1
|
Eraso JM, Olsen RJ, Long SW, Gadd R, Boukthir S, Faili A, Kayal S, Musser JM. Integrative genomic, virulence, and transcriptomic analysis of emergent Streptococcus dysgalactiae subspecies equisimilis (SDSE) emm type stG62647 isolates causing human infections. mBio 2024:e0257824. [PMID: 39417630 DOI: 10.1128/mbio.02578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Streptococcus dysgalactiae subspecies equisimilis (SDSE) is a Gram-positive bacterial pathogen that infects humans and is closely related to group A streptococcus (GAS). Compared with GAS, far less is known about SDSE pathobiology. Increased rates of invasive SDSE infections have recently been reported in many countries. One SDSE emm type (stG62647) is known to cause severe diseases, including necrotizing soft-tissue infections, endocarditis, and osteoarticular infections. To increase our understanding of the molecular pathogenesis of stG62647 SDSE isolates causing human infections, we sequenced to closure the genomes of 120 stG62647 SDSE isolates. The genomes varied in size from 2.1 to 2.24 Mb pairs. The great majority of stG62647 isolates had IS1548 integrated into the silB gene, thereby inactivating it. Regions of difference, such as mobile genetic elements, were the largest source of genomic diversity. All 120 stG62647 isolates were assayed for virulence using a well-established mouse model of necrotizing myositis. An unexpectedly wide range of virulence was identified (20% to 95%), as assessed by near-mortality data. To explore the molecular mechanisms underlying virulence differences, we analyzed RNAseq transcriptome profiles for 38 stG62647 isolates (comprising the 19 least and most virulent) grown in vitro. Genetic polymorphisms were identified from whole-genome sequence data. Collectively, the results suggest that these SDSE isolates use multiple genetic pathways to alter virulence phenotype. The data also suggest that human genetics and underlying medical conditions contribute to disease severity. Our study integrates genomic, mouse virulence, and RNAseq data to advance our understanding of SDSE pathobiology and its molecular pathogenesis. IMPORTANCE This study integrated genomic sequencing, mouse virulence assays, and bacterial transcriptomic analysis to advance our understanding of the molecular mechanisms contributing to Streptococcus dysgalactiae subsp. equisimilis emm type stG62647 pathogenesis. We tested a large cohort of genetically closely related stG62647 isolates for virulence using an established mouse model of necrotizing myositis and discovered a broad spectrum of virulence phenotypes, with near-mortality rates ranging from 20% to 95%. This variation was unexpected, given their close genetic proximity. Transcriptome analysis of stG62647 isolates responsible for the lowest and highest near-mortality rates suggested that these isolates used multiple molecular pathways to alter their virulence. In addition, some genes encoding transcriptional regulators and putative virulence factors likely contribute to SDSE emm type stG62647 pathogenesis. These data underscore the complexity of pathogen-host interactions in an emerging SDSE clonal group.
