1
|
Lee S, Choi SP, Choi HJ, Jeong H, Park YS. A comprehensive review of synbiotics: an emerging paradigm in health promotion and disease management. World J Microbiol Biotechnol 2024; 40:280. [PMID: 39060821 DOI: 10.1007/s11274-024-04085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Synbiotics are complex preparations of prebiotics that can be selectively utilized by live microorganisms to improve host health. Synbiotics are divided into complementary synbiotics, which consist of probiotics and prebiotics with independent functions, and synergistic synbiotics, which consist of prebiotics that are selectively used by gut microorganisms. Complementary synbiotics used in human clinical trials include Lactobacillus spp. and Bifidobacterium spp. as probiotics, and fructooligosaccharides, galactooligosaccharides, and inulin as prebiotics. Over the past five years, synbiotics have been most commonly used in patients with metabolic disorders, including obesity, and immune and gastrointestinal disorders. Several studies have observed alterations in the microbial community; however, these changes did not lead to significant improvements in disease outcomes or biochemical and hematological markers. The same synbiotics have been applied to individuals with different gut environments. As a result, even with the same synbiotics, there are non-responders who do not respond to the applied synbiotics due to the different intestinal environment for each individual. Therefore, to obtain meaningful results, applying different synbiotics depending on the individual is necessary. Synergistic synbiotics are one solution to circumvent this problem, as they combine elements that can effectively improve health, even in non-responders. This review aims to explain the concept of synbiotics, highlight recent human clinical trials, and explore the current state of research on synergistic synbiotics.
Collapse
Affiliation(s)
- Sulhee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Sang-Pil Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Cailleaux PE, Déchelotte P, Coëffier M. Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care 2024; 27:234-243. [PMID: 38391396 DOI: 10.1097/mco.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW Sarcopenia is a wasting disease, mostly age-related in which muscle strength and mass decline, such as physical performance. With aging, both lower dietary protein intake and anabolic resistance lead to sarcopenia. Moreover, aging and sarcopenia display low-grade inflammation, which also worsen muscle condition. In this review, we focused on these two main targets to study dietary strategies. RECENT FINDINGS The better understanding in mechanisms involved in sarcopenia helps building combined dietary approaches including physical activity that would slow the disease progression. New approaches include better understanding in the choice of quality proteins, their amount and schedule and the association with antioxidative nutrients. SUMMARY First, anabolic resistance can be countered by increasing significantly protein intake. If increasing amount remains insufficient, the evenly delivery protein schedule provides interesting results on muscle strength. Quality of protein is also to consider for decreasing risk for sarcopenia, because varying sources of proteins appears relevant with increasing plant-based proteins ratio. Although new techniques have been developed, as plant-based proteins display a lower availability, we need to ensure an adapted overall amount of proteins. Finally, specific enrichment with leucine from whey protein remains the dietary combined approach most studied and studies on citrulline provide interesting results. As cofactor at the edge between anabolic and antioxidative properties, vitamin D supplementation is to recommend. Antioxidative dietary strategies include both fibers, vitamins, micronutrients and polyphenols from various sources for positive effects on physical performance. The ω 3 -polyunsaturated fatty acids also display positive modifications on body composition. Gut microbiota modifiers, such as prebiotics, are promising pathways to improve muscle mass and function and body composition in sarcopenic patients. Nutritional interventions could be enhanced by combination with physical activity on sarcopenia. In healthy older adults, promoting change in lifestyle to get near a Mediterranean diet could be one of the best options. In sarcopenia adults in which lifestyle changes appears unprobable, specific enrichement potentialized with physical activity will help in the struggle against sarcopenia. Longitudinal data are lacking, which makes it hard to draw strong conclusions. However, the effects of a physical activity combined with a set of nutrition interventions on sarcopenia seems promising.
