1
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
He Y, Kanrar S, Reed S, Lee J, Capobianco J. Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat. Microorganisms 2024; 12:159. [PMID: 38257985 PMCID: PMC10818789 DOI: 10.3390/microorganisms12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacter is a leading bacterial cause of gastrointestinal infections in humans and has imposed substantial medical and public health burdens worldwide. Among a total of 39 species in the Campylobacter genus, C. jejuni is the most important species responsible for approx. 90% of human Campylobacter illness. Most cases of the infection were acquired by ingesting undercooked poultry meat due to the high prevalence of Campylobacter in the products. Here, we reported the dataset of raw sequences, de novo assembled and annotated genomes of C. jejuni strains S27, S33, and S36 recently isolated from retail chicken by using PacBio highly accurate long-read sequencing technology combined with bioinformatics tools. Our data revealed several virulence and antibiotic resistance genes in each of the chromosomes, a type IV secretion system in the plasmid (pCjS33) of C. jejuni S33, and a type VI secretion system and a phage in the plasmid (pCjS36) of C. jejuni S36. This study not only provides new sequence data but also extends the knowledge pertaining to the genomic and functional aspects of this important foodborne pathogen, including the genetic determinants of virulence and antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Capobianco
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (Y.H.); (S.K.); (S.R.); (J.L.)
| |
Collapse
|
4
|
Lin Y, Zhao D, Huang N, Liu S, Zheng J, Cao J, Zeng W, Zheng X, Wang L, Zhou T, Sun Y. Clinical impact of the type VI secretion system on clinical characteristics, virulence and prognosis of Acinetobacter baumannii during bloodstream infection. Microb Pathog 2023; 182:106252. [PMID: 37454943 DOI: 10.1016/j.micpath.2023.106252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The type VI secretion system (T6SS) has been regarded as a late-model virulence factor widely distributed in Acinetobacter baumannii (A. baumannii). This study aimed to elucidate the clinical manifestations, the genetic background and microbiological characteristics of A. baumannii isolates causing bloodstream infection (BSI), and assessed the impact of T6SS carrying state on the clinical course. In this study, Clinical samples of A. baumannii causing BSI were collected from a teaching hospital in China from 2016 to 2020 and a retrospective cohort was conducted. Experimental strains were categorized into T6SS positive and negative groups through PCR targeting on hcp gene. The antimicrobials sensitivity test, virulence genes, biofilm formation ability, serum resistance of A. baumannii strains and Galleria mellonella infection model were investigated. Independent risk factors for T6SS+ A. baumannii BSI and Kaplan-Meier curve through follow-up survey were analyzed. A total of 182 A. baumannii strains were isolated from patients with BSI during 5 years and the medical records of all patients were retrospectively reviewed. The proportion of T6SS+ isolates was 62.64% (114/182), which exhibited significantly higher resistance rates of commonly used antibacterial drugs compared to T6SS- group. We found that T6SS+ A. baumannii strains had significantly weaker biofilm formation ability compared to T6SS- A. baumannii. Despite no difference in the positivity rate of tested virulence genes in two groups, T6SS+ strains exhibited higher resistance to the serum and increased virulence in vivo compared to T6SS- strains, indicating that T6SS is likely to enhance the survival and invasive capabilities of A. baumannii in vivo. Indwelling catheter, respiratory diseases, ICU history, white blood cell count and percentage of neutrophils increasing were independent risk factors for T6SS+ A. baumannii BSI. At last, the Kaplan-Meier curve confirmed a higher mortality rate associated with T6SS+ A. baumannii BSI, suggesting that the presence of T6SS may serve as a prognostic factor for mortality. In conclusion, our study revealed that T6SS+ A. baumannii exhibited distinct clinical features, characterized by high antimicrobial resistance and enhanced virulence, providing valuable insights for clinical treatment considerations.
Collapse
Affiliation(s)
- Yishuai Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China; Department of Blood Transfusion, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Deyi Zhao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China
| | - Junyuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China.
