1
|
Bushra, Ahmed SI, Begum S, Maaria, Habeeb MS, Jameel T, Khan AA. Molecular basis of sepsis: A New insight into the role of mitochondrial DNA as a damage-associated molecular pattern. Mitochondrion 2024; 79:101967. [PMID: 39343040 DOI: 10.1016/j.mito.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Sepsis remains a critical challenge in the field of medicine, claiming countless lives each year. Despite significant advances in medical science, the molecular mechanisms underlying sepsis pathogenesis remain elusive. Understanding molecular sequelae is gaining deeper insights into the roles played by various damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) in disease pathogenesis. Among the known DAMPs, circulating cell-free mitochondrial DNA (mtDNA) garners increasing attention as a key player in the immune response during sepsis and other diseases. Mounting evidence highlights numerous connections between circulating cell-free mtDNA and inflammation, a pivotal state of sepsis, characterized by heightened inflammatory activity. In this review, we aim to provide an overview of the molecular basis of sepsis, particularly emphasizing the role of circulating cell-free mtDNA as a DAMP. We discuss the mechanisms of mtDNA release, its interaction with pattern recognition receptors (PRRs), and the subsequent immunological responses that contribute to sepsis progression. Furthermore, we discuss the forms of cell-free mtDNA; detection techniques of circulating cell-free mtDNA in various biological fluids; and the diagnostic, prognostic, and therapeutic implications offering insights into the potential for innovative interventions in sepsis management.
Collapse
Affiliation(s)
- Bushra
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Shaik Iqbal Ahmed
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Safia Begum
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Maaria
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Mohammed Safwaan Habeeb
- Department of Surgery, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Tahmeen Jameel
- Department of Biochemistry, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Hyderabad 500 058, Telangana, India.
| |
Collapse
|
2
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit Care 2024; 28:292. [PMID: 39227925 PMCID: PMC11373266 DOI: 10.1186/s13054-024-05069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
3
|
Casper E, El Wakeel L, Sabri N, Khorshid R, Fahmy SF. Melatonin: A potential protective multifaceted force for sepsis-induced cardiomyopathy. Life Sci 2024; 346:122611. [PMID: 38580195 DOI: 10.1016/j.lfs.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Sepsis is a life-threatening condition manifested by organ dysfunction caused by a dysregulated host response to infection. Lung, brain, liver, kidney, and heart are among the affected organs. Sepsis-induced cardiomyopathy is a common cause of death among septic patients. Sepsis-induced cardiomyopathy is characterized by an acute and reversible significant decline in biventricular both systolic and diastolic function. This is accompanied by left ventricular dilatation. The pathogenesis underlying sepsis-induced cardiomyopathy is multifactorial. Hence, targeting an individual pathway may not be effective in halting the extensive dysregulated immune response. Despite major advances in sepsis management strategies, no effective pharmacological strategies have been shown to treat or even reverse sepsis-induced cardiomyopathy. Melatonin, namely, N-acetyl-5-methoxytryptamine, is synthesized in the pineal gland of mammals and can also be produced in many cells and tissues. Melatonin has cardioprotective, neuroprotective, and anti-tumor activity. Several literature reviews have explored the role of melatonin in preventing sepsis-induced organ failure. Melatonin was found to act on different pathways that are involved in the pathogenesis of sepsis-induced cardiomyopathy. Through its antimicrobial, anti-inflammatory, and antioxidant activity, it offers a potential role in sepsis-induced cardiomyopathy. Its antioxidant activity is through free radical scavenging against reactive oxygen and nitrogen species and modulating the expression and activity of antioxidant enzymes. Melatonin anti-inflammatory activities control the overactive immune system and mitigate cytokine storm. Also, it mitigates mitochondrial dysfunction, a major mechanism involved in sepsis-induced cardiomyopathy, and thus controls apoptosis. Therefore, this review discusses melatonin as a promising drug for the management of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Lamia El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Nagwa Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ramy Khorshid
- Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sarah F Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Whitefoot-Keliin KM, Benaske CC, Allen ER, Guerrero MT, Grapentine JW, Schiff BD, Mahon AR, Greenlee-Wacker MC. In response to bacteria, neutrophils release extracellular vesicles capable of initiating thrombin generation through DNA-dependent and independent pathways. J Leukoc Biol 2024:qiae125. [PMID: 38809773 DOI: 10.1093/jleuko/qiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils release extracellular vesicles (EVs) and some subsets of neutrophil-derived EVs are procoagulant. In response to S. aureus, neutrophils produce EVs that associate electrostatically with neutrophil extracellular traps (NETs). DNA in NETs is procoagulant, but whether neutrophil EVs produced during bacterial challenge have similar activity is unknown. Given that EV activity is agonist- and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived EVs, as well as EV-associated DNA, and intact EVs and DNA cause coagulation. We recovered EVs from neutrophils challenged with S. aureus (SA), S. epidermidis (SE), E. coli (EC), and P. aeruginosa (PA), and measured associated DNA and procoagulant activity. EVs from SA-challenged neutrophils (SA-EVs), which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation (TG) in platelet-poor plasma. EV lysis and DNase treatment reduced TG by 90% and 37%, respectively. SE, EC, and PA also increased EV production and EV-associated extracellular DNA, and these EVs were also procoagulant. Compared to spontaneously released EVs, which demonstrated some ability to amplify Factor XII-dependent coagulation in the presence of an activator, only EVs produced in response to bacteria could initiate the pathway. SA-EVs and SE-EVs had more surface-associated DNA than EC-EVs and PA-EVs, and SA-EVs and SE-EVs contributed to initiation and amplification of TG in a DNA-dependent manner. However, DNA on EC- or PA-EVs played no role, suggesting that neutrophils release procoagulant EVs which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.
Collapse
Affiliation(s)
| | - Chase C Benaske
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
| | - Edwina R Allen
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
| | - Mariana T Guerrero
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| | - Justin W Grapentine
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| | - Benjamin D Schiff
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| | - Andrew R Mahon
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
| | - Mallary C Greenlee-Wacker
- Deparment of Biology, Central Michigan University, Mt. Pleasant, MI
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA
| |
Collapse
|
5
|
Dennhardt S, Ceanga IA, Baumbach P, Amiratashani M, Kröller S, Coldewey SM. Cell-free DNA in patients with sepsis: long term trajectory and association with 28-day mortality and sepsis-associated acute kidney injury. Front Immunol 2024; 15:1382003. [PMID: 38803503 PMCID: PMC11128621 DOI: 10.3389/fimmu.2024.1382003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Outcome-prediction in patients with sepsis is challenging and currently relies on the serial measurement of many parameters. Standard diagnostic tools, such as serum creatinine (SCr), lack sensitivity and specificity for acute kidney injury (AKI). Circulating cell-free DNA (cfDNA), which can be obtained from liquid biopsies, can potentially contribute to the quantification of tissue damage and the prediction of sepsis mortality and sepsis-associated AKI (SA-AKI). Methods We investigated the clinical significance of cfDNA levels as a predictor of 28-day mortality, the occurrence of SA-AKI and the initiation of renal replacement therapy (RRT) in patients with sepsis. Furthermore, we investigated the long-term course of cfDNA levels in sepsis survivors at 6 and 12 months after sepsis onset. Specifically, we measured mitochondrial DNA (mitochondrially encoded NADH-ubiquinone oxidoreductase chain 1, mt-ND1, and mitochondrially encoded cytochrome C oxidase subunit III, mt-CO3) and nuclear DNA (nuclear ribosomal protein S18, n-Rps18) in 81 healthy controls and all available samples of 150 intensive care unit patients with sepsis obtained at 3 ± 1 days, 7 ± 1 days, 6 ± 2 months and 12 ± 2 months after sepsis onset. Results Our analysis revealed that, at day 3, patients with sepsis had elevated levels of cfDNA (mt-ND1, and n-Rps18, all p<0.001) which decreased after the acute phase of sepsis. 28-day non-survivors of sepsis (16%) had higher levels of cfDNA (all p<0.05) compared with 28-day survivors (84%). Patients with SA-AKI had higher levels of cfDNA compared to patients without AKI (all p<0.05). Cell-free DNA was also significantly increased in patients requiring RRT (all p<0.05). All parameters improved the AUC for SCr in predicting RRT (AUC=0.88) as well as APACHE II in predicting mortality (AUC=0.86). Conclusion In summary, cfDNA could potentially improve risk prediction models for mortality, SA-AKI and RRT in patients with sepsis. The predictive value of cfDNA, even with a single measurement at the onset of sepsis, could offer a significant advantage over conventional diagnostic methods that require repeated measurements or a baseline value for risk assessment. Considering that our data show that cfDNA levels decrease after the first insult, future studies could investigate cfDNA as a "memoryless" marker and thus bring further innovation to the complex field of SA-AKI diagnostics.
