1
|
Rabie AM, Eltayb WA. Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study. Mol Biotechnol 2024; 66:592-611. [PMID: 36690820 PMCID: PMC9870775 DOI: 10.1007/s12033-022-00551-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Recently, natural and synthetic nitrogenous heterocyclic antivirals topped the scene as first choices for the treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their accompanying disease, the coronavirus disease 2019 (COVID-19). Meanwhile, the mysterious evolution of a new strain of SARS-CoV-2, the Omicron variant and its sublineages, caused a new defiance in the continual COVID-19 battle. Hitting the two principal coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) synchronously using the same ligand is a highly effective novel dual pathway to hinder SARS-CoV-2 reproduction and stop COVID-19 progression irrespective of the SARS-CoV-2 variant type since RdRps and ExoNs are widely conserved among all SARS-CoV-2 strains. Herein, the present computational/biological study screened our previous small libraries of nitrogenous heterocyclic compounds, searching for the most ideal drug candidates predictably able to efficiently act through this double approach. Theoretical filtration gave rise to three promising antioxidant nitrogenous heterocyclic compounds of the 1,3,4-thiadiazole type, which are CoViTris2022, Taroxaz-26, and ChloViD2022. Further experimental evaluation proved for the first time, utilizing the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that ChloViD2022, CoViTris2022, and Taroxaz-26 could effectively inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 0.17 and 0.41 μM for ChloViD2022, 0.21 and 0.69 μM for CoViTris2022, and 0.23 and 0.73 μM for Taroxaz-26, respectively, transcending the anti-COVID-19 drug molnupiravir. The preliminary in silico outcomes greatly supported these biochemical results, proposing that the three molecules potently strike the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's vital active sites. Moreover, the idealistic pharmacophoric hallmarks of CoViTris2022, Taroxaz-26, and ChloViD2022 molecules relatively make them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their highly flexible structures open for various kinds of chemical derivatization. To cut it short, the present pivotal findings of this comprehensive work disclosed the promising repositioning potentials of the three 2-aminothiadiazoles, CoViTris2022, Taroxaz-26, and ChloViD2022, to successfully interfere with the crucial biological interactions of the coronaviral-2 polymerase/exoribonuclease with the four principal RNA nucleotides, and, as a result, cure COVID-19 infection, encouraging us to rapidly start the three drugs' broad preclinical/clinical anti-COVID-19 evaluations.
Collapse
Affiliation(s)
- Amgad M Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura City, Mansoura, 35511, Dakahlia Governorate, Egypt.
- Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City, Dikernis, 35744, Dakahlia Governorate, Egypt.
| | - Wafa A Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, Nher Anile, Sudan.
| |
Collapse
|
2
|
Ramdani I, Bouazza B. Hydroxychloroquine and COVID-19 story: is the low-dose treatment the missing link? A comprehensive review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1181-1188. [PMID: 37639021 DOI: 10.1007/s00210-023-02688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Hydroxychloroquine (HCQ) has been repurposed and used for the treatment of COVID-19 patients; however, its efficacy remains controversial, maybe partly due to the dosage, ranging from 200 to 800 mg/day, reported in different studies. Indeed, HCQ low dose (≤ 2.4 g/5 days) showed a lower risk of side effects compared to high doses. In this study, we performed a systematic review and meta-analysis to investigate the effect of low-dose HCQ used alone on three outcomes including in-hospital mortality, the need for mechanical ventilation, and ICU admission in COVID-19 patients. A systematic review of English literature was conducted from January 2020 to April 2022, in PubMed, Cochrane Library, and Google Scholar. Studies reporting a dosage of 400 mg twice the first day, followed by 200 mg twice for four days were included. Pooled odds ratios and 95% confidence intervals were calculated using random-effects models. Eleven studies (12,503 patients) were retained in the quantitative analysis, four observational cohort studies, and seven RCTs. When pooling both observational and RCTs, low-dose HCQ was associated with decreased mortality (OR = 0.73, 95% CI: [0.55-0.97], I2 = 58%), but not with mechanical ventilation need (OR = 1.03, 95% CI: [0.56-1.89], I2 = 67%) and ICU admission rate (OR = 0.70, 95% CI: [0.42-1.17], I2 = 47%). However, no effect was observed when pooling only RCTs. Despite RCTs limitations, treatment with low-dose HCQ was not associated with improvement in mortality, mechanical ventilation need and ICU admission rate in COVID-19 patients.
Collapse
Affiliation(s)
- Idir Ramdani
- Ecology, Biotechnology and Health Lab. Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University of Tizi-Ouzou, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria
| | - Belaid Bouazza
- Ecology, Biotechnology and Health Lab. Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University of Tizi-Ouzou, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria.
- National Center for Biotechnology Research, Constantine, Algeria.
| |
Collapse
|
3
|
Rabie AM, Abdel-Dayem MA, Abdalla M. Promising Experimental Anti-SARS-CoV-2 Agent "SLL-0197800": The Prospective Universal Inhibitory Properties against the Coming Versions of the Coronavirus. ACS OMEGA 2023; 8:35538-35554. [PMID: 37810715 PMCID: PMC10552502 DOI: 10.1021/acsomega.2c08073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/22/2023] [Indexed: 10/10/2023]
Abstract
Isoquinoline derivatives having some nucleosidic structural features are considered as candidate choices for effective remediation of the different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their following disease, the coronavirus disease 2019 (COVID-19). SLL-0197800 is a recently discovered isoquinoline compound with potential strong universal anticoronaviral activities against SARS-CoV-2 and its previous strains. SLL-0197800 nonspecifically hits the main protease (Mpro) enzyme of the different coronaviruses. Herein in the present study, we tested the probability of the previous findings of this experimental agent to be extended to comprise any coronavirus through concurrently disrupting the mutable-less replication enzymes like the RNA-dependent RNA polymerase (RdRp) protein as well as the 3'-to-5' exoribonuclease (ExoN) protein. The in vitro anti-RdRp/ExoN assay revealed the potent inhibitory activities of SLL-0197800 on the coronaviral replication with minute values of anti-RdRp and anti-RdRp/ExoN EC50 (about 0.16 and 0.27 μM, respectively). The preliminary in silico outcomes significantly supported these biochemical findings. To put it simply, the present important results of these extension efforts greatly reinforce and extend the SLL-0197800's preceding findings, showing that the restraining/blocking actions (i.e., inhibitory activities) of this novel investigational anti-SARS-CoV-2 agent against the Mpro protein could be significantly extended against other copying and multiplication enzymes such as RdRp and ExoN, highlighting the potential use of SLL-0197800 against the coming versions of the homicidal coronavirus (if any), i.e., revealing the probable nonspecific anticoronaviral features and qualities of this golden experimental drug against nearly any coronaviral strain, for instance, SARS-CoV-3.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt
- Head
of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia
Governorate, Egypt
| | - Marwa A. Abdel-Dayem
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Horus University—Egypt (HUE), New Damietta 34518, Damietta Governorate, Egypt
| | - Mohnad Abdalla
- Key
Laboratory of Chemical Biology (Ministry of Education), Department
of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College
of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, PR China
| |
Collapse
|
4
|
Hassan AAA, Khalifa AA. Femoral head avascular necrosis in COVID-19 survivors: a systematic review. Rheumatol Int 2023; 43:1583-1595. [PMID: 37338665 PMCID: PMC10348993 DOI: 10.1007/s00296-023-05373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
The current systematic review aimed to document published cases of femoral head avascular necrosis (FHAVN) post-COVID-19, to report the COVID-19 disease characteristics and management patients received, and to evaluate how the FHAVN were diagnosed and treated among various reports. A systematic literature review was performed per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines through a comprehensive English literature search on January 2023 through four databases (Embase, PubMed, Cochrane Library, and Scopus), including studies reporting on FHAVN post-COVID-19. Fourteen articles were included, ten (71.4%) were case reports, and four (28.6%) case series reported on 104 patients having a mean age of 42.2 ± 11.7 (14:74) years, in which 182 hip joints were affected. In 13 reports, corticosteroids were used during the COVID-19 management plan for a mean of 24.8 ± 11 (7:42) days, with a mean prednisolone equivalent dose of 1238.5 ± 492.8 (100:3520) mg. A mean of 142.1 ± 107.6 (7:459) days passed between COVID-19 diagnosis and FHAVN detection, and most of the hips were stage II (70.1%), and concomitant septic arthritis was present in eight (4.4%) hips. Most hips (147, 80.8%) were treated non-surgically, of which 143 (78.6%) hips received medical treatment, while 35 (19.2%) hips were surgically managed, 16 (8.8%) core decompression, 13 (7.1%) primary THA, five (2.7%) staged THA and three (1.6%) had first stage THA (debridement and application of antibiotic-loaded cement spacer). The outcomes were acceptable as regards hip function and pain relief. Femoral head avascular necrosis post-COVID-19 infection is a real concern, primarily attributed to corticosteroid usage, besides other factors. Early suspicion and detection are mandatory, as conservative management lines are effective during early stages with acceptable outcomes. However, surgical intervention was required for progressive collapse or patients presented in the late stage.
