1
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
2
|
Bellavita R, Falanga A, Merlino F, D'Auria G, Molfetta N, Saviano A, Maione F, Galdiero U, Catania MR, Galdiero S, Grieco P, Roscetto E, Falcigno L, Buommino E. Unveiling the mechanism of action of acylated temporin L analogues against multidrug-resistant Candida albicans. J Enzyme Inhib Med Chem 2023; 38:36-50. [PMID: 36305289 PMCID: PMC9621209 DOI: 10.1080/14756366.2022.2134359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The increasing resistance of fungi to conventional antifungal drugs has prompted worldwide the search for new compounds. In this work, we investigated the antifungal properties of acylated Temporin L derivatives, Pent-1B and Dec-1B, against Candida albicans, including the multidrug-resistant strains. Acylated peptides resulted to be active both on reference and clinical strains with MIC values ranging from 6.5 to 26 µM, and they did not show cytotoxicity on human keratinocytes. In addition, we also observed a synergistic or additive effect with voriconazole for peptides Dec-1B and Pent-1B through the checkerboard assay on voriconazole-resistant Candida strains. Moreover, fluorescence-based assays, NMR spectroscopy, and confocal microscopy elucidated a potential membrane-active mechanism, consisting of an initial electrostatic interaction of acylated peptides with fungal membrane, followed by aggregation and insertion into the lipid bilayer and causing membrane perturbation probably through a carpeting effect.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples "Federico II", Portici, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Gabriella D'Auria
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Nicola Molfetta
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Umberto Galdiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
3
|
Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020669. [PMID: 36677725 PMCID: PMC9862086 DOI: 10.3390/molecules28020669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The review presents extensive data (from the author's work and the literature) on the stereochemical structure of functionalized organophosphorus azoles (pyrroles, pyrazoles, imidazoles and benzazoles) and related compounds, using multinuclear 1H, 13C, 31P NMR spectroscopy and quantum chemistry. 31P NMR spectroscopy, combined with high-level quantum-chemical calculations, is the most convenient and reliable approach to studying tetra-, penta-, and hexacoordinated phosphorus atoms of phosphorylated N-vinylazoles and evaluating their Z/E isomerization.
Collapse
|
4
|
Doderlin: Isolation and Characterization of a Broad-Spectrum Antimicrobial Peptide from Lactobacillus acidophilus. Res Microbiol 2022. [DOI: 10.1016/j.resmic.2022.103995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
6
|
Feliciano A, Gómez-García O, Escalante CH, Rodríguez-Hernández MA, Vargas-Fuentes M, Andrade-Pavón D, Villa-Tanaca L, Álvarez-Toledano C, Ramírez-Apan MT, Vázquez MA, Tamariz J, Delgado F. Three-Component Synthesis of 2-Amino-3-cyano-4 H-chromenes, In Silico Analysis of Their Pharmacological Profile, and In Vitro Anticancer and Antifungal Testing. Pharmaceuticals (Basel) 2021; 14:ph14111110. [PMID: 34832892 PMCID: PMC8623194 DOI: 10.3390/ph14111110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Chromenes are compounds that may be useful for inhibiting topoisomerase and cytochrome, enzymes involved in the growth of cancer and fungal cells, respectively. The aim of this study was to synthesize a series of some novel 2-amino-3-cyano-4-aryl-6,7-methylendioxy-4H-chromenes 4a-o and 2-amino-3-cyano-5,7-dimethoxy-4-aryl-4H-chromenes 6a-h by a three-component reaction, and test these derivatives for anticancer and antifungal activity. Compounds 4a and 4b were more active than cisplatin (9) and topotecan (7) in SK-LU-1 cells, and more active than 9 in PC-3 cells. An evaluation was also made of the series of compounds 4 and 6 as potential antifungal agents against six Candida strains, finding their MIC50 to be less than or equal to that of fluconazole (8). Molecular docking studies are herein reported, for the interaction of 4 and 6 with topoisomerase IB and the active site of CYP51 of Candida spp. Compounds 4a-o and 6a-h interacted in a similar way as 7 with key amino acids of the active site of topoisomerase IB and showed better binding energy than 8 at the active site of CYP51. Hence, 4a-o and 6a-h are good candidates for further research, having demonstrated their dual inhibition of enzymes that participate in the growth of cancer and fungal cells.
Collapse
Affiliation(s)
- Alberto Feliciano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico;
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
- Correspondence: or (O.G.-G.); (F.D.)
| | - Carlos H. Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Mario A. Rodríguez-Hernández
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Mariana Vargas-Fuentes
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (D.A.-P.); (L.V.-T.)