Collapse
Affiliation(s)
- Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Iuliana-Andreea Ceanga
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Mona Amiratashani
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Kröller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Rogers RS, Sharma R, Shah HB, Skinner OS, Guo XA, Panda A, Gupta R, Durham TJ, Shaughnessy KB, Mayers JR, Hibbert KA, Baron RM, Thompson BT, Mootha VK. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 2024; 20:36. [PMID: 38446263 PMCID: PMC10917846 DOI: 10.1007/s11306-024-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA.
| | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hardik B Shah
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | | | - Rahul Gupta
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Timothy J Durham
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Kelsey B Shaughnessy
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Jared R Mayers
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Zhu B, Zhou R, Qin J, Li Y. Hierarchical Capability in Distinguishing Severities of Sepsis via Serum Lactate: A Network Meta-Analysis. Biomedicines 2024; 12:447. [PMID: 38398049 PMCID: PMC10886935 DOI: 10.3390/biomedicines12020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Blood lactate is a potentially useful biomarker to predict the mortality and severity of sepsis. The purpose of this study is to systematically review the ability of lactate to predict hierarchical sepsis clinical outcomes and distinguish sepsis, severe sepsis and septic shock. Methods: We conducted an exhaustive search of the PubMed, Embase and Cochrane Library databases for studies published before 1 October 2022. Inclusion criteria mandated the presence of case-control, cohort studies and randomized controlled trials that established the association between before-treatment blood lactate levels and the mortality of individuals with sepsis, severe sepsis or septic shock. Data was analyzed using STATA Version 16.0. Results: A total of 127 studies, encompassing 107,445 patients, were ultimately incorporated into our analysis. Meta-analysis of blood lactate levels at varying thresholds revealed a statistically significant elevation in blood lactate levels predicting mortality (OR = 1.57, 95% CI 1.48-1.65, I2 = 92.8%, p < 0.00001). Blood lactate levels were significantly higher in non-survivors compared to survivors in sepsis patients (SMD = 0.77, 95% CI 0.74-0.79, I2 = 83.7%, p = 0.000). The prognostic utility of blood lactate in sepsis mortality was validated through hierarchical summary receiver operating characteristic curve (HSROC) analysis, yielding an area under the curve (AUC) of 0.72 (95% CI 0.68-0.76), accompanied by a summary sensitivity of 0.65 (95% CI 0.59-0.7) and a summary specificity of 0.7 (95% CI 0.64-0.75). Unfortunately, the network meta-analysis could not identify any significant differences in average blood lactate values' assessments among sepsis, severe sepsis and septic shock patients. Conclusions: This meta-analysis demonstrated that high-level blood lactate was associated with a higher risk of sepsis mortality. Lactate has a relatively accurate predictive ability for the mortality risk of sepsis. However, the network analysis found that the levels of blood lactate were not effective in distinguishing between patients with sepsis, severe sepsis and septic shock.