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
5
|
Katz A, Porte L, Weitzel T, Varela C, Muñoz-Rehbein C, Ugalde JA, Grim C, González-Escalona N, Blondel CJ, Bravo V. Whole-genome sequencing reveals changes in genomic diversity and distinctive repertoires of T3SS and T6SS effector candidates in Chilean clinical Campylobacter strains. Front Cell Infect Microbiol 2023; 13:1208825. [PMID: 37520433 PMCID: PMC10374022 DOI: 10.3389/fcimb.2023.1208825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Campylobacter is the leading cause of bacterial gastroenteritis worldwide and an emerging and neglected pathogen in South America. This zoonotic pathogen colonizes the gastrointestinal tract of a wide range of mammals and birds, with poultry as the most important reservoir for human infections. Apart from its high morbidity rates, the emergence of resistant strains is of global concern. The aims of this work were to determine genetic diversity, presence of antimicrobial resistance determinants and virulence potential of Campylobacter spp. isolated from patients with acute gastrointestinal disease at 'Clinica Alemana', Santiago de Chile. The study considered the isolation of Campylobacter spp., from stool samples during a 20-month period (January 2020 to September 2021). We sequenced (NextSeq, Illumina) and performed an in-depth analysis of the genome sequences of 88 Campylobacter jejuni and 2 Campylobacter coli strains isolated from clinical samples in Chile. We identified a high genetic diversity among C. jejuni strains and the emergence of prevalent clonal complexes, which were not identified in our previous reports. While ~40% of strains harbored a mutation in the gyrA gene associated with fluoroquinolone resistance, no macrolide-resistance determinants were detected. Interestingly, gene clusters encoding virulence factors such as the T6SS or genes associated with long-term sequelae such as Guillain-Barré syndrome showed lineage-relatedness. In addition, our analysis revealed a high degree of variability regarding the presence of fT3SS and T6SS effector proteins in comparison to type strains 81-176, F38011, and NCTC 11168 and 488. Our study provides important insights into the molecular epidemiology of this emerging foodborne pathogen. In addition, the differences observed regarding the repertoire of fT3SS and T6SS effector proteins could have an impact on the pathogenic potential and transmissibility of these Latin American isolates, posing another challenge in characterizing the infection dynamics of this emergent and neglected bacterial pathogen.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Porte
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Carmen Varela
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cristina Muñoz-Rehbein
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Narjol González-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Verónica Bravo
- Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
7
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Distribution of type VI secretion system (T6SS) in clinical Klebsiella pneumoniae strains from a Chinese hospital and its potential relationship with virulence and drug resistance. Microb Pathog 2021; 162:105085. [PMID: 34252554 DOI: 10.1016/j.micpath.2021.105085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The type VI secretion system (T6SS) in Klebsiella pneumoniae strains isolated from the bloodstream, intestinal, the pyogenic liver abscess has been reported. Here we aimed to characterize T6SS in 248 Klebsiella pneumoniae isolates with all kinds of specimens from a Chinese hospital and to investigate the potential association of T6SS with virulence and drug resistance. METHODS T6SS genes, capsular serotyping genes, drug resistance genes, and virulence genes were identified by polymerase chain reaction (PCR). Antibiotic susceptibilities were examined by the disk diffusion method. To assess biofilm formation of these clinical Klebsiella pneumoniae isolates, 96-well microtiter plate assays were performed. MLST was used to analyze the genotypes of these Klebsiella pneumoniae isolates. RESULTS The frequency of T6SS genes among the clinical Klebsiella pneumoniae isolates was 72.2%. The T6SS-positive isolates displayed higher resistance to piperacillin-tazobactam, ciprofloxacin, levofloxacin, meropenem than the T6SS-negative isolates (P < 0.05). The T6SS-positive isolates formed significantly more biofilm mass than the T6SS-negative isolates (mean ± standard deviation [SD], 0.3 ± 0.09 vs.0.16 ± 0.06; P < 0.01). Compared to the T6SS-negative isolates, the T6SS-positive isolates had a higher frequency of virulence genes (rmpA, fimH, entB, kfu, ybtS) and the pLVPK-like plasmid (P < 0.05). CONCLUSION In conclusion, the prevalence of the type VI secretion system is high in clinical Klebsiella pneumoniae isolates in a Chinese teaching hospital. T6SS-positive strains show higher biofilm-forming activity with high drug resistance and exhibit higher virulence potential.