Collapse
Affiliation(s)
| | - Ahmed A. Khalifa
- Orthopedic Department, Qena Faculty of Medicine, South Valley University, Kilo 6 Qena-Safaga Highway, Qena, Egypt
| |
Collapse
|
5
|
Abdalla M, Rabie AM. Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant. Comput Biol Chem 2023; 104:107768. [PMID: 36842392 PMCID: PMC9450471 DOI: 10.1016/j.compbiolchem.2022.107768] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023]
Abstract
Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, PR China.
| | - Amgad M. Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt,Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt,Correspondence to: 16 Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt
| |
Collapse
|
6
|
Eltayb WA, Abdalla M, Rabie AM. Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir "S-217622": A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species. ACS OMEGA 2023; 8:5234-5246. [PMID: 36798145 PMCID: PMC9897045 DOI: 10.1021/acsomega.2c03881] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 06/06/2023]
Abstract
Lately, nitrogenous heterocyclic antivirals, such as nucleoside-like compounds, oxadiazoles, thiadiazoles, triazoles, quinolines, and isoquinolines, topped the therapeutic scene as promising agents of choice for the treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their accompanying ailment, the coronavirus disease 2019 (COVID-19). At the same time, the continuous emergence of new strains of SARS-CoV-2, like the Omicron variant and its multiple sublineages, resulted in a new defiance in the enduring COVID-19 battle. Ensitrelvir (S-217622) is a newly discovered orally active noncovalent nonpeptidic agent with potential strong broad-spectrum anticoronaviral activities, exhibiting promising nanomolar potencies against the different SARS-CoV-2 variants. S-217622 effectively and nonspecifically hits the main protease (Mpro) enzyme of a broad scope of coronaviruses. Herein, in the present computational/biological study, we tried to extend these previous findings to prove the universal activities of this investigational agent against any coronavirus, irrespective of its type, through synchronously acting on most of its main unchanged replication enzymes/proteins, including (in addition to the Mpro), e.g., the highly conserved RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN). Biochemical evaluation proved, using the in vitro anti-RdRp/ExoN bioassay, that S-217622 can potently inhibit the replication of coronaviruses, including the new virulent strains of SARS-CoV-2, with extremely minute in vitro anti-RdRp and anti-RdRp/ExoN half-maximal effective concentration (EC50) values of 0.17 and 0.27 μM, respectively, transcending the anti-COVID-19 drug molnupiravir. The preliminary in silico results greatly supported these biochemical results, proposing that the S-217622 molecule strongly and stabilizingly strikes the key catalytic pockets of the SARS-CoV-2 RdRp's and ExoN's principal active sites predictably via the nucleoside analogism mode of anti-RNA action (since the S-217622 molecule can be considered as a uridine analog). Moreover, the idealistic druglikeness and pharmacokinetic characteristics of S-217622 make it ready for pharmaceutical formulation with the expected very good clinical behavior as a drug for the infections caused by coronaviruses, e.g., COVID-19. To cut it short, the current critical findings of this extension work significantly potentiate and extend the S-217622's previous in vitro/in vivo (preclinical) results since they showed that the striking inhibitory activities of this novel anti-SARS-CoV-2 agent on the Mpro could be extended to other replication enzymes like RdRp and ExoN, unveiling the possible universal use of the compound against the next versions of the virus (i.e., disclosing the nonspecific anticoronaviral properties of this compound against almost any coronavirus strain), e.g., SARS-CoV-3, and encouraging us to rapidly start the compound's vast clinical anti-COVID-19 evaluations.
Collapse
Affiliation(s)
- Wafa A. Eltayb
- Biotechnology
Department, Faculty of Science and Technology, Shendi University, Shendi 11111, River Nile State, Sudan
| | - Mohnad Abdalla
- Key
Laboratory of Chemical Biology (Ministry of Education), Department
of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College
of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, P. R. China
| | - Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt
- Drug
Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia
Governorate, Egypt
| |
Collapse
|
7
|
Rabie AM, Eltayb WA. Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/ In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage). ADVANCES IN REDOX RESEARCH 2023:100064. [PMID: 36776420 PMCID: PMC9907022 DOI: 10.1016/j.arres.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Currently, nitrogen-containing heterocyclic virucides take the lead as top options for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their escorting disease, the coronavirus disease 2019 (COVID-19). But unfortunately, the sudden emergence of a new strain of SARS-CoV-2, the Omicron variant and its lineages, complicated matters in the incessant COVID-19 battle. Goaling the two paramount coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) at synchronous times using single ligand is a quite effective new binary avenue to restrain SARS-CoV-2 reproduction and cease COVID-19 progression irrespective of the SARS-CoV-2 strain type, as RdRps and ExoNs are vastly conserved in all SARS-CoV-2 strains. The presented in-silico/in-vitro research winnowed our own small libraries of antioxidant nitrogenous heterocyclic compounds, inspecting for the utmost convenient drug candidates expectedly capable of effectively working through this dual tactic. Computational screening afforded three promising compounds of the antioxidant 1,3,4-thiadiazole class, which were named ChloViD2022, Taroxaz-26, and CoViTris2022. Subsequent biological examination, employing the in-vitro anti-RdRp/anti-ExoN and anti-SARS-CoV-2 assays, exclusively demonstrated that ChloViD2022, CoViTris2022, and Taroxaz-26 could efficiently block the replication of the new lineages of SARS-CoV-2 with considerably minute anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.18 and 0.44 μM for ChloViD2022, 0.22 and 0.72 μM for CoViTris2022, and 0.25 and 0.78 μM for Taroxaz-26, in the order, overtaking the standard anti-SARS-CoV-2 drug molnupiravir. These biochemical findings were optimally presupported by the results of the prior in-silico screening, suggesting that the three compounds might potently hit the catalytic active sites of the virus's RdRp and ExoN enzymes. Furthermore, the perfect pharmacophoric features of ChloViD2022, Taroxaz-26, and CoViTris2022 molecules make them typical dual inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures eligible for diverse forms of chemical modification. In sum, the current important results of this thorough research work exposed the interesting repurposing potential of the three 2-amino-1,3,4-thiadiazole ligands, ChloViD2022, Taroxaz-26, and CoViTris2022, to effectively conflict with the vital biointeractions between the coronavirus's polymerase/exoribonuclease and the four essential RNA nucleotides, and, accordingly, arrest COVID-19 disease, persuading the relevant investigators to quickly begin the three agents' comprehensive preclinical and clinical anti-COVID-19 assessments.