Collapse
Affiliation(s)
| | | | | | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd Section, South Renmin Road, Chengdu 610041, China; (B.Z.); (R.Z.); (J.Q.)
| |
Collapse
|
8
|
Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, Simarro M. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166946. [PMID: 37939908 DOI: 10.1016/j.bbadis.2023.166946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.
Collapse
Affiliation(s)
- Alba Montero-Jodra
- Department of Surgery, University of Valladolid, Valladolid, Spain; Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain
| | - Miguel Ángel de la Fuente
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eduardo Tamayo
- Department of Surgery, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Anaesthesiology & Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Simarro
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
10
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
11
|
Mihaľová M, Šupčíková N, Kovalčíková AG, Breza J, Tóthová Ľ, Celec P, Breza J. Dynamics of Urinary Extracellular DNA in Urosepsis. Biomolecules 2023; 13:1008. [PMID: 37371588 DOI: 10.3390/biom13061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular DNA (ecDNA) is a promising candidate marker for the early diagnosis and monitoring of urinary tract infections (UTIs). The aim of our study is to describe the dynamics of ecDNA in the plasma and urine of patients with urosepsis as well as in a mouse model of UTI. Samples of blood and urine were collected from adult patients with UTIs and obstructive uropathy (n = 36) during the first 3 days at the hospital and during a follow-up. Bacterial burden and urinary ecDNA were evaluated in a mouse UTI model (n = 26) at baseline; 24, 48, and 72 h after UTI induction; and 7 days after UTI induction. The plasma ecDNA did not change during urosepsis, but the plasma DNase activity increased significantly at the follow-up. The urinary ecDNA decreased significantly during hospitalization and remained low until the follow-up (90% lower vs. admission). No change was seen in the urinary DNase activity. C-reactive protein (CRP) and procalcitonin are positively correlated with plasma and urinary ecDNA. A UTI caused sepsis in 23% of mice. The urinary ecDNA decreased by three-fold and remained low until day 7 post-infection. Urinary bacterial burden is correlated with urinary ecDNA. Urinary ecDNA is a potential non-invasive marker for monitoring the effects of treatment during urosepsis and is related to UTI progression in the experimental animal model.
Collapse
Affiliation(s)
- Michaela Mihaľová
- Department of Urology, Faculty of Medicine, University Hospital Bratislava and Comenius University, 83305 Bratislava, Slovakia
| | - Nadja Šupčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Alexandra Gaál Kovalčíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Department of Paediatrics, Faculty of Medicine, National Institute of Children's Diseases, Comenius University in Bratislava, 83340 Bratislava, Slovakia
| | - Ján Breza
- Department of Pediatric Urology, Faculty of Medicine, Comenius University and National Institute of Children's Diseases, 83101 Bratislava, Slovakia
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovakia
| | - Ján Breza
- Department of Urology, Faculty of Medicine, University Hospital Bratislava and Comenius University, 83305 Bratislava, Slovakia
| |
Collapse
|
12
|
Vishwakarma SK, Fathima N, Tiwari SK, Khan AA. Simultaneous extraction and quantification of circulating mitochondrial and nuclear DNA using a single plasma sample to predict specific molecular diagnostic implications. Mitochondrion 2023; 68:114-124. [PMID: 36509340 DOI: 10.1016/j.mito.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The magnitude of variations in the level of circulating mitochondrial (cir-mtDNA) and nuclear DNA (cir-ncDNA) in different diseases has indicated the need for investigating a discriminative approach for evaluating their diagnostic significance. This study reports a typical in-house process for extracting both types of cir-DNAs from a single plasma sample and assessed their usefulness in discriminating type 2 diabetes mellitus patients from healthy individuals to eliminate the prevailing dispute about their discriminative role and improve their diagnostic value. This approach offers a more precise and valuable tool for distinguishing the impact of cir-mtDNA from cir-ncDNA in diagnostic implications.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India.