Collapse
|
9
|
de Melo RT, Dumont CF, Braz RF, Monteiro GP, Takeuchi MG, Lourenzatto ECA, Dos Santos JP, Rossi DA. Genotypical Relationship Between Human and Poultry Strains of Campylobacter jejuni. Curr Microbiol 2021; 78:2980-2988. [PMID: 34089354 DOI: 10.1007/s00284-021-02553-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to compare the genotype diversity of C. jejuni isolates. From the total of 64 C. jejuni strains evaluated, 44 were isolated from broiler carcasses (2015-2016) and 20 from hospitalized patients with gastroenteritis caused by the microorganism (2000-2006). The strains were correlated for the presence of flaA, pldA, cadF, ciaB, cdtABC, luxS, dnaJ, cbrA, htrA, pVir, Hcp, cstII, and neuA genes by PCR (polymerase chain reaction) and for phylogenetic proximity by PFGE (pulsed-field gel electrophoresis). Of the total strains studied, 28 (43.7%) presented all the studied genes, except pVir. Among these strains, 25 (89.3%) were of poultry origin. Poultry strains showed a higher prevalence (P < 0.05) of genes linked to adhesion, colonization, invasion, cytotoxicity, biofilm formation, and adaptation to adverse conditions. Additionally, the profile that denotes the presence of all genes identified in the study (P1) was identified in 56.8% of poultry strains and in 15.0% of human strains. Molecular typing analysis identified five pulsotypes, none of which grouped strains from different origins. Although human strains were from hospitalized patients, they presented limited virulence capacity and adaptability to adverse conditions compared to chicken carcasses, besides being different in molecular typing. However, the ability to cause Guillain-Barré Syndrome is equal for both strains. In general, poultry strains, being more recent, are more specialized to adapt to the environment, invade, and cause disease in the human host.
Collapse
Affiliation(s)
- Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil.
| | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | - Raquelline Figueiredo Braz
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | - Guilherme Paz Monteiro
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | - Micaela Guidotti Takeuchi
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| | | | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Federal University of Uberlândia, Ceará Street s/n, Block 2D 44, Umuarama, Uberlândia, MG, 38402-018, Brazil
| |
Collapse
|
10
|
Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker. Front Microbiol 2021; 12:627785. [PMID: 33679650 PMCID: PMC7933208 DOI: 10.3389/fmicb.2021.627785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
The type VI secretion system (T6SS), a macromolecular machine, plays an important role in the pathogenicity of many Gram-negative bacteria. However, the role of T6SS in the pathogenicity of Pseudomonas syringae pv. actinidiae (Psa), the pathogen of kiwifruit bacterial canker, is yet to be studied. Here, we found a T6SS gene cluster consisting of 13 core genes (A-J) in the genome of Psa M228 based on a genome-wide analysis. To determine whether the T6SS gene cluster affects the pathogenicity of Psa M228, T6SS and its 13 core gene deletion mutants were constructed and their pathogenicity was determined. The deletion mutants showed different degrees of reduction in pathogenicity compared with the wild-type strain M228; in tssM and tssJ mutants, pathogenicity was significantly reduced by 78.7 and 71.3%, respectively. The pathogenicity results were also confirmed by electron microscopy. To further confirm that the reduction in pathogenicity is related to the function of T6SS, we selected the T6SS gene cluster, comprising tssM and tssJ, for further analyses. Western blot results revealed that tssM and tssJ were necessary for hemolytic co-regulatory protein secretion, indicating that they encode a functional T6SS. Further, we explored the mechanism by which T6SS affects the pathogenicity of Psa M228. The ability of bacterial competition, biofilm formation, hydrogen peroxide tolerance, and proteolytic activity