Collapse
Affiliation(s)
- Amgad M Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt
- Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt
| | - Wafa A Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi 11111, River Nile State, Sudan
| |
Collapse
|
8
|
Rabie AM, Abdalla M. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Med Chem Res 2022; 32:326-341. [PMID: 36593869 PMCID: PMC9797896 DOI: 10.1007/s00044-022-02970-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022]
Abstract
Mysterious evolution of a new strain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the Omicron variant, led to a new challenge in the persistent coronavirus disease 2019 (COVID-19) battle. Objecting the conserved SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) together using one ligand is a successful new tactic to stop SARS-CoV-2 multiplication and COVID-19 progression. The current comprehensive study investigated most nucleoside analogs (NAs) libraries, searching for the most ideal drug candidates expectedly able to act through this double tactic. Gradual computational filtration afforded six different promising NAs, riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir. Further biological assessment proved that riboprine and forodesine are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.21 and 0.45 μM for riboprine and about 0.23 and 0.70 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. These biochemical findings were supported by the prior in silico data. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading. These findings suggest that riboprine and forodesine could serve as prospective lead compounds against COVID-19. Graphical abstract.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate Egypt
- Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate Egypt
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012 PR China
| |
Collapse
|
9
|
Rabie AM, Abdalla M. Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: In Silico and In Vitro Studies. ACS BIO & MED CHEM AU 2022; 2:565-585. [PMID: 37582236 PMCID: PMC9631343 DOI: 10.1021/acsbiomedchemau.2c00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022]
Abstract
Lately, nucleos(t)ide antivirals topped the scene as top options for the treatment of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Targeting the two broadly conserved SARS-CoV-2 enzymes, RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN), together using only one shot is a very successful new tactic to stop SARS-CoV-2 multiplication irrespective of the SARS-CoV-2 variant type. Herein, the current studies investigated most nucleoside analogue (NA) libraries, searching for the ideal drug candidates expectedly able to act through this double tactic. Gradual computational filtration gave rise to six different promising NAs along with their corresponding triphosphate (TP) nucleotides. The subsequent biological assessment proved for the first time that, among the six NAs, riboprine and forodesine are able to hyperpotently inhibit the replication of the Omicron strain of SARS-CoV-2 with extremely low in vitro anti-RdRp, anti-ExoN, and anti-SARS-CoV-2 EC50 values of about 0.18, 0.28, and 0.40 μM for riboprine and about 0.20, 0.31, and 0.65 μM for forodesine, respectively, surpassing remdesivir and molnupiravir. The significant probability that both compounds may also act as prodrugs for their final TP nucleotides in vivo pushed us to examine the same activities for forodesine-TP and riboprine-TP. Both nucleotides similarly displayed very promising results, respectively, which are much better than those for the two reference TP nucleotides, GS-443902 and β-d-N4-hydroxycytidine 5'-TP (NHC-TP). The prior in silico data supported these biochemical findings, suggesting that riboprine and forodesine molecules and their expected active TP metabolites strongly hit the key catalytic pockets of the SARS-CoV-2 RdRp's and ExoN's main active sites. In brief, the current important results of this comprehensive study revealed the interesting repurposing potentials of, mainly, the two bioactive nucleosides forodesine and riboprine and their TP nucleotides to effectively shut down the polymerase/exoribonuclease-RNA nucleotide interactions of SARS-CoV-2 and consequently treat COVID-19 infections.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City35511,Mansoura, Dakahlia Governorate, Egypt
- Head
of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City35744,Dikernis, Dakahlia Governorate, Egypt
| | - Mohnad Abdalla
- Key
Laboratory of Chemical Biology (Ministry of Education), Department
of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College
of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province250012, P. R. China
| |
Collapse
|
10
|
Rabie AM, Abdalla M. A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study. ChemistrySelect 2022; 7:e202201912. [PMID: 36718467 PMCID: PMC9877610 DOI: 10.1002/slct.202201912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Given the rapid progression of the coronavirus disease 2019 (COVID-19) pandemic, an ultrafast response was urgently required to handle this major public crisis. To contain the pandemic, investments are required to develop diagnostic tests, prophylactic vaccines, and novel therapies. Lately, nucleoside analog (NA) antivirals topped the scene as top options for the treatment of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Meanwhile, the continuous generation of new lineages of the SARS-CoV-2 Omicron variant caused a new challenge in the persistent COVID-19 battle. Hitting the two crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) collectively together using only one single ligand is a very successful new approach to stop SARS-CoV-2 multiplication and combat COVID-19 irrespective of the SARS-CoV-2 variant type because RdRps and ExoNs are broadly conserved among all SARS-CoV-2 strains. Herein, the current comprehensive study investigated most NAs libraries, searching for the most ideal drug candidates expectedly able to perfectly act through this double tactic. Gradual computational filtration gave rise to six different promising NAs, which are riboprine, forodesine, tecadenoson, nelarabine, vidarabine, and maribavir, respectively. Further biological assessment proved for the first time, using the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that riboprine and forodesine, among all the six tested NAs, are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.22 and 0.49 μM for riboprine and about 0.25 and 0.73 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. The prior in silico data supported these biochemical findings, suggesting that riboprine and forodesine molecules strongly hit the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's main active sites. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures open for diverse types of chemical derivatization. In Brief, the current important results of this comprehensive study revealed the interesting repurposing potentials of, mainly, the two nucleosides riboprine and forodesine to effectively shut down the polymerase/exoribonuclease-RNA nucleotides interactions of the SARS-CoV-2 Omicron variant and consequently treat COVID-19 infections, motivating us to rapidly begin the two drugs' broad preclinical/clinical anti-COVID-19 bioevaluations, hoping to combine both drugs soon in the COVID-19 treatment protocols.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD)35511MansouraDakahlia GovernorateEgypt,Head of Drug Discovery & Clinical Research Department Dikernis General Hospital (DGH)Magliss El-Madina Street Dikernis35744DikernisDakahlia GovernorateEgypt
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education)Department of PharmaceuticsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Cultural West RoadShandong Province250012PR China
| |
Collapse
|
11
|
Di Stefano L, Ogburn EL, Ram M, Scharfstein DO, Li T, Khanal P, Baksh SN, McBee N, Gruber J, Gildea MR, Clark MR, Goldenberg NA, Bennani Y, Brown SM, Buckel WR, Clement ME, Mulligan MJ, O’Halloran JA, Rauseo AM, Self WH, Semler MW, Seto T, Stout JE, Ulrich RJ, Victory J, Bierer BE, Hanley DF, Freilich D. Hydroxychloroquine/chloroquine for the treatment of hospitalized patients with COVID-19: An individual participant data meta-analysis. PLoS One 2022; 17:e0273526. [PMID: 36173983 PMCID: PMC9521809 DOI: 10.1371/journal.pone.0273526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Results from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. METHODS We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. RESULTS Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). CONCLUSIONS The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.
Collapse
Affiliation(s)
- Leon Di Stefano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elizabeth L. Ogburn
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel O. Scharfstein
- Division of Biostatistics, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tianjing Li
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Preeti Khanal
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sheriza N. Baksh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nichol McBee
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua Gruber
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marianne R. Gildea
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Megan R. Clark
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Johns Hopkins All Children’s Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Yussef Bennani
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- University Medical Center, New Orleans, New Orleans, Louisiana, United States of America
| | - Samuel M. Brown
- Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, Utah, United States of America
- University of Utah, Salt Lake City, Utah, United States of America
| | - Whitney R. Buckel
- Pharmacy Services, Intermountain Healthcare, Murray, Utah, United States of America
| | - Meredith E. Clement
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- University Medical Center, New Orleans, New Orleans, Louisiana, United States of America
| | - Mark J. Mulligan
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York, United States of America
- Vaccine Center, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Adriana M. Rauseo
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthew W. Semler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Todd Seto
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Jason E. Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jennifer Victory
- Bassett Research Institute, Bassett Medical Center, Cooperstown, New York, United States of America
| | - Barbara E. Bierer
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Freilich
- Department of Internal Medicine, Division of Infectious Diseases, Bassett Medical Center, Cooperstown, New York, United States of America
| | | |
Collapse
|
12
|
Di Stefano L, Ogburn EL, Ram M, Scharfstein DO, Li T, Khanal P, Baksh SN, McBee N, Gruber J, Gildea MR, Clark MR, Goldenberg NA, Bennani Y, Brown SM, Buckel WR, Clement ME, Mulligan MJ, O’Halloran JA, Rauseo AM, Self WH, Semler MW, Seto T, Stout JE, Ulrich RJ, Victory J, Bierer BE, Hanley DF, Freilich D. Hydroxychloroquine/chloroquine for the treatment of hospitalized patients with COVID-19: An individual participant data meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.10.22269008. [PMID: 35043124 PMCID: PMC8764733 DOI: 10.1101/2022.01.10.22269008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Results from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. Methods We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. Results Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). Conclusions The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.