| | - Nusrath Fathima
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Santosh K Tiwari
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Grigoriev E, Ponasenko AV, Sinitskaya AV, Ivkin AA, Kornelyuk RA. Mitochondrial DNA as a Candidate Marker of Multiple Organ Failure after Cardiac Surgery. Int J Mol Sci 2022; 23:ijms232314748. [PMID: 36499077 PMCID: PMC9737207 DOI: 10.3390/ijms232314748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Assess the level of mitochondrial DNA depending on the presence of multiple organ failure in patients after heart surgery. The study included 60 patients who underwent surgical treatment of valvular heart disease using cardiopulmonary bypass. Uncomplicated patients were included in the 1st group (n = 30), patients with complications and multiple organ failure (MOF) were included in the 2nd group (n = 30). Serum mtDNA levels were determined by quantitative real-time polymerase chain reaction with fluorescent dyes. Mitochondrial DNA gene expression did not differ between group before surgery. Immediately after the intervention, cytochrome B gene expression was higher in the group with MOF, and it remained high during entire follow-up period. A similar trend was observed in cytochrome oxidase gene expression. Increased NADH levels of gene expressions during the first postoperative day were noted in both groups, the expression showed tendency to increase on the third postoperative day. mtDNA gene expression in the "MOF present" group remained at a higher level compared with the group without complications. A positive correlation was reveled between the severity of MOF according to SOFA score and the level of mtDNA (r = 0.45; p = 0.028) for the end-point "First day". The ROC analysis showed that mtDNA circulating in plasma (AUC = 0.605) can be a predictor of MOF development. The level of mtDNA significantly increases in case of MOF, irrespective of its cause. (2) The expression of mtDNA genes correlates with the level of MOF severity on the SOFA score.
Collapse
|
14
|
Oliva A, Meroño C, Traba J. Mitochondrial function and dysfunction in innate immunity. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Fan Z, Yang JY, Guo Y, Liu YX, Zhong XY. Altered levels of circulating mitochondrial DNA in elderly people with sarcopenia: Association with mitochondrial impairment. Exp Gerontol 2022; 163:111802. [DOI: 10.1016/j.exger.2022.111802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
|
16
|
Hernández-Beeftink T, Guillen-Guio B, Rodríguez-Pérez H, Marcelino-Rodríguez I, Lorenzo-Salazar JM, Corrales A, Prieto-González M, Rodríguez-Pérez A, Carriedo D, Blanco J, Ambrós A, González-Higueras E, Casanova NG, González-Garay M, Espinosa E, Muriel A, Domínguez D, de Lorenzo AG, Añón JM, Soro M, Belda J, Garcia JGN, Villar J, Flores C. Whole-Blood Mitochondrial DNA Copies Are Associated With the Prognosis of Acute Respiratory Distress Syndrome After Sepsis. Front Immunol 2021; 12:737369. [PMID: 34557198 PMCID: PMC8453061 DOI: 10.3389/fimmu.2021.737369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory process of the lungs that develops primarily in response to pulmonary or systemic sepsis, resulting in a disproportionate death toll in intensive care units (ICUs). Given its role as a critical activator of the inflammatory and innate immune responses, previous studies have reported that an increase of circulating cell-free mitochondrial DNA (mtDNA) is a biomarker for fatal outcome in the ICU. Here we analyzed the association of whole-blood mtDNA (wb-mtDNA) copies with 28-day survival from sepsis and sepsis-associated ARDS. We analyzed mtDNA data from 687 peripheral whole-blood samples within 24 h of sepsis diagnosis from unrelated Spanish patients with sepsis (264 with ARDS) included in the GEN-SEP study. The wb-mtDNA copies were obtained from the array intensities of selected probes, with 100% identity with mtDNA and with the largest