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Mexico City 07738, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (D.A.-P.); (L.V.-T.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P., Mexico City 04510, Mexico; (C.Á.-T.); (M.T.R.-A.)
| | - María Teresa Ramírez-Apan
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P., Mexico City 04510, Mexico; (C.Á.-T.); (M.T.R.-A.)
| | - Miguel A. Vázquez
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico;
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
- Correspondence: or (O.G.-G.); (F.D.)
| |
Collapse
|
7
|
In vitro study on the potential fungicidal effects of atorvastatin in combination with some azole drugs against multidrug resistant Candida albicans. World J Microbiol Biotechnol 2021; 37:191. [PMID: 34632522 PMCID: PMC8502632 DOI: 10.1007/s11274-021-03158-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
The resistance of Candida albicans to azole drugs represents a great global challenge. This study investigates the potential fungicidal effects of atorvastatin (ATO) combinations with fluconazole (FLU), itraconazole (ITR), ketoconazole (KET) and voriconazole (VOR) against thirty-four multidrug-resistant (MDR) C. albicans using checkerboard and time-kill methods. Results showed that 94.12% of these isolates were MDR to ≥ two azole drugs, whereas 5.88% of them were susceptible to azole drugs. The tested isolates exhibited high resistance rates to FLU (58.82%), ITR (52.94%), VOR (47.06%) and KET (35.29%), whereas only three representative (8.82%) isolates were resistant to all tested azoles. Remarkably, the inhibition zones of these isolates were increased at least twofold with the presence of ATO, which interacted in a synergistic (FIC index ≤ 0.5) manner with tested azoles. In silico docking study of ATO and the four azole drugs were performed against the Lanosterol 14-alpha demethylase enzyme (ERG11) of C. albicans. Results showed that the mechanism of action of ATO against C. albicans is similar to that of azole compounds, with a docking score (−4.901) lower than azole drugs (≥5.0) due to the formation a single H-bond with Asp 225 and a pi–pi interaction with Thr 229. Importantly, ATO combinations with ITR, VOR and KET achieved fungicidal effects (≥ 3 Log10 cfu/ml reduction) against the representative isolates, whereas a fungistatic effect (≤ 3 Log10 cfu/ml reduction) was observed with FLU combination. Thus, the combination of ATO with azole drugs could be promising options for treating C. albicans infection.
Collapse
|
8
|
Shamriz O, Lev A, Simon AJ, Barel O, Javasky E, Matza-Porges S, Shaulov A, Davidovics Z, Toker O, Somech R, Zlotogorski A, Molho-Pessach V, Tal Y. Chronic demodicosis in patients with immune dysregulation: An unexpected infectious manifestation of Signal transducer and activator of transcription (STAT)1 gain-of-function. Clin Exp Immunol 2021; 206:56-67. [PMID: 34114647 DOI: 10.1111/cei.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)1 heterozygous gain-of-function (GOF) mutations are known to induce immune dysregulation and chronic mucocutaneous candidiasis (CMCC). Previous reports suggest an association between demodicosis and STAT1 GOF. However, immune characterization of these patients is lacking. Here, we present a retrospective analysis of patients with immune dysregulation and STAT1 GOF who presented with facial and ocular demodicosis. In-depth immune phenotyping and functional studies were used to characterize the patients. We identified five patients (three males) from two non-consanguineous Jewish families. The mean age at presentation was 11.11 (range = 0.58-24) years. Clinical presentation included CMCC, chronic demodicosis and immune dysregulation in all patients. Whole-exome and Sanger sequencing revealed a novel heterozygous c.1386C>A; p.S462R STAT1 GOF mutation in four of the five patients. Immunophenotyping demonstrated increased phosphorylated signal transducer and activator of transcription in response to interferon-α stimuli in all patients. The patients also exhibited decreased T cell proliferation capacity and low counts of interleukin-17-producing T cells, as well as low forkhead box protein 3+ regulatory T cells. Specific antibody deficiency was noted in one patient. Treatment for demodicosis included topical ivermectin and metronidazole. Demodicosis may indicate an underlying primary immune deficiency and can be found in patients with STAT1 GOF. Thus, the management of patients with chronic demodicosis should include an immunogenetic evaluation.
Collapse
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J Simon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ortal Barel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Elisheva Javasky
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Sigal Matza-Porges
- Department of Human Genetics, Institute for Medical Research the Hebrew University of Jerusalem,, Jerusalem, Israel.,Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Adir Shaulov
- Department of Hematology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zev Davidovics
- Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Zlotogorski
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vered Molho-Pessach
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Shi H, Zhang Y, Zhang M, Chang W, Lou H. Molecular Mechanisms of Azole Resistance in Four Clinical Candida albicans Isolates. Microb Drug Resist 2021; 27:1641-1651. [PMID: 34037478 DOI: 10.1089/mdr.2020.0413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Azole resistance constitutes a serious clinical problem in the management of infections caused by Candida albicans. This study aimed to explore azole-resistant mechanisms in clinical C. albicans isolates collected in Jinan, Shandong, China. In total, 22 samples were collected and analyzed. Among these, four isolates (28A, 28D, 28I, and 28J) exhibited high level of pan-azole-resistance that was Hsp90 dependent. Gene sequencing revealed that the four Hsp90-dependent strains contained different ERG3 mutations that led to four novel amino acid substitutions (S265Y, N322D, N324S, and E355D) in Erg3. The role of these substitutions in azole resistance development was determined by constructing one copy of the mutated ERG3 from the 28A, 28D, and 28I strains into C. albicans CAI4, respectively. The minimum inhibitory concentration value of fluconazole (FLC) against C. albicans CAI4-ERG328I increased fourfold compared with the wild-type C. albicans strain, suggesting that the novel combination of substitutions S265Y, N322D, and N324S played an important role in mediating azole resistance in 28I. Besides, we identified several different mechanisms in other three isolates. Strains 28A and 28D displayed increased efflux ability and overexpression of MDR1. Strain 28J showed high level of ERG11 expression, but no mutation in its regulator Upc2 was observed. Our study revealed that multiple factors confer azole resistance in clinical C. albicans isolates and combination therapy should be conducted clinically.