Collapse
Affiliation(s)
- Leon Di Stefano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth L. Ogburn
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel O. Scharfstein
- Division of Biostatistics, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianjing Li
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Preeti Khanal
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sheriza N. Baksh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nichol McBee
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joshua Gruber
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marianne R. Gildea
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
- Current address: FHI 360, Durham, North Carolina
| | - Megan R. Clark
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Johns Hopkins All Children’s Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| | - Yussef Bennani
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
- University Medical Center, New Orleans, New Orleans, Louisiana
| | - Samuel M. Brown
- Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, Utah
- University of Utah, Salt Lake City, Utah
| | | | - Meredith E. Clement
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
- University Medical Center, New Orleans, New Orleans, Louisiana
| | - Mark J. Mulligan
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York
- Vaccine Center, New York University Grossman School of Medicine, New York, New York
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Adriana M. Rauseo
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew W. Semler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd Seto
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| | - Jason E. Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York
| | - Jennifer Victory
- Bassett Research Institute, Bassett Medical Center, Cooperstown, New York
| | - Barbara E. Bierer
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Freilich
- Department of Internal Medicine, Division of Infectious Diseases, Bassett Medical Center, Cooperstown, New York
| |
Collapse
|
13
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
14
|
Rabie AM. Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease. ACS OMEGA 2022; 7:21385-21396. [PMID: 35785294 PMCID: PMC9244909 DOI: 10.1021/acsomega.1c07095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
Abstract
![]()
Analogues and derivatives
of natural nucleosides/nucleotides are
considered among the most successful bioactive species of drug-like
compounds in modern medicinal chemistry, as they are well recognized
for their diverse and efficient pharmacological activities in humans,
especially as antivirals and antitumors. Coronavirus disease 2019
(COVID-19) is still almost incurable, with its infectious viral microbe,
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
continuing to wreak devastation around the world. This global crisis
pushed all involved scientists, including drug discoverers and clinical
researchers, to try to find an effective and broad-spectrum anti-COVID-19
drug. Didanosine (2′,3′-dideoxyinosine, DDI) is a synthetic
inosine/adenosine/guanosine analogue and highly active antiretroviral
therapeutic agent used for the treatment of human immunodeficiency
virus infection and acquired immunodeficiency syndrome (HIV/AIDS).
This potent reverse-transcriptase inhibitor is characterized by proven
strong pharmacological effects against the viral genome, which may
successfully take part in the effective treatment of SARS-CoV-2/COVID-19.
Additionally, targeting the pivotal SARS-CoV-2 replication enzyme,
RNA-dependent RNA polymerase (RdRp), is a very successful tactic to
combat COVID-19 irrespective of the SARS-CoV-2 variant type because
RdRps are broadly conserved among all SARS-CoV-2 strains. Herein,
the current study proved for the first time, using the in
vitro antiviral evaluation, that DDI is capable of potently
inhibiting the replication of the novel virulent progenies of SARS-CoV-2
with quite tiny in vitro anti-SARS-CoV-2 and anti-RdRp
EC50 values of around 3.1 and 0.19 μM, respectively,
surpassing remdesivir together with its active metabolite (GS-441524).
Thereafter, the in silico computational interpretation
of the biological results supported that DDI strongly targets the
key pocket of the SARS-CoV-2 RdRp main catalytic active site. The
ideal pharmacophoric characteristics of the ligand DDI make it a typical
inhibiting agent of SARS-CoV-2 multiplication processes (including
high-fidelity proofreading), with its elastic structure open for many
kinds of derivatization. In brief, the present results further uphold
and propose the repurposing potentials of DDI against the different
types of COVID-19 and convincingly motivate us to quickly launch its
extensive preclinical/clinical pharmacological evaluations, hoping
to combine it in the COVID-19 therapeutic protocols soon.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura 35511, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
15
|
Zhao Y, Zhang J, Zheng K, Thai S, Simpson RJ, Kinlaw AC, Xu Y, Wei J, Cui X, Buse JB, Stürmer T, Wang T. Serious Cardiovascular Adverse Events Associated with Hydroxychloroquine/Chloroquine Alone or with Azithromycin in Patients with COVID-19: A Pharmacovigilance Analysis of the FDA Adverse Event Reporting System (FAERS). Drugs Real World Outcomes 2022; 9:231-241. [PMID: 35386046 PMCID: PMC8985751 DOI: 10.1007/s40801-022-00300-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The use of hydroxychloroquine or chloroquine (HCQ/CQ) as monotherapy or combined with azithromycin for the treatment of coronavirus disease 2019 (COVID-19) may increase the risk of serious cardiovascular adverse events (SCAEs). OBJECTIVE Our objective was to describe and evaluate the risk of SCAEs with HCQ/CQ as monotherapy or combined with azithromycin compared with that for therapeutic alternatives. METHODS We performed a disproportionality analysis and descriptive case series using the US FDA Adverse Event Reporting System. RESULTS Compared with remdesivir, HCQ/CQ was associated with increased reporting of SCAEs (reporting odds ratio [ROR] 2.1; 95% confidence interval [CI] 1.8-2.5), torsade de pointes (TdP)/QTc prolongation (ROR 35.4; 95% CI 19.4-64.5), and ventricular arrhythmia (ROR 2.5; 95% CI 1.6-3.9); similar results were found in comparison with other therapeutic alternatives. Compared with lopinavir/ritonavir, HCQ/CQ was associated with increased reporting of ventricular arrhythmia (ROR 10.5; 95% CI 3.3-33.4); RORs were larger when HCQ/CQ was used in combination with azithromycin. In 2020, 312 of the 575 reports of SCAEs listed concomitant use of HCQ/CQ and azithromycin, including QTc prolongation (61.4%), ventricular arrhythmia (12.0%), atrial fibrillation (8.2%), TdP (4.9%), and cardiac arrest (4.4%); 88 (15.3%) cases resulted in hospitalization and 79 (13.7%) resulted in death. In total, 122 fatal QTc prolongation-related cardiovascular reports were associated with 1.4 times higher odds of reported death than those induced by SCAEs; 87 patients received more than one QTc-prolonging agent. CONCLUSIONS Patients treated with HCQ/CQ monotherapy or HCQ/CQ + azithromycin may be at increased risk of SCAEs, TdP/QTc prolongation, and ventricular arrhythmia. Cardiovascular risks need to be considered when evaluating the benefit/harm balance of treatment with HCQ/CQ, especially with the concurrent use of QTc-prolonging agents and cytochrome P450 3A4 inhibitors when treating COVID-19.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingru Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, USA
| | - Kai Zheng
- Department of Pharmacy, Beijing Cancer Hospital, Beijing, China
| | - Sydney Thai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2101 McGavran-Greenberg Hall, Campus Box 7453, Chapel Hill, 27599, USA
| | - Ross J Simpson
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Alan C Kinlaw
- Department of Pharmaceutical Outcomes and Policy, University of North Carolina School of Pharmacy, Chapel Hill, USA
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yang Xu
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Jingkai Wei
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Xiangli Cui
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - John B Buse
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, USA
| | - Til Stürmer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2101 McGavran-Greenberg Hall, Campus Box 7453, Chapel Hill, 27599, USA
| | - Tiansheng Wang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2101 McGavran-Greenberg Hall, Campus Box 7453, Chapel Hill, 27599, USA.
| |
Collapse
|
16
|
Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Can anti-parasitic drugs help control COVID-19? Future Virol 2022. [PMID: 35359702 PMCID: PMC8940209 DOI: 10.2217/fvl-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Novel COVID-19 is a public health emergency that poses a serious threat to people worldwide. Given the virus spreading so quickly, novel antiviral medications are desperately needed. Repurposing existing drugs is the first strategy. Anti-parasitic drugs were among the first to be considered as a potential treatment option for this disease. Even though many papers have discussed the efficacy of various anti-parasitic drugs in treating COVID-19 separately, so far, no single study comprehensively discussed these drugs. This study reviews some anti-parasitic recommended drugs to treat COVID-19, in terms of function and in vitro as well as clinical results. Finally, we briefly review the advanced techniques, such as artificial intelligence, that have been used to find effective drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gharari
- Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,Bio Science & Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Somayeh Matin
- Department of Internal Medicine, Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
17
|
Combination of doxycycline, streptomycin and hydroxychloroquine for short-course treatment of brucellosis: a single-blind randomized clinical trial. Infection 2022; 50:1267-1271. [PMID: 35353333 PMCID: PMC8966606 DOI: 10.1007/s15010-022-01806-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/13/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Previous studies have shown the effect of hydroxychloroquine in the treatment and prevention of recurrence of brucellosis. The aim of this study was to compare the effect of 4 and 6 week regimen containing hydroxychloroquine in the treatment of brucellosis. METHODS In a single-blind randomized clinical trial, 92 patients with acute brucellosis were randomly divided in two treatment groups who received a triple drug regimen including doxycycline, streptomycin, and hydroxychloroquine (DSH] for 4 and 6 weeks. All patients were followed up for up to 6 months. Response to treatment, relapse rate, complications, and results of serological tests were compared in both groups. Data were analyzed by SPSS software version 16. RESULTS Of the 92 patients studied, 46 received a 4 week course and 46 received a 6 week course of therapy. There were no significant differences between the two groups in terms of age and sex distribution. The response rate, treatment failure, and relapse in the 4 week treatment group were 82.6%, 17.3%, and 7.89%, respectively, and in the 6 week treatment group were 91.3%, 8.7%, and 9.52%. The frequency of negative 2ME test at 24 weeks after treatment was 11.1% in the 4 week group and 8.7% in the 6 week group. No significant differences were found between the two groups in terms of response to treatment, treatment failure, relapse, and negative 2ME test. CONCLUSION The 4 week and 6 week courses of the combination of DSH are equally effective in treating brucellosis. We recommend further studies to support the use of the short-course 4 week regimen for the treatment of uncomplicated brucellosis.