number of mismatches with the nuclear sequences, and normalized across the individual-probe intensities. We used Cox regression models for testing the association with 28-day survival. We observed that wb-mtDNA copies were significantly associated with 28-day survival in ARDS patients (hazard ratio = 3.65, 95% confidence interval = 1.39–9.59, p = 0.009) but not in non-ARDS patients. Our findings support that wb-mtDNA copies at sepsis diagnosis could be considered an early prognostic biomarker in sepsis-associated ARDS patients. Future studies will be needed to evaluate the mechanistic links of this observation with the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Aurelio Rodríguez-Pérez
- Department of Anesthesiology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.,Department of Medical and Surgical Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Complejo Hospitalario Universitario de León, León, Spain
| | - Jesús Blanco
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Intensive Care Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Alfonso Ambrós
- Intensive Care Unit, Hospital General de Ciudad Real, Ciudad Real, Spain
| | | | - Nancy G Casanova
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | - Elena Espinosa
- Department of Anesthesiology, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Arturo Muriel
- Intensive Care Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - David Domínguez
- Department of Anesthesiology, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - José M Añón
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Intensive Care Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Marina Soro
- Anesthesiology and Critical Care Department, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Javier Belda
- Anesthesiology and Critical Care Department, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Jesús Villar
- Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Protective effects of farnesyltransferase inhibitor on sepsis-induced morphological aberrations of mitochondria in muscle and increased circulating mitochondrial DNA levels in mice. Biochem Biophys Res Commun 2021; 556:93-98. [PMID: 33845310 PMCID: PMC8757346 DOI: 10.1016/j.bbrc.2021.03.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Sepsis remains a leading cause of mortality in critically ill patients and is characterized by multi-organ dysfunction. Mitochondrial damage has been proposed to be involved in the pathophysiology of sepsis. In addition to metabolic impairments resulting from mitochondrial dysfunction, mitochondrial DNA (mtDNA) causes systemic inflammation as a damage-associated molecular pattern when it is released to the circulation. Metabolic derangements in skeletal muscle are a major complication of sepsis and negatively affects clinical outcomes of septic patients. However, limited knowledge is available about sepsis-induced mitochondrial damage in skeletal muscle. Here, we show that sepsis induced profound abnormalities in cristae structure, rupture of the inner and outer membranes and enlargement of the mitochondria in mouse skeletal muscle in a time-dependent manner, which was associated with increased plasma mtDNA levels. Farnesyltransferase inhibitor, FTI-277, prevented sepsis-induced morphological aberrations of the mitochondria, and blocked the increased plasma mtDNA levels along with improved survival. These results indicate that protein farnesylation plays a role in sepsis-induced damage of the mitochondria in mouse skeletal muscle. Our findings suggest that mitochondrial disintegrity in skeletal muscle may contribute to elevated circulating mtDNA levels in sepsis.
Collapse
|
18
|
"Empowering" Cardiac Cells via Stem Cell Derived Mitochondrial Transplantation- Does Age Matter? Int J Mol Sci 2021; 22:ijms22041824. [PMID: 33673127 PMCID: PMC7918132 DOI: 10.3390/ijms22041824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.