were all weakened in the deletion mutants M228ΔT6SS, M228ΔtssM, and M228ΔtssJ. All these properties of the two gene complementation mutants were restored to the same levels as those of the wild-type strain, M228. Quantitative real-time results showed that during the interaction between the deletion mutant M228ΔT6SS and the host, expression levels of T3SS transcriptional regulatory gene hrpR, structural genes hrpZ, hrcC, hopP1, and effector genes hopH1 and hopM1 were down-regulated at different levels. Taken together, our data provide evidence for the first time that the T6SS plays an important role in the pathogenicity of Psa, probably via effects on bacterial competition, biofilm formation, and environmental adaptability. Moreover, a complicated relationship exists between T6SS and T3SS.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Life Science, Northwest A&F University, Yangling, China
| | - Ning Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiliang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoning Gao
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiran Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Life Science, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Bravo V, Katz A, Porte L, Weitzel T, Varela C, Gonzalez-Escalona N, Blondel CJ. Genomic analysis of the diversity, antimicrobial resistance and virulence potential of clinical Campylobacter jejuni and Campylobacter coli strains from Chile. PLoS Negl Trop Dis 2021; 15:e0009207. [PMID: 33606689 PMCID: PMC7928456 DOI: 10.1371/journal.pntd.0009207] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/03/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the leading cause of human gastroenteritis in the industrialized world and an emerging threat in developing countries. The incidence of campylobacteriosis in South America is greatly underestimated, mostly due to the lack of adequate diagnostic methods. Accordingly, there is limited genomic and epidemiological data from this region. In the present study, we performed a genome-wide analysis of the genetic diversity, virulence, and antimicrobial resistance of the largest collection of clinical C. jejuni and C. coli strains from Chile available to date (n = 81), collected in 2017–2019 in Santiago, Chile. This culture collection accounts for more than one third of the available genome sequences from South American clinical strains. cgMLST analysis identified high genetic diversity as well as 13 novel STs and alleles in both C. jejuni and C. coli. Pangenome and virulome analyses showed a differential distribution of virulence factors, including both plasmid and chromosomally encoded T6SSs and T4SSs. Resistome analysis predicted widespread resistance to fluoroquinolones, but low rates of erythromycin resistance. This study provides valuable genomic and epidemiological data and highlights the need for further genomic epidemiology studies in Chile and other South American countries to better understand molecular epidemiology and antimicrobial resistance of this emerging intestinal pathogen. Campylobacter is the leading cause of bacterial gastroenteritis worldwide and an emerging and neglected pathogen in South America. In this study, we performed an in-depth analysis of the genome sequences of 69 C. jejuni and 12 C. coli clinical strains isolated from Chile, which account for over a third of the sequences from clinical strains available from South America. We identified a high genetic diversity among C. jejuni strains and the unexpected identification of clade 3 C. coli strains, which are infrequently isolated from humans in other regions of the world. Most strains harbored the virulence factors described for Campylobacter. While ~40% of strains harbored mutation in the gyrA gene described to confer fluoroquinolone resistance, very few strains encoded the determinants linked to macrolide resistance, currently used for the treatment of campylobacteriosis. Our study contributes to our knowledge of this important foodborne pathogen providing valuable data from South America.
