1
|
Benjamin-Chung J, Li H, Nguyen A, Barratt Heitmann G, Bennett A, Ntuku H, Prach LM, Tambo M, Wu L, Drakeley C, Gosling R, Mumbengegwi D, Kleinschmidt I, Smith JL, Hubbard A, van der Laan M, Hsiang MS. Extension of efficacy range for targeted malaria-elimination interventions due to spillover effects. Nat Med 2024; 30:2813-2820. [PMID: 38965434 PMCID: PMC11483210 DOI: 10.1038/s41591-024-03134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Malaria-elimination interventions aim to extinguish hotspots and prevent transmission to nearby areas. Here, we re-analyzed a cluster-randomized trial of reactive, focal interventions (chemoprevention using artemether-lumefantrine and/or indoor residual spraying with pirimiphos-methyl) delivered within 500 m of confirmed malaria index cases in Namibia to measure direct effects (among intervention recipients within 500 m) and spillover effects (among non-intervention recipients within 3 km) on incidence, prevalence and seroprevalence. There was no or weak evidence of direct effects, but the sample size of intervention recipients was small, limiting statistical power. There was the strongest evidence of spillover effects of combined chemoprevention and indoor residual spraying. Among non-recipients within 1 km of index cases, the combined intervention reduced malaria incidence by 43% (95% confidence interval, 20-59%). In analyses among non-recipients within 3 km of interventions, the combined intervention reduced infection prevalence by 79% (6-95%) and seroprevalence, which captures recent infections and has higher statistical power, by 34% (20-45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 42%. Targeting hotspots with combined chemoprevention and vector-control interventions can indirectly benefit non-recipients up to 3 km away.
Collapse
Affiliation(s)
- Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Haodong Li
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Anna Nguyen
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- PATH, Seattle, WA, USA
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa M Prach
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Jennifer L Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Mark van der Laan
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Michelle S Hsiang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Ronald M, Humphrey W, Adoke Y, Jean-Pierre VG. Impact of population based indoor residual spraying in combination with mass drug administration on malaria incidence and test positivity in a high transmission setting in north eastern Uganda. Malar J 2023; 22:378. [PMID: 38093286 PMCID: PMC10717204 DOI: 10.1186/s12936-023-04799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) and indoor residual spraying (IRS) are potent malaria burden reduction tools. The impact of combining MDA and IRS is not well documented. We evaluated the impact of MDA + IRS compared to IRS alone at a high transmission site in Eastern Uganda. METHODS A quasi-experimental study was implemented in Toroma and Kapujan subcounties in north eastern Uganda. Both subcounties received four rounds of IRS using primiphos-methyl (Acttellic SC300) 6-8 months apart from December 2016 to December 2018. Eligible residents of Kapujan simultaneously received MDA using dihydroartemesinin-piperaquine (DHA-PQ). Health facility data was used to monitor malaria case incidence rate and test positivity rates. RESULTS In the MDA + IRS arm, malaria incidence dropped by 83% (IRR: 0·17 (0.16-0.18); p < 0.001) in children under 5 year and by 78% (IRR: 0·22 (0.22-0.23); p < 0.001) in persons aged ≥ 5 years from the pre-intervention to the intervention period. In the IRS arm malaria incidence dropped by 47% (IRR: 0.53 (0.51, 0.56); p < 0.001) in children under 5 years and by 71% 0.29 (0.28, 0.30); p < 0.001) in persons aged ≥ 5 years. A drastic drop occurred immediately after the intervention after which cases slowly increased in both arms. Malaria test positivity rate (TPR) dropped at a rate of 21 (p = 0.003) percentage points per 1000 persons in the MDA + IRS arm compared to the IRS arm. There was a mean decrease of 60 (p-value, 0.040) malaria cases among children under five years and a mean decrease in TPR of 16·16 (p-value, 0.001) in the MDA + IRS arm compared to IRS arm. INTERPRETATION MDA significantly reduced malaria burden among children < 5 years however the duration of this impact needs to be further investigated.
Collapse
Affiliation(s)
- Mulebeke Ronald
- Makerere University School of Public Health, Kampala, Uganda.
- Global Health Institute, University of Antwerp, Antwerpen, Belgium.
| | | | - Yeka Adoke
- Makerere University School of Public Health, Kampala, Uganda
| | | |
Collapse
|
3
|
Benjamin-Chung J, Li H, Nguyen A, Heitmann GB, Bennett A, Ntuku H, Prach LM, Tambo M, Wu L, Drakeley C, Gosling R, Mumbengegwi D, Kleinschmidt I, Smith JL, Hubbard A, van der Laan M, Hsiang MS. Targeted malaria elimination interventions reduce Plasmodium falciparum infections up to 3 kilometers away. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295806. [PMID: 37790419 PMCID: PMC10543053 DOI: 10.1101/2023.09.19.23295806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Malaria elimination interventions in low-transmission settings aim to extinguish hot spots and prevent transmission to nearby areas. In malaria elimination settings, the World Health Organization recommends reactive, focal interventions targeted to the area near malaria cases shortly after they are detected. A key question is whether these interventions reduce transmission to nearby uninfected or asymptomatic individuals who did not receive interventions. Here, we measured direct effects (among intervention recipients) and spillover effects (among non-recipients) of reactive, focal interventions delivered within 500m of confirmed malaria index cases in a cluster-randomized trial in Namibia. The trial delivered malaria chemoprevention (artemether lumefantrine) and vector control (indoor residual spraying with Actellic) separately and in combination using a factorial design. We compared incidence, infection prevalence, and seroprevalence between study arms among intervention recipients (direct effects) and non-recipients (spillover effects) up to 3 km away from index cases. We calculated incremental cost-effectiveness ratios accounting for spillover effects. The combined chemoprevention and vector control intervention produced direct effects and spillover effects. In the primary analysis among non-recipients within 1 km from index cases, the combined intervention reduced malaria incidence by 43% (95% CI 20%, 59%). In secondary analyses among non-recipients 500m-3 km from interventions, the combined intervention reduced infection by 79% (6%, 95%) and seroprevalence 34% (20%, 45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 37%. Our findings provide the first evidence that targeting hot spots with combined chemoprevention and vector control interventions can indirectly benefit non-recipients up to 3 km away.
Collapse
Affiliation(s)
- Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Haodong Li
- Division of Biostatistics, University of California, Berkeley
| | - Anna Nguyen
- Department of Epidemiology and Population Health, Stanford University, Stanford, United States
| | | | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
- PATH, Seattle, United States
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
| | - Lisa M. Prach
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
| | - Alan Hubbard
- Division of Biostatistics, University of California, Berkeley
| | | | - Michelle S. Hsiang
- Chan Zuckerberg Biohub, San Francisco, United States
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, United States
| |
Collapse
|