Collapse
Affiliation(s)
- Jesus M Eraso
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Randall J Olsen
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - S Wesley Long
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Ryan Gadd
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Ahmad Faili
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - James M Musser
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
2
|
Kaci A, Jonassen CM, Skrede S, Sivertsen A, Steinbakk M, Oppegaard O. Genomic epidemiology of Streptococcus dysgalactiae subsp. equisimilis strains causing invasive disease in Norway during 2018. Front Microbiol 2023; 14:1171913. [PMID: 37485526 PMCID: PMC10361778 DOI: 10.3389/fmicb.2023.1171913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/31/2023] [Indexed: 07/25/2023] Open
Abstract
Background Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen, yet the epidemiology and population genetics of SDSE species have not been extensively characterized. Methods We carried out whole genome sequencing to characterize 274 SDSE isolates causing bloodstream infections obtained through national surveillance program in 2018. We conducted multilocus sequence typing (MLST), emm-typing, core genome phylogeny, as well as investigated key features associated with virulence. Moreover, comparison to SDSE from other geographic regions were performed in order to gain more insight in the evolutionary dynamics in SDSE. Results The phylogenetic analysis indicated a substantial diversity of emm-types and sequence types (STs). Briefly, 17 emm-types and 58 STs were identified that formed 10 clonal complexes (CCs). The predominant ST-types were ST20 (20%), ST17 (17%), and ST29 (11%). While CC17 and CC29 clades showed a substantial heterogeneity with well-separated emm-associated subclades, the CC20 clade harboring the stG62647 emm-type was more homogenous and the most prevalent in the present study. Moreover, we observed notable differences in the distribution of clades within Norway, as well as several disseminated CCs and also distinct geographic variations when compared to data from other countries. We also revealed extensive intra-species recombination events involving surface exposed virulence factors, including the emm gene important for phylogenetic profiling. Conclusion Recombination events involving the emm as well as other virulence genes in SDSE, are important mechanisms in shaping the genetic variability in the SDSE population, potentially offering selective advantages to certain lineages. The enhanced phylogenetic resolution offered by whole genome sequencing is necessary to identify and delimitate outbreaks, monitor and properly characterize emerging strains, as well as elucidate bacterial population dynamics.
Collapse
Affiliation(s)
- Alba Kaci
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Christine M. Jonassen
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Steinar Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Audun Sivertsen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Martin Steinbakk
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Oddvar Oppegaard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Beres SB, Olsen RJ, Long SW, Eraso JM, Boukthir S, Faili A, Kayal S, Musser JM. Analysis of the Genomics and Mouse Virulence of an Emergent Clone of Streptococcus dysgalactiae Subspecies equisimilis. Microbiol Spectr 2023; 11:e0455022. [PMID: 36971562 PMCID: PMC10100674 DOI: 10.1128/spectrum.04550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis is a bacterial pathogen that is increasingly recognized as a cause of severe human infections. Much less is known about the genomics and infection pathogenesis of S. dysgalactiae subsp. equisimilis strains compared to the closely related bacterium Streptococcus pyogenes. To address these knowledge deficits, we sequenced to closure the genomes of seven S. dysgalactiae subsp. equisimilis human isolates, including six that were emm type stG62647. Recently, for unknown reasons, strains of this emm type have emerged and caused an increasing number of severe human infections in several countries. The genomes of these seven strains vary between 2.15 and 2.21 Mbp. The core chromosomes of these six S. dysgalactiae subsp. equisimilis stG62647 strains are closely related, differing on average by only 495 single-nucleotide polymorphisms, consistent with a recent descent from a common progenitor. The largest source of genetic diversity among these seven isolates is differences in putative mobile genetic elements, both chromosomal and extrachromosomal. Consistent with the epidemiological observations of increased frequency and severity of infections, both stG62647 strains studied were significantly more virulent than a strain of emm type stC74a in a mouse model of necrotizing myositis, as assessed by bacterial CFU burden, lesion size, and survival curves. Taken together, our genomic and pathogenesis data show the strains of emm type stG62647 we studied are closely genetically related and have enhanced virulence in a mouse model of severe invasive disease. Our findings underscore the need for expanded study of the genomics and molecular pathogenesis of S. dysgalactiae subsp. equisimilis strains causing human infections. IMPORTANCE Our studies addressed a critical knowledge gap in understanding the genomics and virulence of the bacterial pathogen Streptococcus dysgalactiae subsp. equisimilis. S. dysgalactiae subsp. equisimilis strains are responsible for a recent increase in severe human infections in some countries. We determined that certain S. dysgalactiae subsp. equisimilis strains are genetically descended from a common ancestor and that these strains can cause severe infections in a mouse model of necrotizing myositis. Our findings highlight the need for expanded studies on the genomics and pathogenic mechanisms of this understudied subspecies of the Streptococcus family.