Collapse
Affiliation(s)
- Veronica Bravo
- Programa Centro de Investigacion Biomedica y Aplicada, (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Assaf Katz
- Programa de Biologia Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Porte
- Laboratorio Clinico, Clinica Alemana de Santiago, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Thomas Weitzel
- Laboratorio Clinico, Clinica Alemana de Santiago, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Instituto de Ciencias e Innovacion en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Carmen Varela
- Laboratorio Clinico, Clinica Alemana de Santiago, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, Division of Microbiology, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Carlos J. Blondel
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
The effect of natural antimicrobials on the Campylobacter coli T6SS +/- during in vitro infection assays and on their ability to adhere to chicken skin and carcasses. Int J Food Microbiol 2020; 338:108998. [PMID: 33279789 DOI: 10.1016/j.ijfoodmicro.2020.108998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/20/2022]
Abstract
Reducing the Campylobacter load on poultry carcasses represents a major tasks for the industry as its ability to reduce their presence is of major interest aiming to increase consumer safety. This study investigated the ability of a mixture of natural antimicrobials (A3001) to reduce the adherence of the T6SS+/-C. coli isolates (NC1hcp-, NC2 hcp- and NC3 hcp+) to chicken neck skin and whole carcasses. Overall, the antimicrobial mixture induced a significant reduction in the capability of our C. coli isolates to colonise the chicken skin (p < 0.05) and carcasses (p < 0.0001) but with a greater effect (≈3 log reduction) on the NC3 isolate. Using the HCT-8 in vitro infection model we also show that at a concentration of 0.5% A3001, the impact on the NC3 isolate is accompanied by the downregulation of the hcp gene (p = 0.0001), and indicator of the T6SS presence. The results described herein also indicated that these isolates are highly resistant to H2O2, up to 20 mM, suggesting a high resilience to environmental stresses. In summary our study shows that natural antimicrobials can reduce the ability of T6SS positive chicken C. coli isolates to adhere to chicken skin or to the whole carcass and to infect epithelial cells in vitro and could be considered a potential intervention at processor level.
Collapse
|
13
|
Zhou M, Lan Y, Wang S, Liu Q, Jian Z, Li Y, Chen X, Yan Q, Liu W. Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. J Clin Lab Anal 2020; 34:e23459. [PMID: 32656871 PMCID: PMC7676210 DOI: 10.1002/jcla.23459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The type VI secretion system (T6SS) has been identified as a novel virulence factor. This study aimed to investigate the prevalence of the T6SS genes in Klebsiella pneumoniae‐induced bloodstream infections (BSIs). We also evaluated clinical and molecular characteristics of T6SS‐positive K pneumoniae. Methods A total of 344 non‐repetitive K. pneumoniae bloodstream isolates and relevant clinical data were collected from January 2016 to January 2019. For all isolates, T6SS genes, capsular serotypes, and virulence genes were detected by polymerase chain reaction, and antimicrobial susceptibility was tested by VITEK® 2 Compact. MLST was being conducted for hypervirulent K. pneumoniae (HVKP). Results 69 (20.1%) were identified as T6SS‐positive K. pneumoniae among 344 isolates recovered from patients with BSIs. The rate of K1 capsular serotypes and ten virulence genes in T6SS‐positive strains was higher than T6SS‐negative strains (P = .000). The T6SS‐positive rate was significantly higher than T6SS‐negative rate among HVKP isolates. (P = .000). The T6SS‐positive K. pneumoniae isolates were significantly more susceptible to cefoperazone‐sulbactam, ampicillin‐sulbactam, cefazolin, ceftriaxone, cefotan, aztreonam, ertapenem, amikacin, gentamicin, levofloxacin, and ciprofloxacin (P < 0.05). More strains isolated from the community and liver abscess were T6SS‐positive K. pneumoniae (P < .05). Multivariate regression analysis indicated that community‐acquired BSIs (OR 2.986), the carriage of wcaG (OR 10.579), iucA (OR 2.441), and p‐rmpA (OR 7.438) virulence genes, and biliary diseases (OR 5.361) were independent risk factors for T6SS‐positive K. pneumoniae‐induced BSIs. Conclusion The T6SS‐positive K. pneumoniae was prevalent in individuals with BSIs. T6SS‐positive K. pneumoniae strains seemed to be hypervirulent which revealed the potential pathogenicity of this emerging gene cluster.