Collapse
Affiliation(s)
| | - Pierre Déchelotte
- Univ Rouen Normandie, Inserm, ADEN UMR 1073, Nutrition, Inflammation and Microbiota Gut Brain Axis, CHU Rouen
| | - Moïse Coëffier
- Univ Rouen Normandie, Inserm, ADEN UMR 1073, Nutrition, inflammation and Microbiota Gut Brain Axis, CHU Rouen, Department of Nutrition and CIC-CRB 1404, Rouen, France
| |
Collapse
|
3
|
Ni Lochlainn M, Bowyer RCE, Moll JM, García MP, Wadge S, Baleanu AF, Nessa A, Sheedy A, Akdag G, Hart D, Raffaele G, Seed PT, Murphy C, Harridge SDR, Welch AA, Greig C, Whelan K, Steves CJ. Effect of gut microbiome modulation on muscle function and cognition: the PROMOTe randomised controlled trial. Nat Commun 2024; 15:1859. [PMID: 38424099 PMCID: PMC10904794 DOI: 10.1038/s41467-024-46116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Studies suggest that inducing gut microbiota changes may alter both muscle physiology and cognitive behaviour. Gut microbiota may play a role in both anabolic resistance of older muscle, and cognition. In this placebo controlled double blinded randomised controlled trial of 36 twin pairs (72 individuals), aged ≥60, each twin pair are block randomised to receive either placebo or prebiotic daily for 12 weeks. Resistance exercise and branched chain amino acid (BCAA) supplementation is prescribed to all participants. Outcomes are physical function and cognition. The trial is carried out remotely using video visits, online questionnaires and cognitive testing, and posting of equipment and biological samples. The prebiotic supplement is well tolerated and results in a changed gut microbiome [e.g., increased relative Bifidobacterium abundance]. There is no significant difference between prebiotic and placebo for the primary outcome of chair rise time (β = 0.579; 95% CI -1.080-2.239 p = 0.494). The prebiotic improves cognition (factor score versus placebo (β = -0.482; 95% CI,-0.813, -0.141; p = 0.014)). Our results demonstrate that cheap and readily available gut microbiome interventions may improve cognition in our ageing population. We illustrate the feasibility of remotely delivered trials for older people, which could reduce under-representation of older people in clinical trials. ClinicalTrials.gov registration: NCT04309292.
Collapse
Affiliation(s)
- Mary Ni Lochlainn
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK.
| | - Ruth C E Bowyer
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | | | - María Paz García
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Samuel Wadge
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Andrei-Florin Baleanu
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Ayrun Nessa
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Alyce Sheedy
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Gulsah Akdag
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Deborah Hart
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK
| | - Giulia Raffaele
- GKT School of Medical Education, King's College London, London, UK
| | - Paul T Seed
- Unit for Medical Statistics/Department for Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Caroline Murphy
- King's Clinical Trials Unit, Research Management and Innovation Directorate, King's College London, London, UK
| | - Stephen D R Harridge
- Centre for Human & Applied Physiological Sciences, King's College London, London, UK
| | - Ailsa A Welch
- Department of Epidemiology and Public Health, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Carolyn Greig
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, Franklin Wilkins Building, SE1 9NH, London, UK
| | - Claire J Steves
- King's College London, Department of Twin Research and Genetic Epidemiology, London, SE1 7EH, UK.
| |
Collapse
|
4
|
Yu X, Devine D, Vernon J. Manipulating the diseased oral microbiome: the power of probiotics and prebiotics. J Oral Microbiol 2024; 16:2307416. [PMID: 38304119 PMCID: PMC10833113 DOI: 10.1080/20002297.2024.2307416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Dental caries and periodontal disease are amongst the most prevalent global disorders. Their aetiology is rooted in microbial activity within the oral cavity, through the generation of detrimental metabolites and the instigation of potentially adverse host immune responses. Due to the increasing threat of antimicrobial resistance, alternative approaches to readdress the balance are necessary. Advances in sequencing technologies have established relationships between disease and oral dysbiosis, and commercial enterprises seek to identify probiotic and prebiotic formulations to tackle preventable oral disorders through colonisation with, or promotion of, beneficial microbes. It is the metabolic characteristics and immunomodulatory capabilities of resident species which underlie health status. Research emphasis on the metabolic environment of the oral cavity has elucidated relationships between commensal and pathogenic organisms, for example, the sequential metabolism of fermentable carbohydrates deemed central to acid production in cariogenicity. Therefore, a focus on the preservation of an ecological homeostasis in the oral environment may be the most appropriate approach to health conservation. In this review we discuss an ecological approach to the maintenance of a healthy oral environment and debate the potential use of probiotic and prebiotic supplementation, specifically targeted at sustaining oral niches to preserve the delicately balanced microbiome.
