1
|
Kaur D, Kaur U, Bhusal CK, Tak V, Sehgal R. Optimization of loop mediated isothermal amplification assay (LAMP) for detection of chloroquine resistance in P. vivax malaria. Sci Rep 2024; 14:25608. [PMID: 39465271 PMCID: PMC11514184 DOI: 10.1038/s41598-024-76479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Chloroquine is still used as a first-line treatment for uncomplicated Plasmodium vivax malaria in India and resistance to this therapy can act as a major hurdle for malaria elimination. It is difficult to monitor drug-efficacy and drug resistance through in vivo and in vitro studies in case of Plasmodium vivax so analysis of molecular markers serves as an important tool to track resistance. Molecular methods that are currently in use for detecting single nucleotide polymorphisms in resistant genes including Polymerase chain reaction (PCR), Realtime-Polymerase chain reaction require highly sophisticated labs and are time consuming. So, with this background the study has been designed to optimize Loop Mediated Isothermal Amplification Assay to detect single nucleotide polymorphisms in chloroquine resistance gene of Plasmodium vivax in field settings. Eighty-eight Plasmodium vivax positive samples were collected. Pvmdr1 gene was amplified for all the samples and sequenced. Obtained sequences were analyzed for the presence of single nucleotide polymorphisms in the target gene. Further Loop Mediated Isothermal Amplification Assay primer sets were designed for the target mutants and the assay was optimized. Clinical as well as analytical sensitivity and specificity for the assay was calculated. Double mutants with variations at T958M and F1076L were detected in 100% of the Plasmodium vivax clinical isolates with haplotype M958 Y976 Y1028 L1076. Designed primers for Loop Mediated Isothermal Amplification Assay successfully detected both the mutants (T958M and F1076L) in 100% of the isolates and do not show cross-reactivity with other strains. So, the assay was 100% sensitive and specific for detecting single nucleotide polymorphisms in the target Pvmdr1 gene. Limit of detection was found to be 0.9 copies/µl and lowest DNA template concentration detected by designed assay was 1.5 ng/µL. Observed prevalence of single nucleotide polymorphisms in Pvmdr 1 gene is indicating a beginning of trend towards chloroquine resistance in Plasmodium vivax. The present study optimized LAMP for detecting single nucleotide polymorphisms in Plasmodium vivax cases in field settings, thus would help in finding significant hubs of emerging chloroquine drug resistance and ultimately helping in the management of suitable antimalarial drug policy.
Collapse
Affiliation(s)
- Davinder Kaur
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Upninder Kaur
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chandra Kanta Bhusal
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
- Aarupadai Veedu Medical College and Hospital (AVMC&H), VMRF-DU, Puducherry, 607402, India
| | - Vibhor Tak
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Rakesh Sehgal
- Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
- Aarupadai Veedu Medical College and Hospital (AVMC&H), VMRF-DU, Puducherry, 607402, India.
| |
Collapse
|
2
|
Narang G, Jakhan J, Tamang S, Yadav K, Singh V. Characterization of drug resistance genes in Indian Plasmodium falciparum and Plasmodium vivax field isolates. Acta Trop 2024; 255:107218. [PMID: 38636585 DOI: 10.1016/j.actatropica.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
One of the major challenges for malaria control and elimination is the spread and emergence of antimalarial drug resistance. Mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) field isolates for five drug resistance genes viz. crt, mdr1, dhps, dhfr and kelch known to confer resistance to choloroquine (CQ), sulfadoxine-pyrimethamine (SP) and artemisinin (ART) and its derivatives were analyzed. A total of 342 symptomatic isolates of P. falciparum (Pf) and P. vivax (Pv) from 1993 to 2014 were retrieved from malaria parasite repository at National Institute of Malaria Research (NIMR). Sample DNA was extracted from dried blood spots and various targeted single nucleotide polymorphisms (SNPs) associated with antimalarial drug resistance were analysed for these isolates. 72S (67.7%) and 76T (83.8%) mutations along with SVMNT haplotype (67.7%) predominated the study population for Pfcrt. The most prevalent SNPs were 108N (73.2%) and 437G (24.8%) and the most prevalent haplotypes were ACNRNI (51.9%) and SAKAA (74.5%) in Pfdhfr and Pfdhps respectively. Only two mutations in Pfmdr1, 86Y (26.31%) and 184F (56.26%), were seen frequently in our study population. No mutations associated with Pfk13 were observed. For Pv, all the studied isolates showed two Pvdhps mutations, 383G and 553G, and two Pfdhfr mutations, 58R and 117N. Similarly, three mutations, viz. 958M, 908L and 1076L were found in Pvmdr1. No variations were observed in Pvcrt-o and Pvk12 genes. Overall, our study demonstrates an increase in mutations associated with SP resistance in both Pf and Pv, however, no single nucleotide polymorphisms (SNPs) associated with ART resistance have been observed for either species. Various SNPs associated with CQ resistance were seen in Pf; whereas only Pvmdr1 associated resistant SNPs were observed in Pv. Therefore, molecular characterization of drug resistance genes is essential for timely monitoring and prevention of malaria by identifying the circulating drug resistant parasites in the country.
