1
|
Stein AP, Harder J, Holmes HR, Merz CNB, Pepine CJ, Keeley EC. Single Nucleotide Polymorphisms in Coronary Microvascular Dysfunction. J Am Heart Assoc 2024; 13:e032137. [PMID: 38348798 PMCID: PMC11010085 DOI: 10.1161/jaha.123.032137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Coronary microvascular dysfunction is an underdiagnosed pathologic process that is associated with adverse clinical outcomes. There are data to suggest that coronary microvascular dysfunction, in some cases, may be genetically determined. We present an updated review of single nucleotide polymorphisms in coronary microvascular dysfunction.
Collapse
Affiliation(s)
| | | | | | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart CenterSmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Carl J. Pepine
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| | - Ellen C. Keeley
- Department of MedicineUniversity of FloridaGainesvilleFLUSA
- Division of Cardiovascular MedicineUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
2
|
Abdullah Ramadhan I, Rahman Sulaiman L, Salihi A. NOS3 and CTH gene mutations as new molecular markers for detection of lung adenocarcinoma. PeerJ 2023; 11:e16209. [PMID: 38107574 PMCID: PMC10722981 DOI: 10.7717/peerj.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
Gene mutations can contribute to lung adenocarcinoma (LUAD) development, metastasis, and therapy. This study aims to identify mutations in the endothelial nitric oxide synthase (eNOS or NOS3) and cystathionine γ-lyase (CSE or CTH) genes that are connected to LUAD symptoms. Two gene polymorphisms were identified using Sanger sequencing in 31 LUAD patients' formalin-fixed paraffin-embedded (FFPE) tissues. Epidermal growth factor receptor (EGFR) mutation and programmed death-ligand 1 (PD-L1) expression were examined in 110 LUAD patients using real-time polymerase chain reaction and immunohistochemistry. Mutations in the selected genes were retrieved from the gnomAD database for all cancer types and the Mutagene and COSMIC databases for LUAD patients. The GeneMANIA prediction server was used to predict the interaction between the studied genes. Poorly and moderately differentiated tumours predominated, with pT3 N2 Mx being the most prevalent stage. Polymorphism data showed 189 NOS3 gene mutations and 34 CTH gene mutations. In 110 LUAD patients, 14 (12.73%) were PD-L1 positive and expressed 50% or more protein. Eight (7.27%) samples included EGFR mutations, including two deletions and two point mutations in exon 19, four point mutations in exon 21. In gnomAD, 4012 NOS3 mutations and 1214 CTH mutations are present. In the Mutagene and COSMIC databases, the NOS3 gene had 295 and 93 mutations, whereas the CTH gene had 61 and 36. According to the GeneMANIA prediction server, 10 genes are related to NOS3, eight with CTH, 15 with EGFR, and 5 with PD-L1. This study is the first to identify several previously unknown mutations in LUAD patients' NOS3 and CTH genes, with potential therapeutic implications.
Collapse
Affiliation(s)
- Iman Abdullah Ramadhan
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Luqman Rahman Sulaiman
- Department of Medicine, College of Medicine, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Mir R, Elfaki I, Javid J, Barnawi J, Altayar MA, Albalawi SO, Jalal MM, Tayeb FJ, Yousif A, Ullah MF, AbuDuhier FM. Genetic Determinants of Cardiovascular Disease: The Endothelial Nitric Oxide Synthase 3 (eNOS3), Krüppel-Like Factor-14 (KLF-14), Methylenetetrahydrofolate Reductase (MTHFR), MiRNAs27a and Their Association with the Predisposition and Susceptibility to Coronary Artery Disease. Life (Basel) 2022; 12:life12111905. [PMID: 36431040 PMCID: PMC9697170 DOI: 10.3390/life12111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary artery disease (CAD) is an important cause of death worldwide. CAD is caused by genetic and other factors including hypertension, hyperlipidemia, obesity, stress, unhealthy diet, physical inactively, smoking and Type 2 diabetes (T2D). The genome wide association studies (GWASs) have revealed the association of many loci with risk to diseases such as cancers, T2D and CAD. Nitric oxide (NO) is a potent vasodilator and is required for normal vascular health. It is produced in the endothelial cells in a reaction catalyzed by the endothelial NO synthase (eNOS). Methylenetetrahydrofolate reductase (MTHFR) is a very important enzyme involved in metabolism of folate and homocysteine, and its reduced function leads to cardiovascular disease. The Krüppel-like factor-14 (KLF-14) is an important transcriptional regulator that has been implicated in metabolic syndrome. MicroRNA (MiRNAs) are short non-coding RNAs that regulate the gene expression of proteins involved in important physiological processes including cell cycle and metabolism. In the present study, we have investigated the potential impact of germline pathogenic variants of endothelial eNOS, KLF-14, MTHFR, MiRNA-27a and their association with risk to CAD in the Saudi population. Methods: Amplification Refractory Mutation System (ARMS) PCR was used to detect MTHFR, KLF-14, miRNA-27a and eNOS3 genotyping in CAD patients and healthy controls. About 125 CAD cases and 125 controls were enrolled in this study and statistical associations were calculated including p-value, risk ratio (RR), and odds ratio (OD). Results: There were statistically significant differences (p < 0.05) in genotype distributions of MTHFR 677 C>T, KLF-14 rs972283 G>A, miRNAs27a rs895819 A>G and eNOS3 rs1799983 G>T between CAD patients and controls. In addition, our results indicated that the MTHFR-TT genotype was associated with increased CAD susceptibility with an OR 2.75 (95%) and p < 0.049, and the KLF14-AA genotype was also associated with increased CAD susceptibility with an OR of 2.24 (95%) and p < 0.024. Moreover, the miRNAs27a-GG genotype protects from CAD risk with an OR = 0.31 (0.016), p = 0.016. Our results also indicated that eNOS3 -GT genotype is associated with CAD susceptibility with an OR = 2.65, and p < 0.0003. Conclusion: The MTHFR 677C>T, KLF14 rs972283 G>A, miRNAs27a A>G, and eNOS3 rs1799983 G>T genotypes were associated with CAD susceptibility (p < 0.05). These findings require verification in future large-scale population based studies before these loci are used for the prediction and identification of individuals at risk to CAD. Weight control, physical activity, and smoking cessation are very influential recommendations given by clinicians to the at risk individuals to reduce or delay the development of CAD.
Collapse
Affiliation(s)
- Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence: (R.M.); (I.E.)
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence: (R.M.); (I.E.)
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Jameel Barnawi
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Malik A. Altayar
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Salem Owaid Albalawi
- Department of Cardiology, King Fahd Specialist Hospital, Tabuk 71491, Saudi Arabia
| | - Mohammed M. Jalal
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faris J. Tayeb
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aadil Yousif
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Fahad Ullah
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faisel M. AbuDuhier
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|