Collapse
Affiliation(s)
- X. Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - D.A. Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - J.J. Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
6
|
D'Amico F, Barone M, Brigidi P, Turroni S. Gut microbiota in relation to frailty and clinical outcomes. Curr Opin Clin Nutr Metab Care 2023; 26:219-225. [PMID: 36942920 DOI: 10.1097/mco.0000000000000926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW The gut microbiota is involved in several aspects of host health and disease, but its role is far from fully understood. This review aims to unveil the role of our microbial community in relation to frailty and clinical outcomes. RECENT FINDINGS Ageing, that is the continuous process of physiological changes that begin in early adulthood, is mainly driven by interactions between biotic and environmental factors, also involving the gut microbiota. Indeed, our gut microbial counterpart undergoes considerable compositional and functional changes across the lifespan, and ageing-related processes may be responsible for - and due to - its alterations during elderhood. In particular, a dysbiotic gut microbiota in the elderly population has been associated with the development and progression of several age-related disorders. SUMMARY Here, we first provide an overview of the lifespan trajectory of the gut microbiota in both health and disease. Then, we specifically focus on the relationship between gut microbiota and frailty syndrome, that is one of the major age-related burdens. Finally, examples of microbiome-based precision interventions, mainly dietary, prebiotic and probiotic ones, are discussed as tools to ameliorate the symptoms of frailty and its overlapping conditions (e.g. sarcopenia), with the ultimate goal of actually contributing to healthy ageing and hopefully promoting longevity.
Collapse
Affiliation(s)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences
| | | | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Donati Zeppa S, Agostini D, Ferrini F, Gervasi M, Barbieri E, Bartolacci A, Piccoli G, Saltarelli R, Sestili P, Stocchi V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022; 12:cells12010034. [PMID: 36611827 PMCID: PMC9818603 DOI: 10.3390/cells12010034] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Univerity San Raffaele, 00166 Rome, Italy
| |
Collapse
|
8
|
Barone M, D'Amico F, Rampelli S, Brigidi P, Turroni S. Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mech Ageing Dev 2022; 206:111711. [PMID: 35868543 DOI: 10.1016/j.mad.2022.111711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is undoubtedly a key modulator of human health, which can promote or impair homeostasis throughout life. This is even more relevant in old age, when there is a gradual loss of function in multiple organ systems, related to growth, metabolism, and immunity. Several studies have described changes in the gut microbiome across age groups up to the extreme limits of lifespan, including maladaptations that occur in the context of age-related conditions, such as frailty, neurodegenerative diseases, and cardiometabolic diseases. The gut microbiome can also interact bi-directionally with anti-age-related disease therapies, being affected and in turn influencing their efficacy. In this framework, the development of integrated microbiome-based intervention strategies, aimed at favoring a eubiotic configuration and trajectory, could therefore represent an innovative approach for the promotion of healthy aging and the achievement of longevity.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Kalinkovich A, Becker M, Livshits G. New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs Aging 2022; 39:673-683. [PMID: 35781216 DOI: 10.1007/s40266-022-00960-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
The rapid increase in both the lifespan and proportion of older adults in developed countries is accompanied by the dramatic growth of age-associated chronic diseases, including obesity, sarcopenia, and osteoporosis. Hence, prevention and treatment of age-associated chronic diseases has become increasingly urgent. The key to achieving this goal is a better understanding of the mechanisms underlying their pathophysiology, some aspects of which, despite extensive investigation, are still not fully understood. Aging, obesity, sarcopenia, and osteoporosis are characterized by the creation of a systemic, chronic, low-grade inflammation (SCLGI). The common mechanisms that govern the development of these chronic conditions include a failed resolution of inflammation. Physiologically, the process of inflammation resolution is provided mainly by specialized pro-resolving mediators (SPMs) acting via cognate G protein-coupled receptors (GPCRs). Noteworthy, SPM levels and the expression of their receptors are significantly reduced in aging and the associated chronic disorders. In preclinical studies, supplementation of SPMs or their stable, small-molecule SPM mimetics and receptor agonists reveals clear beneficial effects in inflammation-related obesity and sarcopenic and osteoporotic conditions, suggesting a translational potential. Age-associated chronic disorders are also characterized by gut dysbiosis and the accumulation of senescent cells in the adipose tissue, skeletal muscle, and bones. Based on these findings, we propose SCLGI resolution as a novel strategy for the prevention/treatment of age-associated obesity, sarcopenia, and osteoporosis. Our approach entails the enhancement of inflammation resolution by SPM mimetics and receptor agonists in concert with probiotics/prebiotics and compounds that eliminate senescent cells and their pro-inflammatory activity.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel
| | - Maria Becker
- Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel. .,Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel.