Collapse
Affiliation(s)
- Mao Zhou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - You Lan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qingxia Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Serichantalergs O, Wassanarungroj P, Khemnu N, Poly F, Guerry P, Bodhidatta L, Crawford J, Swierczewski B. Distribution of genes related to Type 6 secretion system and lipooligosaccharide that induced ganglioside mimicry among Campylobacter jejuni isolated from human diarrhea in Thailand. Gut Pathog 2020; 12:18. [PMID: 32308743 PMCID: PMC7146907 DOI: 10.1186/s13099-020-00357-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) is one of the most common bacteria responsible for human gastroenteritis worldwide. The mode of human transmission is foodborne infections due to consumption of contaminated food, especially poultry. Type 6 secretion systems (T6SS) were described recently as Campylobacter virulence mechanisms. Furthermore, infection sequelae associated with neurological disorders like Guillain-Barré (GBS) and Miller Fisher (MF) syndromes can become serious health problems in some patients after Campylobacter gastroenteritis. Our objective was to determine the distribution of these virulence genes among C. jejuni isolated from stool of human diarrhea. Methods A total of 524 C. jejuni strains from travelers and pediatric cases of acute diarrhea in Thailand were selected for this study. All isolates belonged to one of 20 known capsule types and all were assayed by PCR for T6SS, a hemolysin co-regulated protein (hcp) gene, and GBS-associated genes (cgtA, cgtB, cstII HS19 and cstII HS2 ) which are involved in sialic acid production in the lipooligosaccharide (LOS) cores of C. jejuni. The distribution of these genes are summarized and discussed. Results Of all isolates with these 20 capsule types identified, 328 (62.6%) were positive for hcp, ranging from 29.2 to 100% among 10 capsule types. The GBS-associated LOS genes were detected among 14 capsule type isolates with 24.4% and 23.3% of C. jejuni isolates possessed either cstII HS19 or all three genes (cgtA, cgtB and cstII HS19 ), which were classified as LOS classes A and B whereas 9.2% of C. jejuni isolates possessing cstII HS2 were classified as LOS class C. The C. jejuni isolates of LOS A, B, and C together accounted for 56.9% of the isolates among 14 different capsule types while 31.1% of all C. jejuni isolates did not possess any GBS-associated genes. No significant difference was detected from C. jejuni isolates possessing GBS-associated LOS genes among travelers and children, but changes between those with hcp were significant (p < 0.05). Conclusions Our results suggested a high diversity of hcp and GBS-associated LOS genes among capsule types of C. jejuni isolated from Thailand.
Collapse
Affiliation(s)
- Oralak Serichantalergs
- 1Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Patcharawalai Wassanarungroj
- 1Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nuanpan Khemnu
- 1Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Frédéric Poly
- 2Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD USA
| | - Patricia Guerry
- 2Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD USA
| | - Ladaporn Bodhidatta
- 1Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - John Crawford
- 3US Army Medical Research Institute of Chemical Defense, Aberdeen, MD USA
| | - Brett Swierczewski
- 4Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| |
Collapse
|
15
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
16
|
Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020; 19:279-292. [PMID: 32228108 PMCID: PMC7412170 DOI: 10.1080/14760584.2020.1745636] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Introduction: From its earliest days, the US. military has embraced the use of vaccines to fight infectious diseases. The Army Liposome Formulation (ALF) has been a pivotal innovation as a vaccine adjuvant that provides excellent safety and potency and could lead to dual-use military and civilian benefits. For protection of personnel against difficult disease threats found in many areas of the world, Army vaccine scientists have created novel liposome-based vaccine adjuvants.Areas covered: ALF consists of liposomes containing saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA) as an immunostimulant. ALF exhibited safety and strong potency in many vaccine clinical trials. Improvements based on ALF include: ALF adsorbed to aluminum hydroxide (ALFA); ALF containing QS21 saponin (ALFQ); and ALFQ adsorbed to aluminum hydroxide (ALFQA). Preclinical safety and efficacy studies with ALF, LFA, ALFQ, and ALFQA are discussed in preparation for upcoming vaccine trials targeting malaria, HIV-1, bacterial diarrhea, and opioid addiction.Expert opinion: The introduction of ALF in the 1980s stimulated commercial interest in vaccines to infectious diseases, and therapeutic vaccines to cancer, and Alzheimer's disease. It is likely that ALF, ALFA, and ALFQ, will provide momentum for new types of modern vaccines with improved efficacy and safety.
