTNF1 also suppressed the Ang II-induced cardiac hypertrophic response in vivo. The anti-hypertrophic effects of C1QTNF1 rely on AMPKa activation, which inhibits mTOR P70S6K phosphorylation. An AMPKa inhibitor abrogated the anti-hypertrophic effects of the recombinant human globular domain of C1QTNF1 both in vivo and vitro. Moreover, C1QTNF1-mediated AMPKa activation was triggered by the inhibition of PDE1-4, which subsequently activated the cAMP/PKA/LKB1 pathway. CONCLUSION Our results demonstrated that C1QTNF1 improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing and activating AMPKa, suggesting that C1QTNF1 could be a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Leiming Wu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Dianhong Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Binbin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Zheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Pengcheng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Yapeng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China.
| |
Collapse
|
27
|
Feng S, Su Y, Luo L, Jing F, Yi Q. Serum levels of C1q/tumor necrosis factor-related protein-1 in children with Kawasaki disease. Pediatr Res 2018; 83:999-1003. [PMID: 29360808 DOI: 10.1038/pr.2018.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/09/2018] [Indexed: 01/23/2023]
Abstract
BackgroundTo investigate the serum C1q/tumor necrosis factor-related protein-1 (CTRP1) levels in children with acute Kawasaki disease (KD), as well as the relationship between CTRP1 levels and laboratory variables.MethodsEighty-seven children with KD and 38 healthy controls (HCs) were included in this study. General characteristics were obtained from all subjects. Serum CTRP1 levels in all subjects and serum tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in KD patients were measured using enzyme-linked immunosorbent assay.ResultsCompared with the HC group, serum CTRP1 levels were significantly elevated in the KD group. Significantly higher serum TNF-α, IL-1β, IL-6, and CTRP1 levels were observed in patients with KD with coronary artery lesions (KD-CALs) than in patients with KD without CALs (KD-NCALs). Serum CTRP1 levels were positively correlated with white blood cell counts (WBC), percentage of neutrophils (N%), thrombin time (TT), procalcitonin (Pct), TNF-α, IL-1β, and IL-6 levels. Meanwhile, CTRP1 levels were negatively correlated with the percentage of leukomonocytes (L%) in KD patients. Furthermore, serum CTRP1 levels were positively correlated with the time point of intravenous immunoglobulin (IVIG), WBC, N%, TNF-α, IL-1β, and IL-6 levels in the KD-CAL group.ConclusionCTRP1 may participate in the process of vasculitis and blood coagulation during the acute phase of KD.
Collapse
Affiliation(s)
- Siqi Feng
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
| | - Ya Su
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
| | - Li Luo
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Fengchuan Jing
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder, Chongqing, China
| |
Collapse
|
28
|
Wang S, Ling Y, Liang W, Shen L. Association of serum C1q/TNF-related protein-3 (CTRP-3) in patients with coronary artery disease. BMC Cardiovasc Disord 2017; 17:210. [PMID: 28754090 PMCID: PMC5534082 DOI: 10.1186/s12872-017-0646-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that complement C1q tumor necrosis factor related proteins (CTRPs) have diverse biological influences on the cardiovascular system. CTRP 3 is a member of the CTRP superfamily, which may play a pivotal role in the pathogenesis of coronary artery disease (CAD). Here, we investigated whether serum levels of CTRP 3 are associated with the prevalence and the severity of CAD. METHODS In this study, 145 eligible participants were included who underwent coronary angiography. According to the result of the coronary angiography, all participants were divided into two groups: non-CAD group (n = 66) and CAD group (n = 79). The CAD group was further divided into single-vessel (n = 25), double-vessel (n = 30) and triple-vessel (n = 24) disease groups in line with different lesioned vessels of CAD. Plasma CTRP 3 concentration was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Serum levels of CTRP 3 were significantly higher in CAD patients than in non-CAD patients (CAD: 56.68 ± 3.63 ng/ml, non-CAD: 44.10 ± 3.20 ng/ml, p < 0.01). Significant differences of CTRP 3 levels were also found between single-vessel group and triple-vessel group (single-vessel group: 44.80 ± 3.14 ng/ml, triple-vessel group: 75.07 ± 9.41 ng/ml, p < 0.005). Multiple logistic regression analysis revealed that CTRP 3 levels, together with HDL cholesterol and glucose, correlated with CAD. CONCLUSIONS Elevated serum CTRP 3 levels were closely related to the prevalence and severity of CAD, suggesting that it might be regarded as a novel biomarker for CAD.