Collapse
|
19
|
Konecna B, Park J, Kwon WY, Vlkova B, Zhang Q, Huang W, Kim HI, Yaffe MB, Otterbein LE, Itagaki K, Hauser CJ. Monocyte exocytosis of mitochondrial danger-associated molecular patterns in sepsis suppresses neutrophil chemotaxis. J Trauma Acute Care Surg 2021; 90:46-53. [PMID: 33021603 DOI: 10.1097/ta.0000000000002973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Trauma and sepsis both increase the risk for secondary infections. Injury mobilizes mitochondrial (MT) danger-associated molecular patterns (mtDAMPs) directly from cellular necrosis. It is unknown, however, whether sepsis can cause active MT release and whether mtDAMPs released by sepsis might affect innate immunity. METHODS Mitochondrial release from human monocytes (Mo) was studied after LPS stimulation using electron microscopy and using fluorescent video-microscopy of adherent Mo using Mito-Tracker Green (MTG) dye. Release of MTG+ microparticles was studied using flow cytometry after bacterial stimulation by size exclusion chromatography of supernatants with polymerase chain reaction (PCR) for mitochondrial DNA (mtDNA). Human neutrophil (PMN), chemotaxis, and respiratory burst were studied after PMN incubation with mtDNA. RESULTS LPS caused Mo to release mtDAMPs. Electron microscopy showed microparticles containing MT. mtDNA was present both in microvesicles and exosomes as shown by PCR of the relevant size exclusion chromatography bands. In functional studies, PMN incubation with mtDNA suppressed chemotaxis in a dose-dependent manner, which was reversed by chloroquine, suggesting an endosomal, toll-like receptor-9-dependent mechanism. In contrast, PMN respiratory burst was unaffected by mtDNA. CONCLUSION In addition to passive release of mtDAMPs by traumatic cellular disruption, inflammatory and infectious stimuli cause active mtDAMP release via microparticles. mtDNA thus released can have effects on PMN that may suppress antimicrobial function. mtDAMP-mediated "feed-forward" mechanisms may modulate immune responses and potentially be generalizable to other forms of inflammation. Where they cause immune dysfunction the effects can be mitigated if the pathways by which the mtDAMPs act are defined. In this case, the endosomal inhibitor chloroquine is benign and well tolerated. Thus, it may warrant study as a prophylactic antiinfective after injury or prior sepsis.
Collapse
Affiliation(s)
- Barbora Konecna
- From the Institute of Molecular Biomedicine (B.K., B.V.), Comenius University, Bratislava, Slovakia; Department of Surgery (J.P., W.H., H.I.K., M.B.Y., L.E.O., K.I., C.J.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachussets; Department of Emergency Medicine (W-.Y.K.), Seoul National University College of Medicine Seoul, Korea; College of Nursing (Q.Z.), Harbin Medical School, Daqing, China; and Departments of Biology and Biological Engineering (M.B.Y.), Massachusetts Institute of Technology, Boston, Massachussets
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koos B, Moderegger EL, Rump K, Nowak H, Willemsen K, Holtkamp C, Thon P, Adamzik M, Rahmel T. LPS-Induced Endotoxemia Evokes Epigenetic Alterations in Mitochondrial DNA That Impacts Inflammatory Response. Cells 2020; 9:E2282. [PMID: 33066217 PMCID: PMC7650703 DOI: 10.3390/cells9102282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) plays a vital role as a damage-associated molecular pattern in sepsis being able to shape the immune response. Since pathogen recognition receptors of innate immune cells are activated by demethylated DNA only, we set out to investigate the amount of DNA methyltransferase 1 (DNMT1) in mitochondria and the extent of mtDNA methylation in a human endotoxin model. Peripheral blood mononuclear cells of 20 healthy individuals were isolated from whole blood and stimulated with lipopolysaccharide (LPS) for 48 h. Subsequently, DNMT1 protein abundance was assessed in whole cells and a mitochondrial fraction. At the same time, methylation levels of mtDNA were quantified, and cytokine expression in the supernatant was measured. Despite increased cellular expression of DNMT1 after LPS stimulation, the degree of mtDNA methylation slightly decreased. Strikingly the mitochondrial protein abundance of DNMT1 was reduced by 50% in line with the lower degree of mtDNA methylation. Although only modest alterations were seen in the degree of mtDNA methylation, these strongly correlated with IL-6 and IL-10 expression. Our data may hint at a protein import problem for DNMT1 into the mitochondria under LPS stimulation and suggest a role of demethylated mtDNA in the regulation of the inflammatory immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (B.K.); (E.L.M.); (K.R.); (H.N.); (K.W.); (C.H.); (P.T.); (M.A.)
| |
Collapse
|