Collapse
Affiliation(s)
- Geetika Narang
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jahnvi Jakhan
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Suman Tamang
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Karmveer Yadav
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
3
|
Kong WZ, Zhang HY, Sun YF, Song J, Jiang J, Cui HY, Zhang Y, Han S, Cheng Y. Plasmodium vivax tryptophan-rich antigen reduces type I collagen secretion via the NF-κBp65 pathway in splenic fibroblasts. Parasit Vectors 2024; 17:239. [PMID: 38802961 PMCID: PMC11131192 DOI: 10.1186/s13071-024-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
Collapse
Affiliation(s)
- Wei-Zhong Kong
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Hang-Ye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Case Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi, 214000, China
| | - Heng-Yuan Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yu Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
4
|
de Abreu-Fernandes R, Almeida-de-Oliveira NK, de Lavigne Mello AR, de Queiroz LT, Barros JDA, Baptista BDO, Oliveira-Ferreira J, de Souza RM, Pratt-Riccio LR, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Are pvcrt-o and pvmdr1 Gene Mutations Associated with Plasmodium vivax Chloroquine-Resistant Parasites? Biomedicines 2024; 12:141. [PMID: 38255246 PMCID: PMC10812985 DOI: 10.3390/biomedicines12010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Malaria remains a significant global public health issue. Since parasites quickly became resistant to most of the available antimalarial drugs, treatment effectiveness must be constantly monitored. In Brazil, up to 10% of cases of vivax malaria resistant to chloroquine (CQ) have been registered. Unlike P. falciparum, there are no definitive molecular markers for the chemoresistance of P. vivax to CQ. This work aimed to investigate whether polymorphisms in the pvcrt-o and pvmdr1 genes could be used as markers for assessing its resistance to CQ. (2) Methods: A total of 130 samples from P. vivax malaria cases with no clinical and/or parasitological evidence of CQ resistance were studied through polymerase chain reaction for gene amplification followed by target DNA sequencing. (3) Results: In the pvcrt-o exons, the K10 insert was present in 14% of the isolates. Regarding pvmdr1, T958M and F1076L haplotypes showed frequencies of 95% and 3%, respectively, while the SNP Y976F was not detected. (4) Conclusions: Since K10-pvcrt-o and F1076L/T958M-pvmdr1 polymorphisms were detected in samples from patients who responded well to CQ treatment, it can be concluded that mutations in these genes do not seem to have a potential for association with the phenotype of CQ resistance.
Collapse
Affiliation(s)
- Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Aline Rosa de Lavigne Mello
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
| | - Jacqueline de Aguiar Barros
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Núcleo de Controle da Malária/Departamento de Vigilância Epidemiológica/Coordenação Geral de Vigilância em Saúde/SESAU-RR, Boa Vista 69305-080, Brazil
| | - Bárbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
| | | | - Rodrigo Medeiros de Souza
- Laboratório de Doenças Infecciosas da Amazônia Ocidental, Universidade Federal do Acre, Campus Floresta, Cruzeiro do Sul 69980-000, Brazil;
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-361, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil; (R.d.A.-F.); (N.K.A.-d.-O.); (A.R.d.L.M.); (L.T.d.Q.); (J.d.A.B.); (B.d.O.B.); (L.R.P.-R.)
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
5
|
Stanley P, Rajkumari N, Sivaradjy M. Molecular detection of antimalarial resistance in Plasmodium vivax isolates from a tertiary care setting in Puducherry. Indian J Med Microbiol 2024; 47:100496. [PMID: 37949233 DOI: 10.1016/j.ijmmb.2023.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE The study was aimed at detecting the mutation patterns in the drug targets in Plasmodium vivax that confer resistance to the common antimalarial agents used in India. METHODS A total of 27 Plasmodium vivax isolates collected from whole blood samples over a three year period were subjected to PCR amplification followed by sequencing of the genes pvmdr1, pvdhfr, pvdhps and pvk12, which serve as the molecular targets to detect resistance to chloroquine, pyrimethamine, sulfadoxine and artemisinin respectively. RESULTS The study found T958 M F1076L double mutants of pvmdr1 in 52 %(14/27) isolates, S58R S117 N double mutants of pvdhfr in 67 % (18/27) isolates, A383G A553G double mutant pvdhps in 59 % (16/27) isolates and wild type of pvk12 gene in all the isolates. CONCLUSIONS There was a rise in the proportion of double mutants of pvmdr1 and pvdhfr over time. Those cases with double mutant pvmdr1 gene in their isolates were found to have a prolonged hospital stay compared to those without, indicating reduced clinical response to chloroquine.