Collapse
Affiliation(s)
- Shuhong Wang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Ling
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China
| | - Linhui Shen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Association of C1q/TNF-Related Protein-3 (CTRP3) and CTRP13 Serum Levels with Coronary Artery Disease in Subjects with and without Type 2 Diabetes Mellitus. PLoS One 2016; 11:e0168773. [PMID: 28033351 PMCID: PMC5199067 DOI: 10.1371/journal.pone.0168773] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
C1q/TNF-Related Protein-3 (CTRP3) and CTRP13 are two newly discovered adipokines regulating glucose and lipid metabolism. But their role in type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) is still in infancy. The aim of this study was to investigate the associations of gene expression and serum levels of CTRP3 and CTRP13 with CAD, metabolic and inflammatory markers in patients with and without T2DM. Serum levels of CTRP3, CTRP13, adiponectin and inflammatory cytokines and their gene expression in peripheral blood mononuclear cells (PBMCs) were determined in 172 subjects categorized as group I (without T2DM and CAD), group II (with CAD but no T2DM), group III (with T2DM but no CAD) and group IV (with T2DM and CAD). Serum levels and gene expression of CTRP3, CTRP13 and adiponectin in the group I were higher compared to other groups. Inflammatory cytokines in the control group were lower than other groups too. CTRP3 serum levels have an independent association with BMI, smoking and CTRP3 gene expression; also CTRP13 serum levels has an independent association with BMI, HDL-C, insulin, HOMA-IR, HbA1c and TNF-α. Decreased serum levels of CTRP3 and CTRP13 were also associated with CAD. It appears that the decreased levels of CTRP3 and especially CTRP13 were associated with increased risk of T2DM and CAD. These findings suggest an emerging role of these adipokines in the pathogenesis of CAD, but further studies are necessary to establish this concept.
Collapse
|
30
|
The Circulating CTRP13 in Type 2 Diabetes and Non-Alcoholic Fatty Liver Patients. PLoS One 2016; 11:e0168082. [PMID: 27936230 PMCID: PMC5148106 DOI: 10.1371/journal.pone.0168082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/27/2016] [Indexed: 01/21/2023] Open
Abstract
Numerous studies have shown that C1q/TNF-related proteins (CTRPs) are involved in the pathophysiology of metabolic disorders, such as Non-alcoholic fatty liver disease (NAFLD) and Type 2 Diabetes (T2DM). There is a little information concerning CTRP13 in the context of NAFLD and T2DM. We evaluated the plasma levels of CTRP13 in healthy control and patients with NAFLD, T2DM and NAFLD+T2DM, and also correlations between CTRP13 plasma levels and clinical and subclinical features. Circulating CTRP13 was examined in 88 male (20 healthy control, 22 T2DM patients, 22 NAFLD patients and 22 NAFLD+T2DM patients). CTRP13 and adiponectin plasma levels were measured by ELISA method. CTRP13 serum levels were higher in the control group than the other groups (all p <0.001). CTRP13 had significant negative correlation with unfavorable anthropometric and metabolic factors including BMI, visceral fat, Insulin, HOMA-IR, TG, AST, ALT and ɣ-GT and have a positive correlation with plasma concentration of adiponectin. CTRP13 had a significant inverse correlation with cIMT (r = -0.345) and liver stiffness (LS) (r = -0.372) (both, p <0.001). Also, the multiple stepwise linear regression has shown that visceral fat is a significant predictor of CTRP13 serum levels (p <0.001). Multiple stepwise linear regression with LS as the dependent variable showed that ALT (p < 0.001) and SBP (p = 0.010) were two predictor factors for LS. Strikingly, multiple stepwise linear regression showed that CTRP13 (p = 0.006) and SBP (p = 0.007) were two independent predictors for cIMT. Lower CTRP13 in patients with T2DM, NAFLD and NAFLD + T2DM was associated with increased risk of the diseases. CTRP13 have negative associations with unfavorable metabolic factors and also is a negative predictor of cIMT. Our results suggested that CTRP13 could be an associated factor with NAFLD in patients with and without T2DM.
Collapse
|