Collapse
Affiliation(s)
- Stephen B. Beres
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J. Olsen
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - S. Wesley Long
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Jesus M. Eraso
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Ahmad Faili
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
- Chemistry, Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- Chemistry, Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - James M. Musser
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Oppegaard O, Glambek M, Skutlaberg DH, Skrede S, Sivertsen A, Kittang BR. Streptococcus dysgalactiae Bloodstream Infections, Norway, 1999-2021. Emerg Infect Dis 2023; 29:260-267. [PMID: 36692331 PMCID: PMC9881787 DOI: 10.3201/eid2902.221218] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Streptococcus dysgalactiae increasingly is recognized as a pathogen of concern for human health. However, longitudinal surveillance data describing temporal trends of S. dysgalactiae are scarce. We retrospectively identified all β-hemolytic streptococcal bloodstream infections reported in Bergen, in western Norway, during 1999-2021. To explore S. dysgalactiae disease burden in a broader context, we mapped the incidence of all microbial species causing bloodstream infections during 2012-2021. We found S. dysgalactiae incidence rates substantially increased during the study period; by 2021, S. dysgalactiae was the fifth most common pathogen causing bloodstream infections in our region. We noted genotypic shifts and found that the rising trend was related in part to the introduction and expansion of the stG62647 emm-type. S. dysgalactiae is among the most common causes of bloodstream infections in western Norway, and increased surveillance and unambiguous species identification are needed to monitor the disease burden attributable to this pathogen.
Collapse
|
5
|
Cho H, Masters T, Greenwood‐Quaintance KE, Johnson S, Jeraldo PR, Chia N, Pu M, Abdel MP, Patel R. Transcriptomic analysis of Streptococcus agalactiae periprosthetic joint infection. Microbiologyopen 2021; 10:e1256. [PMID: 34964296 PMCID: PMC8678771 DOI: 10.1002/mbo3.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Although Streptococcus agalactiae periprosthetic joint infection (PJI) is not as prevalent as staphylococcal PJI, invasive S. agalactiae infection is not uncommon. Here, RNA-seq was used to perform transcriptomic analysis of S. agalactiae PJI using fluid derived from sonication of explanted arthroplasties of subjects with S. agalactiae PJI, with results compared to those of S. agalactiae strain NEM316 grown in vitro. A total of 227 genes with outlier expression were found (164 upregulated and 63 downregulated) between PJI sonicate fluid and in vitro conditions. Functional enrichment analysis showed genes involved in mobilome and inorganic ion transport and metabolism to be most enriched. Genes involved in nickel, copper, and zinc transport, were upregulated. Among known virulence factors, cyl operon genes, encoding β-hemolysin/cytolysin, were consistently highly expressed in PJI versus in vitro. The data presented provide insight into S. agalactiae PJI pathogenesis and may be a resource for identification of novel PJI therapeutics or vaccines against invasive S. agalactiae infections.
Collapse
Affiliation(s)
- Hye‐Kyung Cho
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Thao Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Stephen Johnson
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Patricio R. Jeraldo
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Nicholas Chia
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Meng Pu
- Department of Medicine, Division of Gastroenterology and HepatologyMayo ClinicRochesterMinnesotaUSA
| | - Matthew P. Abdel
- Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Division of Infectious Diseases, Department of MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Trends in beta-hemolytic Streptococcus infections within Veterans' Affairs medical centers from 2009 to 2018. Infect Control Hosp Epidemiol 2021; 42:1356-1360. [PMID: 34482846 DOI: 10.1017/ice.2021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this study was to describe the recent trends of invasive and noninvasive β-hemolytic Streptococcus cultures in the Veterans' Affairs (VA) cohort from 2009 to 2018. DESIGN Retrospective cohort study from January 1, 2009, to January 1, 2019. SETTING Veterans' Affairs medical centers. PATIENTS OR PARTICIPANTS All patients aged 18 years and older with cultures positive for β-hemolytic Streptococcus at a VA facility were included in the study. INTERVENTION(S) Data were retrieved from the VA Corporate Data Warehouse using structure query language through the SQL Server Management Studio software. RESULTS Between 2009 and 2018, there were 40,625 patients with cultures with β-hemolytic Streptococcus. The median age was 64 years (interquartile range [IQR], 55-71) and the median Charlson comorbidity index was 4 (IQR, 2-7). Distributions for each type of β-hemolytic Streptococcus based on site of culture are provided. The 30-day all-cause mortality rate from all invasive β-hemolytic Streptococcus cases was 2.3%, and the 90-day all-cause mortality rate was 4.4%. The 30- and 90-day all-cause mortality rates for Streptococcus cases were higher for group A (3.9% and 6.1% respectively) and for groups C and G combined (3.2% and 6.1%, respectively) than for group B (2.0% and 4.0%, respectively). CONCLUSIONS Trends of cultures for invasive and noninvasive β-hemolytic Streptococcus suggest an association with disease and mortality. The burden associated with β-hemolytic Streptococcus infections should not be underestimated.