Collapse
|
18
|
Zhao F, Wang J, Wang Q, Hou Z, Zhang Y, Li X, Wu Q, Chen H. Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration. Exp Anim 2022; 71:316-328. [PMID: 35197405 PMCID: PMC9388344 DOI: 10.1538/expanim.21-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages lung epithelial stem/progenitor cells. Ideal anti-SARS-CoV-2 drug candidates should be screened to prevent secondary injury to the lungs. Here, we propose that in vitro three-dimensional organoid and lung injury repair mouse models are powerful models for the screening antiviral drugs. Lung epithelial progenitor cells, including airway club cells and alveolar type 2 (AT2) cells, were co-cultured with supportive fibroblast cells in transwell inserts. The organoid model was used to evaluate the possible effects of hydroxychloroquine, which is administered as a symptomatic therapy to COVID-19 patients, on the function of mouse lung stem/progenitor cells. Hydroxychloroquine was observed to promote the self-renewal of club cells and differentiation of ciliated and goblet cells in vitro. Additionally, it inhibited the self-renewal ability of AT2 cells in vitro. Naphthalene- or bleomycin-induced lung injury repair mouse models were used to investigate the in vivo effects of hydroxychloroquine on the regeneration of club and AT2 cells, respectively. The naphthalene model indicated that the proliferative ability and differentiation potential of club cells were unaffected in the presence of hydroxychloroquine. The bleomycin model suggested that hydroxychloroquine had a limited effect on the proliferation and differentiation abilities of AT2 cells. These findings suggest that hydroxychloroquine has limited effects on the regenerative ability of epithelial stem/progenitor cells. Thus, stem/progenitor cell-derived organoid technology and lung epithelial injury repair mouse models provide a powerful platform for drug screening, which could possibly help end the pandemic.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases
| | - Zhilli Hou
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases
| | - Yingchao Zhang
- Department of Pulmonary and Critical Care Medicine, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University
| | - Xue Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University.,Tianjin Key Laboratory of Lung Regenerative Medicine
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases.,Tianjin Key Laboratory of Lung Regenerative Medicine
| |
Collapse
|
19
|
Kolli AR, Semren TZ, Bovard D, Majeed S, van der Toorn M, Scheuner S, Guy PA, Kuczaj A, Mazurov A, Frentzel S, Calvino-Martin F, Ivanov NV, O'Mullane J, Peitsch MC, Hoeng J. Pulmonary Delivery of Aerosolized Chloroquine and Hydroxychloroquine to Treat COVID-19: In Vitro Experimentation to Human Dosing Predictions. AAPS J 2022; 24:33. [PMID: 35132508 PMCID: PMC8821864 DOI: 10.1208/s12248-021-00666-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue. In this work, inhalable formulations for thermal aerosolization of chloroquine and hydroxychloroquine were developed, and their physicochemical properties were characterized. Thermal aerosolization of 40 mg/mL chloroquine and 100 mg/mL hydroxychloroquine formulations delivered respirable aerosol particle sizes with 0.15 and 0.33 mg per 55 mL puff, respectively. In vitro toxicity was evaluated by exposing primary human bronchial epithelial cells to aerosol generated from Vitrocell. An in vitro exposure to 7.24 μg of chloroquine or 7.99 μg hydroxychloroquine showed no significant changes in cilia beating, transepithelial electrical resistance, and cell viability. The pharmacokinetics of inhaled aerosols was predicted by developing a physiologically based pharmacokinetic model that included a detailed species-specific respiratory tract physiology and lysosomal trapping. Based on the model predictions, inhaling emitted doses comprising 1.5 mg of chloroquine or 3.3 mg hydroxychloroquine three times a day may yield therapeutically effective concentrations in the lung. Inhalation of higher doses further increased effective concentrations in the lung while maintaining lower systemic concentrations. Given the theoretically favorable risk/benefit ratio, the clinical significance for pulmonary delivery of aerosolized chloroquine and hydroxychloroquine to treat COVID-19 needs to be established in rigorous safety and efficacy studies. Graphical abstract.
Collapse
Affiliation(s)
- Aditya R Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Tanja Zivkovic Semren
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Shoaib Majeed
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Sophie Scheuner
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Philippe A Guy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Arkadiusz Kuczaj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Anatoly Mazurov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Florian Calvino-Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - John O'Mullane
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
20
|
Rabie AM. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS OMEGA 2022; 7:2960-2969. [PMID: 35071937 PMCID: PMC8767658 DOI: 10.1021/acsomega.1c05998] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/18/2023]
Abstract
![]()
Nucleoside analogues
are among the most successful bioactive classes
of druglike compounds in pharmaceutical chemistry as they are well-known
for their numerous effective bioactivities in humans, especially as
antiviral and anticancer agents. Coronavirus disease 2019 (COVID-19)
is still untreatable, with its causing virus, the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), continuing to wreak havoc on
the ground everywhere. This complicated international situation urged
all concerned scientists, including medicinal chemists and drug discoverers,
to search for a potent anti-COVID-19 drug. Cordycepin (3′-deoxyadenosine)
is a known natural adenosine analogue of fungal origin, which could
also be synthetically produced. This bioactive phytochemical compound
is characterized by several proven strong pharmacological actions
that may effectively contribute to the comprehensive treatment of
COVID-19, with the antiviral activities being the leading ones. Some
new studies predicted the possible inhibitory affinities of cordycepin
against the principal SARS-CoV-2 protein targets (e.g., SARS-CoV-2 spike (S) protein, main protease (Mpro) enzyme,
and RNA-dependent RNA polymerase (RdRp) enzyme) based on the computational
approach. Interestingly, the current research showed, for the first
time, that cordycepin is able to potently inhibit the multiplication
of the new resistant strains of SARS-CoV-2 with a very minute in vitro anti-SARS-CoV-2 EC50 of about 2 μM,
edging over both remdesivir and its active metabolite GS-441524. The
ideal pharmacophoric features of the cordycepin molecule render it
a typical inhibitor of SARS-CoV-2 replication, with its flexible structure
open for most types of derivatization in the future. Briefly, the
current findings further support and suggest the repurposing possibility
of cordycepin against COVID-19 and greatly encourage us to confidently
and rapidly begin its preclinical/clinical evaluations for the comprehensive
treatment of COVID-19.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura 35511, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
21
|
Rai D, Manjhi P. Mild COVID- 19 Infection: Do we have any Effective Drugs? A Narrative Review. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_131_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100055. [PMID: 34870153 PMCID: PMC8433057 DOI: 10.1016/j.crphar.2021.100055] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has undoubtedly become a global crisis. Consequently, discovery and identification of new or known potential drug candidates to solve the health problems caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become an urgent necessity. This current research study sheds light on the possible direct repurposing of the antirheumatic drug teriflunomide to act as an effective and potent anti-SARS-CoV-2 agent. Herein, an interesting computational molecular docking study of teriflunomide, to investigate and evaluate its potential inhibitory activities on the novel coronaviral-2 RNA-dependent RNA polymerase (nCoV-RdRp) protein, was reported. The docking procedures were accurately carried out on nCoV-RdRp (with/without RNA) using the COVID-19 Docking Server, through adjusting it on the small molecule docking mode. Remdesivir and its active metabolite (GS-441524) were used as the active references for the comparison and evaluation purpose. Interestingly, the computational docking analysis of the best inhibitory binding mode of teriflunomide in the binding pocket of the active site of the SARS-CoV-2 RdRp revealed that teriflunomide may exhibit significantly stronger inhibitory binding interactions and better inhibitory binding affinities (teriflunomide has considerably lower binding energies of -9.70 and -7.80 kcal/mol with RdRp-RNA and RdRp alone, respectively) than both references. It was previously reported that teriflunomide strongly inhibits the viral replication and reproduction through two mechanisms of action, thus the results obtained in the present study surprisingly support the double mode of antiviral action of this antirheumatic ligand. In conclusion, the current research paved the way to practically prove the hypothetical theory of the promising abilities of teriflunomide to successfully attack the SARS-CoV-2 particles and inhibit their replication in a triple mode of action through integrating the newly-discovered nCoV-RdRp-inhibiting properties with the previously-known two anticoronaviral mechanisms of action. Based on the previous interesting facts and results, the triple SARS-CoV-2/sextet COVID-19 attacker teriflunomide can further undergo in vitro/in vivo anti-COVID-19 assays together with preclinical/clinical studies and trials in an attempt to evaluate and prove its comprehensive pharmacological activities against the different SARS-CoV-2 strains to be effectively used in COVID-19 therapy in the very near future.
