1
|
Dong H, Ma X, Chen Z, Zhang H, Song J, Jin Y, Li M, Lu M, He R, Zhang Y, Yang Y. Clinical features and ALDH5A1 gene findings in 13 Chinese cases with succinic semialdehyde dehydrogenase deficiency. BMC Med Genomics 2024; 17:158. [PMID: 38862963 PMCID: PMC11165735 DOI: 10.1186/s12920-024-01925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND AIMS To investigate the clinical features, ALDH5A1 gene variations, treatment, and prognosis of patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. MATERIALS AND METHODS This retrospective study evaluated the findings in 13 Chinese patients with SSADH deficiency admitted to the Pediatric Department of Peking University First Hospital from September 2013 to September 2023. RESULTS Thirteen patients (seven male and six female patients; two sibling sisters) had the symptoms aged from 1 month to 1 year. Their urine 4-hydroxybutyrate acid levels were elevated and were accompanied by mildly increased serum lactate levels. Brain magnetic resonance imaging (MRI) showed symmetric abnormal signals in both sides of the globus pallidus and other areas. All 13 patients had psychomotor retardation, with seven showing epileptic seizures. Among the 18 variants of the ALDH5A1 gene identified in these 13 patients, six were previously reported, while 12 were novel variants. Among the 12 novel variants, three (c.85_116del, c.206_222dup, c.762C > G) were pathogenic variants; five (c.427delA, c.515G > A, c.637C > T, c.755G > T, c.1274T > C) were likely pathogenic; and the remaining four (c.454G > C, c.479C > T, c.1480G > A, c.1501G > C) were variants of uncertain significance. The patients received drugs such as L-carnitine, vigabatrin, and taurine, along with symptomatic treatment. Their urine 4-hydroxybutyric acid levels showed variable degrees of reduction. CONCLUSIONS A cohort of 13 cases with early-onset SSADH deficiency was analyzed. Onset of symptoms occurred from 1 month to 1 year of age. Twelve novel variants of the ALDH5A1 gene were identified.
Collapse
Affiliation(s)
- Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhehui Chen
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Huiting Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mei Lu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ruxuan He
- Department of Respiratory Medicine, Beijing Children's Hospital, National Centre for Children's Health, Capital Medical University, Beijing, 100045, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
2
|
Tokatly Latzer I, Bertoldi M, Blau N, DiBacco ML, Elsea SH, García-Cazorla À, Gibson KM, Gropman AL, Hanson E, Hoffman C, Jeltsch K, Juliá-Palacios N, Knerr I, Lee HHC, Malaspina P, McConnell A, Opladen T, Oppebøen M, Rotenberg A, Walterfang M, Wang-Tso L, Wevers RA, Roullet JB, Pearl PL. Consensus guidelines for the diagnosis and management of succinic semialdehyde dehydrogenase deficiency. Mol Genet Metab 2024; 142:108363. [PMID: 38452608 PMCID: PMC11073920 DOI: 10.1016/j.ymgme.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; School of Medicine, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Switzerland.
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Disabilities, Children's National Hospital, Washington, D.C, USA.
| | - Ellen Hanson
- Human Neurobehavioral Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA 02115, USA.
| | | | - Kathrin Jeltsch
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland, Temple Street, Dublin, Ireland.
| | - Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Patrizia Malaspina
- Department of Biology, Tor Vergata University, Via della Ricerca Scientifica s.n.c., Rome 00133, Italy.
| | | | - Thomas Opladen
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| | | | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Health and Medical Sciences, Edith Cowan University, Perth, Australia.