Collapse
Affiliation(s)
- Carl R. Alving
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Kristina K. Peachman
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Mangala Rao
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|
17
|
Schiaffino F, Platts-Mills J, Kosek MN. A One Health approach to prevention, treatment, and control of campylobacteriosis. Curr Opin Infect Dis 2019; 32:453-460. [PMID: 31305492 DOI: 10.1097/qco.0000000000000570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To review recent findings regarding the control and treatment of campylobacteriosis. RECENT FINDINGS The application of improved diagnostics has led to an upward shift in the attributable burden of Campylobacter infections, in both the United States and Europe as well as in resource-poor settings. Increased focus has brought a fundamental feature of campylobacteriosis -- the ability to cause relapsing disease back into focus, and expanding data on antimicrobial resistance has lead from a switch in first-line therapy for severe diarrhea from quinolones to azithromycin in most contexts, even as evidence of expanding macrolide resistance emerges. SUMMARY Campylobacter spp. infection is a common infection worldwide. Antibiotic-resistant Campylobacter spp. has become an emerging threat with the increase in industrial poultry production, as well as the broad use of antibiotics in both animals and humans.
Collapse
Affiliation(s)
| | - James Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
18
|
Levican A, Ramos-Tapia I, Briceño I, Guerra F, Mena B, Varela C, Porte L. Genomic Analysis of Chilean Strains of Campylobacter jejuni from Human Faeces. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1902732. [PMID: 31360704 PMCID: PMC6644508 DOI: 10.1155/2019/1902732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Campylobacter spp., especially C. jejuni, are recognized worldwide as the bacterial species that most commonly cause food-related diarrhea. C. jejuni possesses many different virulence factors, has the ability to survive in different reservoirs, and has shown among isolates the emergence of Antimicrobial Resistance (AMR). Genome association analyses of this bacterial pathogen have contributed to a better understanding of its pathogenic and AMR associated determinants. However, the epidemiological information of these bacteria in Latin American countries is scarce and no genomic information is available in public databases from isolates in these countries. Considering this, the present study is aimed to describe the genomic traits from representative Campylobacter spp. strains recovered from faecal samples of patients with acute diarrhoea from Valparaíso, Chile. Campylobacter spp. was detected from the faeces of 28 (8%) out of 350 patients with acute diarrhoea, mainly from young adults and children, and 26 (93%) of the isolates corresponded to C. jejuni. 63% of the isolates were resistant to ciprofloxacin, 25.9% to tetracycline, and 3.5% to erythromycin. Three isolates were selected for WGS on the basis of their flaA-RFLP genotype. They belonged to the multilocus sequence typing (MLST) clonal clomplex (CC) 21(PUCV-1), CC-48 (PUCV-3), and CC-353 (PUCV-2) and presented several putative virulence genes, including the Type IV and Type VI Secretion Systems, as well as AMR-associated genes in agreement with their susceptibility pattern. On the basis of the wgMLST, they were linked to strains from poultry and ruminants. These are the first genomes of Chilean C. jejuni isolates available in public databases and they provide relevant information about the C. jejuni isolates associated with human infection in this country.
Collapse
Affiliation(s)
- Arturo Levican
- Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Ignacio Ramos-Tapia
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Avenida Republica 330, Santiago, Chile
| | - Isabel Briceño
- Laboratorio Clínico, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Francisco Guerra
- Laboratorio Clínico, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Benjamin Mena
- Laboratorio Clínico, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Carmen Varela
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Lorena Porte
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|