| |
Collapse
|
10
|
Abstract
Identifying ways to deal with the challenges presented by aging is an urgent task, as we are facing an aging society. External factors such as diet, exercise and drug therapy have proven to be major elements in controlling healthy aging and prolonging life expectancy. More recently, the intestinal microbiota has also become a key factor in the anti-aging process. As the intestinal microbiota changes with aging, an imbalance in intestinal microorganisms can lead to many age-related degenerative diseases and unhealthy aging. This paper reviews recent research progress on the relationship between intestinal microorganisms and anti-aging effects, focusing on the changes and beneficial effects of intestinal microorganisms under dietary intervention, exercise and drug intervention. In addition, bacteriotherapy has been used to prevent frailty and unhealthy aging. Most of these anti-aging approaches improve the aging process and age-related diseases by regulating the homeostasis of intestinal flora and promoting a healthy intestinal environment. Intervention practices based on intestinal microorganisms show great potential in the field of anti-aging medicine.
Collapse
Affiliation(s)
- Yanjiao Du
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Gao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,CONTACT Mingyao Yang Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan611130, P. R. China
| |
Collapse
|
11
|
Daily JW, Park S. Sarcopenia Is a Cause and Consequence of Metabolic Dysregulation in Aging Humans: Effects of Gut Dysbiosis, Glucose Dysregulation, Diet and Lifestyle. Cells 2022; 11:cells11030338. [PMID: 35159148 PMCID: PMC8834403 DOI: 10.3390/cells11030338] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. Here, we aimed to review the relationship between skeletal muscle mass, glucose homeostasis, and gut microbiota, and the effect of consuming probiotics and prebiotics on the development and pathological consequences of sarcopenia in the aging human population. This review includes discussions about the effects of glucose metabolism and gut microbiota on skeletal muscle mass and sarcopenia and the interaction of dietary intake, physical activity, and gut microbiome to influence sarcopenia through modulating the gut–muscle axis. Emerging evidence suggests that the microbiome can regulate both skeletal muscle mass and function, in part through modulating the metabolisms of short-chain fatty acids and branch-chain amino acids that might act directly on muscle in humans or indirectly through the brain and liver. Dietary factors such as fats, proteins, and indigestible carbohydrates and lifestyle interventions such as exercise, smoking, and alcohol intake can both help and hinder the putative gut–muscle axis. The evidence presented in this review suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
Collapse
Affiliation(s)
- James W. Daily
- Department of R & D, Daily Manufacturing Inc., Rockwell, 28138 NC, USA;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
12
|
Ni Lochlainn M, Robinson S. UK Nutrition Research Partnership workshop: Nutrition and frailty—opportunities for prevention and treatment. NUTR BULL 2022; 47:123-129. [DOI: 10.1111/nbu.12538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Mary Ni Lochlainn
- Department of Twin Research and Genetics King’s College London St Thomas’ Hospital London UK
| | - Sian Robinson
- AGE Research Group Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
- NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
13
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|