Collapse
|
7
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
8
|
Loubet P, Koumar Y, Lechiche C, Cellier N, Schuldiner S, Kouyoumdjian P, Lavigne JP, Sotto A. Clinical features and outcome of Streptococcus agalactiae bone and joint infections over a 6-year period in a French university hospital. PLoS One 2021; 16:e0248231. [PMID: 33711071 PMCID: PMC7954318 DOI: 10.1371/journal.pone.0248231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Bone and joint infections (BJIs) due to Streptococcus agalactiae are rare but has been described to increase in the past few years. The objective of this study was to describe clinical features and outcomes of cases of S. BJIs. METHODS We conducted a retrospective analysis of adult cases of S. agalactiae BJIs that occurred between January 2009 and June 2015 in a French university hospital. The treatment success was assessed until 24 months after the end of antibiotic treatment. RESULTS Among the 26 patients included, 20 (77%) were male, mean age was 62 years ± 13 and mean Charlson comorbidity index score was 4.9 ± 3.2. Diabetes mellitus was the most common comorbidity (n = 14, 54%). Six had PJI (Prosthetic Joint Infections), five osteosynthesis-associated infections, 11 osteomyelitis and four native septic arthritis. Eleven patients had a delayed or late infection: six with a prosthetic joint infection and five with an internal fixation device infection. Sixteen patients (62%) had a polymicrobial BJI, most commonly with Gram-positive cocci (75%) notably Staphylococcus aureus (44%). Polymicrobial infections were more frequently found in foot infections (90% vs 44%, p = 0.0184). During the two-year follow-up, three patients died (3/25, 12%) and seven (7/25, 28%) had treatment failure. CONCLUSION Diabetes mellitus was the most common comorbidity. We observed an heterogenous management and a high rate of relapse.