Collapse
|
23
|
da Rocha JEB, Othman H, Tiemessen CT, Botha G, Ramsay M, Masimirembwa C, Adebamowo C, Choudhury A, Brandenburg JT, Matshaba M, Simo G, Gamo FJ, Hazelhurst S. G6PD distribution in sub-Saharan Africa and potential risks of using chloroquine/hydroxychloroquine based treatments for COVID-19. THE PHARMACOGENOMICS JOURNAL 2021; 21:649-656. [PMID: 34302047 PMCID: PMC8299738 DOI: 10.1038/s41397-021-00242-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Chloroquine/hydroxychloroquine have been proposed as potential treatments for COVID-19. These drugs have warning labels for use in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Analysis of whole genome sequence data of 458 individuals from sub-Saharan Africa showed significant G6PD variation across the continent. We identified nine variants, of which four are potentially deleterious to G6PD function, and one (rs1050828) that is known to cause G6PD deficiency. We supplemented data for the rs1050828 variant with genotype array data from over 11,000 Africans. Although this variant is common in Africans overall, large allele frequency differences exist between sub-populations. African sub-populations in the same country can show significant differences in allele frequency (e.g. 16.0% in Tsonga vs 0.8% in Xhosa, both in South Africa, p = 2.4 × 10-3). The high prevalence of variants in the G6PD gene found in this analysis suggests that it may be a significant interaction factor in clinical trials of chloroquine and hydroxychloroquine for treatment of COVID-19 in Africans.
Collapse
Affiliation(s)
- Jorge E B da Rocha
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Collen Masimirembwa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Adebamowo
- Institute for Human Virology Abuja, Abuja, Nigeria
- Institute of Human Virology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Center of Excellence, Gaborone, Botswana
- Baylor College of Medicine, Houston, TX, USA
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
24
|
Choudhury M, Dhanabalan AK, Goswami N. Understanding the binding mechanism for potential inhibition of SARS-CoV-2 Mpro and exploring the modes of ACE2 inhibition by hydroxychloroquine. J Cell Biochem 2021; 123:347-358. [PMID: 34741481 PMCID: PMC8657325 DOI: 10.1002/jcb.30174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022]
Abstract
As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2]) is responsible for the associated coronavirus disease (COVID‐19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID‐19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS‐CoV‐2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS‐CoV‐2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.
Collapse
Affiliation(s)
- Manisha Choudhury
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Anantha K Dhanabalan
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Nabajyoti Goswami
- Bioinformatics Infrastructure Facility, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| |
Collapse
|
25
|
Durdagi S, Dağ Ç, Dogan B, Yigin M, Avsar T, Buyukdag C, Erol I, Ertem FB, Calis S, Yildirim G, Orhan MD, Guven O, Aksoydan B, Destan E, Sahin K, Besler SO, Oktay L, Shafiei A, Tolu I, Ayan E, Yuksel B, Peksen AB, Gocenler O, Yucel AD, Can O, Ozabrahamyan S, Olkan A, Erdemoglu E, Aksit F, Tanisali G, Yefanov OM, Barty A, Tolstikova A, Ketawala GK, Botha S, Dao EH, Hayes B, Liang M, Seaberg MH, Hunter MS, Batyuk A, Mariani V, Su Z, Poitevin F, Yoon CH, Kupitz C, Sierra RG, Snell EH, DeMirci H. Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing. Structure 2021; 29:1382-1396.e6. [PMID: 34403647 PMCID: PMC8367086 DOI: 10.1016/j.str.2021.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has resulted in 198 million reported infections and more than 4 million deaths as of July 2021 (covid19.who.int). Research to identify effective therapies for COVID-19 includes: (1) designing a vaccine as future protection; (2) de novo drug discovery; and (3) identifying existing drugs to repurpose them as effective and immediate treatments. To assist in drug repurposing and design, we determine two apo structures of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease at ambient temperature by serial femtosecond X-ray crystallography. We employ detailed molecular simulations of selected known main protease inhibitors with the structures and compare binding modes and energies. The combined structural and molecular modeling studies not only reveal the dynamics of small molecules targeting the main protease but also provide invaluable opportunities for drug repurposing and structure-based drug design strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey.
| | - Çağdaş Dağ
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Merve Yigin
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Cengizhan Buyukdag
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey; Department of Chemistry, Gebze Technical University, Kocaeli 41400, Turkey
| | - Fatma Betul Ertem
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Seyma Calis
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey; Department of Molecular Biology - Genetics and Biotechnology, Istanbul Technical University, Istanbul 34469, Turkey
| | - Gunseli Yildirim
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Muge D Orhan
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Omur Guven
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey; Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul 34734, Turkey
| | - Ebru Destan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Kader Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Sabri O Besler
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Lalehan Oktay
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Alaleh Shafiei
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ilayda Tolu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Esra Ayan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ayse B Peksen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Oktay Gocenler
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ali D Yucel
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ozgur Can
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serena Ozabrahamyan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Alpsu Olkan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey; School of Medicine, Bahcesehir University, Istanbul 34734, Turkey
| | - Ece Erdemoglu
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey; Faculty of Medicine, Mersin University, Mersin 33070, Turkey
| | - Fulya Aksit
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Gokhan Tanisali
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | | | - Anton Barty
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22607, Germany
| | | | - Gihan K Ketawala
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - E Han Dao
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94025, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alex Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Frederic Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, University at Buffalo, 700 Ellicott St, Buffalo, NY, USA; Materials Design and Innovation, SUNY at Buffalo, 700 Ellicott St., Buffalo, NY, USA
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey; Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94025, USA; Koc University Isbank Center for Infectious Diseases (KUISCID), 34450, Istanbul, Turkey.
| |
Collapse
|
26
|
Vanden Eynde JJ. COVID-19: Failure of the DisCoVeRy Clinical Trial, and Now-New Hopes? Pharmaceuticals (Basel) 2021; 14:664. [PMID: 34358090 PMCID: PMC8308776 DOI: 10.3390/ph14070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
The DisCoVeRy clinical trial aimed at the evaluation of four treatments for patients suffering from severe to critical COVID-19: Hydroxychloroquine, eventually associated with azithromycin; the combination lopinavir/ritonavir; the combination with the addition of interferon β-1a; remdesivir. The trial was discontinued due to the lack of positive results. Meanwhile, many other potential options have been considered either to target the virus itself, the interactions with the host cells, or the cytokine storm frequently observed during the infection. Several of those options are briefly reviewed. They include vaccines, small molecules, antibodies, and stem cells.
Collapse
Affiliation(s)
- Jean Jacques Vanden Eynde
- Formerly Head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
| |
Collapse
|
27
|
Abstract
‘Long COVID-19’ can affect different body systems. At present, avascular necrosis (AVN) as a sequalae of ‘long COVID-19’ has yet not been documented. By large-scale use of life-saving corticosteroids in COVID-19 cases, we anticipate that there will be a resurgence of AVN cases. We report a series of three cases in which patients developed AVN of the femoral head after being treated for COVID-19 infection. The mean dose of prednisolone used in these cases was 758 mg (400–1250 mg), which is less than the mean cumulative dose of around 2000 mg steroid, documented in the literature as causative for AVN. Patients were symptomatic and developed early AVN presentation at a mean of 58 days after COVID-19 diagnosis as compared with the literature which shows that it generally takes 6 months to 1 year to develop AVN post steroid exposure.