Collapse
Affiliation(s)
- Hongzhuo Shi
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacy, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Jinan, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Chen H, Li H, Duan C, Song C, Peng Z, Li H, Shi W. Reversal of azole resistance in Candida albicans by oridonin. J Glob Antimicrob Resist 2021; 24:296-302. [PMID: 33513441 DOI: 10.1016/j.jgar.2020.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Candida albicans is a yeast that causes fungal infections with high mortality and is typically resistant to azole drugs. To overcome this resistance, we explored the combined use of oridonin (ORI) and three azole drugs, namely fluconazole (FLC), itraconazole (ITR) and voriconazole (VOR). Azole-resistant C. albicans strains were obtained from cancer patients and the reversal of drug resistance in these strains was investigated. METHODS The synergistic antifungal activity of ORI and azole drugs was measured by checkerboard microdilution and time-kill assays. The resistance reversal mechanisms, namely inhibition of drug efflux and induction of apoptosis, were investigated by flow cytometry. Expression levels of the efflux pump-related genesCDR1 and CDR2 were assessed by RT-qPCR. RESULTS The efflux pump inhibition assay with ORI showed that the minimum inhibitory concentrations (MICs) of FLC (128-fold), ITR (64-fold) and VOR (250-fold) decreased significantly. Upregulation of genes encodingCDR1 and CDR2 was confirmed in the resistant strain. The sensitising effect of ORI on FLC in the treatment of C. albicans also included the promotion of apoptosis. CONCLUSION We demonstrated that combining azoles with ORI exerted potent synergism and that ORI could promote sensitisation to azoles in azole-resistantC. albicans. The discovery that ORI can effectively inhibit drug efflux and promote apoptosis may provide new insights and therapeutic strategies to overcome increasing azole resistance in C. albicans.
Collapse
Affiliation(s)
- Haisheng Chen
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Cunxian Duan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Chuanjie Song
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Zuoliang Peng
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China.
| |
Collapse
|
11
|
Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells. J Bioenerg Biomembr 2020; 52:383-395. [DOI: 10.1007/s10863-020-09849-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/06/2020] [Indexed: 01/02/2023]
|
12
|
Monroy-Pérez E, Rodríguez-Bedolla RM, Garzón J, Vaca-Paniagua F, Arturo-Rojas Jiménez E, Paniagua-Contreras GL. Marked virulence and azole resistance in Candida albicans isolated from patients with periodontal disease. Microb Pathog 2020; 148:104436. [PMID: 32781099 DOI: 10.1016/j.micpath.2020.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
Candida albicans is an opportunistic fungus frequently associated with periodontal diseases. The objective of this study was to determine the expression patterns of virulence genes associated with those of azole resistance among the strains of C. albicans isolated from patients with periodontal disease. We isolated 80 strains of C. albicans from patients with periodontal disease enrolled from two dental clinics and their antifungal susceptibilities were evaluated using the disc diffusion method. C. albicans and its virulence genes were identified using PCR. The expressions of the virulence genes of C. albicans were analyzed using real-time PCR post in vitro infection of the cell line A549. The phenotype for resistance against azoles such as ketoconazole and fluconazole was observed in all analyzed strains (n = 80), which coincided with the high frequency of occurrence of the genes CDR1 and MDR1 associated with resistance. The frequencies of detection and expression of the genes HWP1 (47/15), ALS1 (80/66), ALS3 (70/30), LIP1 (78/44), LIP4 (77/65), LIP5 (79/58), LIP6 (79/58), PLB1 (79/65), and PLB2 (80/66) were found to be higher in the strains of C. albicans isolated from patients with moderate periodontitis and different expression patterns associated with those for azole resistance were identified. It could be elucidated that the high expression of virulence markers associated with azole resistance in C. albicans might be contributing to the chronicity of periodontal infections.
Collapse
Affiliation(s)
- Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico.
| | - Rosa María Rodríguez-Bedolla
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico
| | - Javier Garzón
- Clínica de Endoperiodontología, FES Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Felipe Vaca-Paniagua
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico; Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico; Subdirección de investigación Básica, Instituto Nacional de Cancerología, CDMX, 14080, Mexico
| | - Ernesto Arturo-Rojas Jiménez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico
| | - Gloria Luz Paniagua-Contreras
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico.
| |
Collapse
|