Collapse
Affiliation(s)
- Pheba Stanley
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, 605006, India.
| | - Nonika Rajkumari
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, 605006, India.
| | - Monika Sivaradjy
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, 605006, India; Department of Microbiology, ESIC Medical College& PGIMSR, Chennai, 78, India.
| |
Collapse
|
6
|
Kojom Foko LP, Narang G, Jakhan J, Tamang S, Moun A, Singh V. Nationwide spatiotemporal drug resistance genetic profiling from over three decades in Indian Plasmodium falciparum and Plasmodium vivax isolates. Malar J 2023; 22:236. [PMID: 37582796 PMCID: PMC10428610 DOI: 10.1186/s12936-023-04651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Drug resistance is a serious impediment to efficient control and elimination of malaria in endemic areas. METHODS This study aimed at analysing the genetic profile of molecular drug resistance in Plasmodium falciparum and Plasmodium vivax parasites from India over a ~ 30-year period (1993-2019). Blood samples of P. falciparum and/or P. vivax-infected patients were collected from 14 regions across India. Plasmodial genome was extracted and used for PCR amplification and sequencing of drug resistance genes in P. falciparum (crt, dhps, dhfr, mdr1, k13) and P. vivax (crt-o, dhps, dhfr, mdr1, k12) field isolates. RESULTS The double mutant pfcrt SVMNT was highly predominant across the country over three decades, with restricted presence of triple mutant CVIET from Maharashtra in 2012. High rates of pfdhfr-pfdhps quadruple mutants were observed with marginal presence of "fully resistant" quintuple mutant ACIRNI-ISGEAA. Also, resistant pfdhfr and pfdhps haplotype has significantly increased in Delhi between 1994 and 2010. For pfmdr1, only 86Y and 184F mutations were present while no pfk13 mutations associated with artemisinin resistance were observed. Regarding P. vivax isolates, the pvcrt-o K10 "AAG" insertion was absent in all samples collected from Delhi in 2017. Pvdhps double mutant SGNAV was found only in Goa samples of year 2008 for the first time. The pvmdr1 908L, 958M and 1076L mutations were highly prevalent in Delhi and Haryana between 2015 and 2019 at complete fixation. One nonsynonymous novel pvk12 polymorphism was identified (K264R) in Goa. CONCLUSIONS These findings support continuous surveillance and characterization of P. falciparum and P. vivax populations as proxy for effectiveness of anti-malarial drugs in India, especially for independent emergence of artemisinin drug resistance as recently seen in Africa.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Geetika Narang
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Jahnvi Jakhan
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Suman Tamang
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Amit Moun
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Vineeta Singh
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India.
| |
Collapse
|
7
|
Kaur D, Sinha S, Sehgal R. Global scenario of Plasmodium vivax occurrence and resistance pattern. J Basic Microbiol 2022; 62:1417-1428. [PMID: 36125207 DOI: 10.1002/jobm.202200316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/20/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022]
Abstract
Malaria caused by Plasmodium vivax is comparatively less virulent than Plasmodium falciparum, which can also lead to severe disease and death. It shows a wide geographical distribution. Chloroquine serves as a drug of choice, with primaquine as a radical cure. However, with the appearance of resistance to chloroquine and treatment has been shifted to artemisinin combination therapy followed by primaquine as a radical cure. Sulphadoxine-pyrimethamine, mefloquine, and atovaquone-proguanil are other drugs of choice in chloroquine-resistant areas, and later resistance was soon reported for these drugs also. The emergence of drug resistance serves as a major hurdle to controlling and eliminating malaria. The discovery of robust molecular markers and regular surveillance for the presence of mutations in malaria-endemic areas would serve as a helpful tool to combat drug resistance. Here, in this review, we will discuss the endemicity of P. vivax, a historical overview of antimalarial drugs, the appearance of drug resistance and molecular markers with their global distribution along with different measures taken to reduce malaria burden due to P. vivax infection and their resistance.
Collapse
Affiliation(s)
- Davinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Current Epidemiological Characteristics of Imported Malaria, Vector Control Status and Malaria Elimination Prospects in the Gulf Cooperation Council (GCC) Countries. Microorganisms 2021; 9:microorganisms9071431. [PMID: 34361867 PMCID: PMC8307262 DOI: 10.3390/microorganisms9071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
Malaria is the most common vector-borne parasitic infection causing significant human morbidity and mortality in nearly 90 tropical/sub-tropical countries worldwide. Significant differences exist in the incidence of malaria cases, dominant Plasmodium species, drug-resistant strains and mortality rates in different countries. Six Gulf Cooperation Council (GCC) countries (Bahrain, Kuwait, Qatar, Oman, Saudi Arabia and United Arab Emirates, UAE) in the Middle East region with similar climates, population demographics and economic prosperity are aiming to achieve malaria elimination. In this narrative review, all studies indexed in PubMed describing epidemiological characteristics of indigenous and imported malaria cases, vector control status and how malaria infections can be controlled to achieve malaria elimination in GCC countries were reviewed and discussed. These studies have shown that indigenous malaria cases are absent in Bahrain, Kuwait, Qatar and UAE and have progressively declined in Oman and Saudi Arabia. However, imported malaria cases continue to occur as GCC countries have large expatriate populations originating from malaria-endemic countries. Various malaria control and prevention strategies adopted by GCC countries including more stringent measures to reduce the likelihood of importing malaria cases by prior screening of newly arriving expatriates and vector elimination programs are likely to lead to malaria elimination in this region.
Collapse
|