Collapse
Affiliation(s)
- Sanjay R Agarwala
- Orthopaedics, PD Hinduja National Hospital, Mumbai, Maharashtra, India
| | - Mayank Vijayvargiya
- Orthopaedics, PD Hinduja National Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Prashant Pandey
- Orthopaedics, PD Hinduja National Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
28
|
Mokhtari M, Mohraz M, Gouya MM, Namdari Tabar H, Tabrizi JS, Tayeri K, Aghamohamadi S, Rajabpoor Z, Karami M, Raeisi A, Rahmani H, Khalili H. Clinical outcomes of patients with mild COVID-19 following treatment with hydroxychloroquine in an outpatient setting. Int Immunopharmacol 2021; 96:107636. [PMID: 34015598 PMCID: PMC8023208 DOI: 10.1016/j.intimp.2021.107636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
The role of hydroxychloroquine (HCQ) in early outpatient management of mild coronavirus disease 2019 (COVID-19) needs further investigation. This study was a multicenter, population-based national retrospective-cohort investigation of 28,759 adults with mild COVID-19 seen at the network of Comprehensive Healthcare Centers (CHC) between March and September 2020 throughout Iran. The baseline characteristics and outcome variables were extracted from the national integrated health system database. A total of 7295 (25.37%) patients who presented with mild COVID-19 within 3-7 days of symptoms onset received HCQ (400 mg twice daily on day 1 followed by 200 mg twice daily for the next four days and were then followed for 14 days). The main outcome measures were hospitalization or death for six months follow-up. COVID-19-related hospitalizations or deaths occurred in 523 (7.17%) and 27 (0.37%) respectively, in HCQ recipients and 2382 (11.10%) and 287 (1.34%) respectively, in non-recipients. The odds of hospitalization or death was reduced by 38% (odds ratio [OR] = 0.62; 95% confidence interval [CI]: 0.56-0.68, p = < 0.001) and 73% (OR = 0.27; 95% CI: 0.18-0.41, p = < 0.001) in HCQ recipients and non-recipients. These effects were maintained after adjusting for age, comorbidities, and diagnostic modality. No serious HCQ-related adverse drug reactions were reported. In our large outpatient national cohort of adults with mild COVID-19 disease who were given HCQ early in the course of the disease, the odds of hospitalization or death was reduced significantly regardless of age or comorbidities.
Collapse
Affiliation(s)
- Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Minoo Mohraz
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Gouya
- Center for Communicable Disease Control (CDC), IHR National Focal Point, Ministry of Health & Medical Education, Tehran, Iran
| | - Hengameh Namdari Tabar
- Ministry of Health and Medical Education, AIDS/STI Control Dep. Ministry of Health and Medical Education, Eyvanak Street, Shahrak-e-Gharb, Tehran, Iran
| | | | - Katayoun Tayeri
- Ministry of Health and Medical Education, Tehran Iran, Eyvanak Street, Shahrak-e-Gharb, Tehran, Iran
| | - Saeide Aghamohamadi
- Health Service Management, Deputy of Health, Ministry of Health and Medical Education, Tehran, Iran.
| | - Zahra Rajabpoor
- Ministry of Health and Medical Education, Eyvanak Street, Shahrak-e-Gharb, Tehran, Iran
| | - Manoochehr Karami
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Raeisi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz Iran, Deputy of Health, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Rahmani
- Department of Pharmacotherapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khalili
- Department of Pharmacotherapy, Tehran University of Medical Sciences, Postal Code: 1417614411, P.O. Box: 14155/6451, Tehran, Iran.
| |
Collapse
|
29
|
Tang W, Khalili L, Giles J, Gartshteyn Y, Kapoor T, Guo C, Chen T, Theodore D, Askanase A. The Rise and Fall of Hydroxychloroquine with the COVID-19 Pandemic: Narrative Review of Selected Data. Rheumatol Ther 2021; 8:681-691. [PMID: 34028704 PMCID: PMC8142615 DOI: 10.1007/s40744-021-00315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Since the first outbreak of Coronavirus Disease-2019 (COVID-19) in January 2020, the medical community has been pursuing effective countermeasures. Early in the pandemic, several small clinical and in vitro studies from France and China reported on the efficacy of chloroquine (CQ) and hydroxychloroquine (HCQ) against SARS-CoV-2 infections, which generated global attention towards these decades-old antimalarials (AM) and heralded numerous studies investigating their role in treating COVID-19. Despite several observational studies early in the pandemic affirming their beneficial role in treating COVID-19, 12 clinical studies reported no mortality benefits for CQ/HCQ in COVID-19 patients. The excitement over CQ/HCQ was ultimately quenched after three large randomized clinical trials, the COALITION-I trial in Brazil, the RECOVERY trial in the United Kingdom (UK), and the SOLIDARITY trial from World Health Organization (WHO) consistently reported no beneficial effects for CQ/HCQ in hospitalized COVID-19 patients. While initial studies suggested that CQ/HCQ might have a role in treating the early phases of infection, the results from three rigorously designed studies investigating their role in non-hospitalized COVID-19 patients were equivocal and inconsistent. Here we review the major social events related to the therapeutic use of CQ/HCQ in COVID-19, and the data from selected clinical studies evaluating their efficacy in hospitalized and non-hospitalized COVID-19 patients along with the major safety concerns.
Collapse
Affiliation(s)
- Wei Tang
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Leila Khalili
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Jon Giles
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Teja Kapoor
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Cathy Guo
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Tommy Chen
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA
| | - Deborah Theodore
- Division of Infectious Disease, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anca Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, 2nd Floor, New York, NY, 10032, USA.
| |
Collapse
|
30
|
Iftimie S, López-Azcona AF, Vallverdú I, Hernández-Flix S, de Febrer G, Parra S, Hernández-Aguilera A, Riu F, Joven J, Andreychuk N, Baiges-Gaya G, Ballester F, Benavent M, Burdeos J, Català A, Castañé È, Castañé H, Colom J, Feliu M, Gabaldó X, Garrido D, Garrido P, Gil J, Guelbenzu P, Lozano C, Marimon F, Pardo P, Pujol I, Rabassa A, Revuelta L, Ríos M, Rius-Gordillo N, Rodríguez-Tomàs E, Rojewski W, Roquer-Fanlo E, Sabaté N, Teixidó A, Vasco C, Camps J, Castro A. First and second waves of coronavirus disease-19: A comparative study in hospitalized patients in Reus, Spain. PLoS One 2021. [PMID: 33788866 DOI: 10.1101/2020.12.10.20246959v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many countries have seen a two-wave pattern in reported cases of coronavirus disease-19 during the 2020 pandemic, with a first wave during spring followed by the current second wave in late summer and autumn. Empirical data show that the characteristics of the effects of the virus do vary between the two periods. Differences in age range and severity of the disease have been reported, although the comparative characteristics of the two waves still remain largely unknown. Those characteristics are compared in this study using data from two equal periods of 3 and a half months. The first period, between 15th March and 30th June, corresponding to the entire first wave, and the second, between 1st July and 15th October, corresponding to part of the second wave, still present at the time of writing this article. Two hundred and four patients were hospitalized during the first period, and 264 during the second period. Patients in the second wave were younger and the duration of hospitalization and case fatality rate were lower than those in the first wave. In the second wave, there were more children, and pregnant and post-partum women. The most frequent signs and symptoms in both waves were fever, dyspnea, pneumonia, and cough, and the most relevant comorbidities were cardiovascular diseases, type 2 diabetes mellitus, and chronic neurological diseases. Patients from the second wave more frequently presented renal and gastrointestinal symptoms, were more often treated with non-invasive mechanical ventilation and corticoids, and less often with invasive mechanical ventilation, conventional oxygen therapy and anticoagulants. Several differences in mortality risk factors were also observed. These results might help to understand the characteristics of the second wave and the behaviour and danger of SARS-CoV-2 in the Mediterranean area and in Western Europe. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana F López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Immaculada Vallverdú
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Hernández-Flix
- Section of Pneumology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gabriel de Febrer
- Intermediate Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Sandra Parra
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Pathology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Francesc Riu
- Department of Pathology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Natàlia Andreychuk
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Frederic Ballester
- Laboratori de Referència Camp de Tarragona i Terres de l'Ebre, Reus, Spain
| | - Marc Benavent
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - José Burdeos
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Alba Català
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Èric Castañé
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Colom
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Mireia Feliu
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Gabaldó
- Laboratori de Referència Camp de Tarragona i Terres de l'Ebre, Reus, Spain
| | - Diana Garrido
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Joan Gil
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Paloma Guelbenzu
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Carolina Lozano
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Francesc Marimon
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Pardo
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Isabel Pujol
- Laboratori de Referència Camp de Tarragona i Terres de l'Ebre, Reus, Spain
| | - Antoni Rabassa
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Revuelta
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Ríos
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Rius-Gordillo
- Department of Pediatrics, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Wojciech Rojewski
- Department of Emergency, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Esther Roquer-Fanlo
- Intermediate Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Noèlia Sabaté
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Teixidó
- Section of Pneumology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Carlos Vasco
- Intermediate Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
31
|
Alghamdi S, Barakat B, Berrou I, Alzahrani A, Haseeb A, Hammad MA, Anwar S, Sindi AAA, Almasmoum HA, Albanghali M. Clinical Efficacy of Hydroxychloroquine in Patients with COVID-19: Findings from an Observational Comparative Study in Saudi Arabia. Antibiotics (Basel) 2021; 10:antibiotics10040365. [PMID: 33807320 PMCID: PMC8065820 DOI: 10.3390/antibiotics10040365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to assess the clinical effectiveness of Hydroxychloroquine-based regimens versus standard treatment in patients with the coronavirus disease admitted in 2019 to a hospital in Saudi Arabia. A comparative observational study, using routine hospital data, was carried out in a large tertiary care hospital in Al Baha, Saudi Arabia, providing care to patients with COVID-19 between April 2019 and August 2019. Patients were categorized into two groups: the Hydroxychloroquine (HCQ) group, treated with HCQ in a dose of 400 mg twice daily on the first day, followed by 200 mg twice daily; the non HCQ group, treated with other antiviral or antibacterial treatments according to protocols recommended by the Ministry of Health (MOH) at the time. The primary outcomes were the length of hospital stay, need for admission to the intensive care unit (ICU), time in ICU, and need for mechanical ventilation. Overall survival was also assessed. 568 patients who received HCQ (treatment group) were compared with 207 patients who did not receive HCQ (control group). HCQ did not improve mortality in the treated group (7.7% vs. 7.2%). There were no significant differences in terms of duration of hospitalization, need for and time in ICU, and need for mechanical ventilation among the groups. Our study provides further evidence that HCQ treatment does not reduce mortality rates, length of hospital stay, admission and time in ICU, and need for mechanical ventilation in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Albaha 57911, Saudi Arabia; (S.A.); (B.B.); (M.A.H.)