Collapse
Affiliation(s)
- Paul Loubet
- Department of Infectious and Tropical Disease, VBMI, INSERM U1407, CHU Nîmes, Univ Montpellier, Nîmes, France
- * E-mail:
| | - Yatrika Koumar
- Department of Infectious and Tropical Disease, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Catherine Lechiche
- Department of Infectious and Tropical Disease, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Nicolas Cellier
- Department of Orthopedic and Trauma Surgery, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Sophie Schuldiner
- Department of Metabolic and Endocrine Disease, VBMI, INSERM U1407, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Pascal Kouyoumdjian
- Department of Orthopedic and Trauma Surgery, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, VBMI, INSERM U1407, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Albert Sotto
- Department of Infectious and Tropical Disease, VBMI, INSERM U1407, CHU Nîmes, Univ Montpellier, Nîmes, France
| |
Collapse
|
9
|
Septic arthritis due to streptococci and enterococci in native joints: a 13 year retrospective study. Infection 2019; 47:761-770. [PMID: 30929143 DOI: 10.1007/s15010-019-01301-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Streptococcal species are the second most common cause of native joint septic arthritis (SA). However, there are few systematic data about streptococcal SA. METHODS The medical records of adults with SA caused by streptococci, pneumococci, and enterococci at our tertiary care centre between 2003 and 2015 were reviewed. RESULTS 71 patients (34% female) with 83 affected joints were included. Median age was 62 years. A single joint was involved in 62 patients (87%). One or more comorbidities were present in 58 patients (82%). 16 patients (23%) had a concomitant soft-tissue infection overlying the affected joint. The hematogenous route was the dominating pathogenesis (42/71, 59%). 9 (13%) patients were diagnosed with endocarditis. The knee was the most commonly affected joint (27/83, 33%) followed by shoulder (13/83, 16%). ß-haemolytic streptococci were most commonly identified (37/71, 52%) followed by polymicrobial infections (12/71, 17%). Surgical interventions included arthroscopic irrigation and debridement in 31 (44%), arthrotomy in 23 (32%), and amputation in five patients (7%). Median duration of antimicrobial therapy was 42 days. Antibiotic treatment without any surgical intervention was performed in 5 (7%) patients. Outcome was good in 55 (89%) patients; mortality was 13% with four of nine deaths attributed to joint infection. Age and pathogen group independently predicted poor outcome in recursive partitioning analysis. CONCLUSIONS Streptococcal SA was mostly due to ß-haemolytic streptococci in older and polymorbid patients. Old age, anginosus group streptococci, enterococci, and polymicrobial infections predicted poor outcome, while antibiotic treatment duration can likely be shortened.
Collapse
|
10
|
Oppegaard O, Mylvaganam H, Skrede S, Kittang BR. Exploring the arthritogenicity of Streptococcus dysgalactiae subspecies equisimilis. BMC Microbiol 2018; 18:17. [PMID: 29482512 PMCID: PMC5828338 DOI: 10.1186/s12866-018-1160-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past decades, Streptococcus dysgalactiae subspecies equisimilis (SDSE) has been increasingly recognized as an important human pathogen. Osteoarticular infections is one of the predominant disease manifestations of SDSE, but the pathogenetic rationale for its arthritogenicity has yet to be unravelled. We aimed to explore if the rising incidence of osteoarticular infections caused by this pathogen in our region emanated from clonal expansion of strains with enhanced tropism for bone and joint tissue components or orthopaedic implants. RESULTS Twenty-nine SDSE-isolates associated with osteoarticular infections were retrospectively identified. Their genomic content and affinity for fibronectin, collagen and stainless steel were compared to 24 temporally and geographically matched SDSE blood culture isolates obtained from patients without bone or joint infections. Despite a thorough genetic and phenotypic dissection, neither the presence or absence of any single gene, nor the binding abilities of the SDSE isolates, were predictive of clinical entity. SNP analysis revealed a heterogenous population, and a correlation between phylogenetic relationships and disease manifestation was not evident. However, we identified a strong concordance between phenotypic binding abilities and genetic variations in the pilus-region, also denoted as the FCT-region (Fibronectin binding, Collagen binding and T-antigen). This observation could be related to the ample and varied repertoire of putative adhesins residing within this region, including proteins predicted to adhere to fibronectin and collagen, as well as fibrinogen. CONCLUSIONS SDSE strains associated with osteoarticular infections do not emanate from subpopulation characterized by distinct genetic or phenotypic traits. The genetic architecture of the pilus region was predictive of the adhesive properties of the SDSE-isolates, but its role in tissue tropism needs further investigation. To the best of our knowledge, this is the first comprehensive characterization of the genetic landscape of the SDSE pilus region.
Collapse
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway. .,Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
11
|
Clinical and microbiological features associated with group B Streptococcus bone and joint infections, France 2004–2014. Eur J Clin Microbiol Infect Dis 2017; 36:1679-1684. [DOI: 10.1007/s10096-017-2983-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022]
|