| | - Bassant Barakat
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Albaha 57911, Saudi Arabia; (S.A.); (B.B.); (M.A.H.)
| | - Ilhem Berrou
- School of Health and Social Wellbeing, University of the West of England, Staple Hill, Bristol BS16 1DD, UK
- Correspondence: ; Tel.: +44-11732-84053
| | - Abdulhakim Alzahrani
- Pharmaceutical Care Services Department, King Fahad Hospital, Albaha 57911, Saudi Arabia;
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah 24231, Saudi Arabia;
| | - Mohamed Anwar Hammad
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Albaha 57911, Saudi Arabia; (S.A.); (B.B.); (M.A.H.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55482, Saudi Arabia;
| | | | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24231, Saudi Arabia;
| | - Mohammad Albanghali
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha 57911, Saudi Arabia;
| |
Collapse
|
32
|
Iftimie S, López-Azcona AF, Vallverdú I, Hernández-Flix S, de Febrer G, Parra S, Hernández-Aguilera A, Riu F, Joven J, Andreychuk N, Baiges-Gaya G, Ballester F, Benavent M, Burdeos J, Català A, Castañé È, Castañé H, Colom J, Feliu M, Gabaldó X, Garrido D, Garrido P, Gil J, Guelbenzu P, Lozano C, Marimon F, Pardo P, Pujol I, Rabassa A, Revuelta L, Ríos M, Rius-Gordillo N, Rodríguez-Tomàs E, Rojewski W, Roquer-Fanlo E, Sabaté N, Teixidó A, Vasco C, Camps J, Castro A. First and second waves of coronavirus disease-19: A comparative study in hospitalized patients in Reus, Spain. PLoS One 2021; 16:e0248029. [PMID: 33788866 PMCID: PMC8011765 DOI: 10.1371/journal.pone.0248029] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Many countries have seen a two-wave pattern in reported cases of coronavirus disease-19 during the 2020 pandemic, with a first wave during spring followed by the current second wave in late summer and autumn. Empirical data show that the characteristics of the effects of the virus do vary between the two periods. Differences in age range and severity of the disease have been reported, although the comparative characteristics of the two waves still remain largely unknown. Those characteristics are compared in this study using data from two equal periods of 3 and a half months. The first period, between 15th March and 30th June, corresponding to the entire first wave, and the second, between 1st July and 15th October, corresponding to part of the second wave, still present at the time of writing this article. Two hundred and four patients were hospitalized during the first period, and 264 during the second period. Patients in the second wave were younger and the duration of hospitalization and case fatality rate were lower than those in the first wave. In the second wave, there were more children, and pregnant and post-partum women. The most frequent signs and symptoms in both waves were fever, dyspnea, pneumonia, and cough, and the most relevant comorbidities were cardiovascular diseases, type 2 diabetes mellitus, and chronic neurological diseases. Patients from the second wave more frequently presented renal and gastrointestinal symptoms, were more often treated with non-invasive mechanical ventilation and corticoids, and less often with invasive mechanical ventilation, conventional oxygen therapy and anticoagulants. Several differences in mortality risk factors were also observed. These results might help to understand the characteristics of the second wave and the behaviour and danger of SARS-CoV-2 in the Mediterranean area and in Western Europe. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana F. López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Immaculada Vallverdú
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Hernández-Flix
- Section of Pneumology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gabriel de Febrer
- Intermediate Care Unit, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Sandra Parra
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Pathology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Francesc Riu
- Department of Pathology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Natàlia Andreychuk
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Frederic Ballester
- Laboratori de Referència Camp de Tarragona i Terres de l’Ebre, Reus, Spain
| | - Marc Benavent
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - José Burdeos
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Alba Català
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Èric Castañé
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Colom
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Mireia Feliu
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Gabaldó
- Laboratori de Referència Camp de Tarragona i Terres de l’Ebre, Reus, Spain
| | - Diana Garrido
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Joan Gil
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Paloma Guelbenzu
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Carolina Lozano
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Francesc Marimon
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Pardo
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Isabel Pujol
- Laboratori de Referència Camp de Tarragona i Terres de l’Ebre, Reus, Spain
| | - Antoni Rabassa
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Revuelta
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Ríos
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Rius-Gordillo
- Department of Pediatrics, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Wojciech Rojewski
- Department of Emergency, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Esther Roquer-Fanlo
- Intermediate Care Unit, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Noèlia Sabaté
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Teixidó
- Section of Pneumology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Carlos Vasco
- Intermediate Care Unit, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- * E-mail:
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
33
|
Accinelli RA, Ynga-Meléndez GJ, León-Abarca JA, López LM, Madrid-Cisneros JC, Mendoza-Saldaña JD. Hydroxychloroquine / azithromycin in COVID-19: The association between time to treatment and case fatality rate. Travel Med Infect Dis 2021; 44:102163. [PMID: 34534686 PMCID: PMC8438859 DOI: 10.1016/j.tmaid.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Currently, there is no formally accepted pharmacological treatment for COVID-19. MATERIALS AND METHODS We included COVID-19 outpatients of a Peruvian primary care center from Lima, Peru, who were treated between April 30 - September 30, 2020, with hydroxychloroquine and azithromycin. Logistic regression was applied to determine factors associated with case-fatality rate. RESULTS A total of 1265 COVID-19 patients with an average age of 44.5 years were studied. Women represented 50.1% of patients, with an overall 5.9 symptom days, SpO2 97%, temperature of 37.3 °C, 41% with at least one comorbidity and 96.1% one symptom or sign. No patient treated within the first 72 h of illness died. The factors associated with higher case fatality rate were age (OR = 1.06; 95% CI 1.01-1.11, p = 0.021), SpO2 (OR = 0.87; 95% CI 0.79-0.96, p = 0.005) and treatment onset (OR = 1.16; 95% CI 1.06-1.27, p = 0.002), being the latter the only associated in the multivariate analysis (OR = 1.18; 95% CI 1.05-1.32, p = 0.005). 0.6% of our patients died. CONCLUSIONS The case fatality rate in COVID-19 outpatients treated with hydroxychloroquine/azithromycin was associated with the number of days of illness on which treatment was started.
Collapse
Affiliation(s)
- Roberto Alfonso Accinelli
- Instituto de Investigaciones de la Altura. Universidad Peruana Cayetano Heredia, Lima, Peru; Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru; Hospital Cayetano Heredia, Peru.
| | | | | | - Lidia Marianella López
- Instituto de Investigaciones de la Altura. Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | |
Collapse
|