| | - Lee Wang-Tso
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Liu N, Li J, Gao K, Perszyk RE, Zhang J, Wang J, Wu Y, Jenkins A, Yuan H, Traynelis SF, Jiang Y. De novo CLPTM1 variants with reduced GABA A R current response in patients with epilepsy. Epilepsia 2023; 64:2968-2981. [PMID: 37577761 PMCID: PMC10840799 DOI: 10.1111/epi.17746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE To investigate the clinical features and potential pathogenesis mechanism of de novo CLPTM1 variants associated with epilepsy. METHODS Identify de novo genetic variants associated with epilepsy by reanalyzing trio-based whole-exome sequencing data. We analyzed the clinical characteristics of patients with these variants and performed functional in vitro studies in cells expressing mutant complementary DNA for these variants using whole-cell voltage-clamp current recordings and outside-out patch-clamp recordings from transiently transfected human embryonic kidney (HEK) cells. RESULTS Two de novo missense variants related to epilepsy were identified in the CLPTM1 gene. Functional studies indicated that CLPTM1-p.R454H and CLPTM1-p.R568Q variants reduced the γ-aminobutyric acid A receptor (GABAA R) current response amplitude recorded under voltage clamp compared to the wild-type receptors. These variants also reduced the charge transfer and altered the time course of desensitization and deactivation following rapid removal of GABA. The surface expression of the GABAA R γ2 subunit from the CLPTM1-p.R568Q group was significantly reduced compared to CLPTM1-WT. SIGNIFICANCE This is the first report of functionally relevant variants within the CLPTM1 gene. Patch-clamp recordings showed that these de novo CLPTM1 variants reduce GABAA R currents and charge transfer, which should promote excitation and hypersynchronous activity. This study may provide insights into the molecular mechanisms of the CLPTM1 variants underlying the patients' phenotypes, as well as for exploring potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Nana Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jinliang Li
- Department of Pediatrics, Central People’s Hospital of Zhanjiang, Guangdong 524045, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China
| | - Riley E. Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing 100045, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Andrew Jenkins
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Department of Pharmaceutical Sciences, University of Saint Joseph, Connecticut 06117, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, USA
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
4
|
Cannon Homaei S, Barone H, Kleppe R, Betari N, Reif A, Haavik J. ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications. Neurosci Biobehav Rev 2021; 132:838-856. [PMID: 34774900 DOI: 10.1016/j.neubiorev.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
Neurometabolic diseases (NMDs) are typically caused by genetic abnormalities affecting enzyme functions, which in turn interfere with normal development and activity of the nervous system. Although the individual disorders are rare, NMDs are collectively relatively common and often lead to lifelong difficulties and high societal costs. Neuropsychiatric manifestations, including ADHD symptoms, are prominent in many NMDs, also when the primary biochemical defect originates in cells and tissues outside the nervous system. ADHD symptoms have been described in phenylketonuria, tyrosinemias, alkaptonuria, succinic semialdehyde dehydrogenase deficiency, X-linked ichthyosis, maple syrup urine disease, and several mitochondrial disorders, but are probably present in many other NMDs and may pose diagnostic and therapeutic challenges. Here we review current literature linking NMDs with ADHD symptoms. We cite emerging evidence that many NMDs converge on common neurochemical mechanisms that interfere with monoamine neurotransmitter synthesis, transport, metabolism, or receptor functions, mechanisms that are also considered central in ADHD pathophysiology and treatment. Finally, we discuss the therapeutic implications of these findings and propose a path forward to increase our understanding of these relationships.
Collapse
Affiliation(s)
- Selina Cannon Homaei
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| | - Helene Barone
- Regional Resource Center for Autism, ADHD, Tourette Syndrome and Narcolepsy, Western Norway, Division of Psychiatry, Haukeland University Hospital, Norway.
| | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Norway; Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, Norway.
| | - Nibal Betari
- Department of Biomedicine, University of Bergen, Norway.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| |
Collapse
|
5
|
Kirby TO, Ochoa-Reparaz J, Roullet JB, Gibson KM. Dysbiosis of the intestinal microbiome as a component of pathophysiology in the inborn errors of metabolism. Mol Genet Metab 2021; 132:1-10. [PMID: 33358495 DOI: 10.1016/j.ymgme.2020.12.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) represent monogenic disorders in which specific enzyme deficiencies, or a group of enzyme deficiencies (e.g., peroxisomal biogenesis disorders) result in either toxic accumulation of metabolic intermediates or deficiency in the production of key end-products (e.g., low cholesterol in Smith-Lemli-Opitz syndrome (Gedam et al., 2012 [1]); low creatine in guanidinoacetic acid methyltransferase deficiency (Stromberger, 2003 [2])). Some IEMs can be effectively treated by dietary restrictions (e.g., phenylketonuria (PKU), maple syrup urine disease (MSUD)), and/or dietary intervention to remove offending compounds (e.g., acylcarnitine excretion with the oral intake of l-carnitine in the disorders of fatty acid oxidation). While the IEMs are predominantly monogenic disorders, their phenotypic presentation is complex and pleiotropic, impacting multiple physiological systems (hepatic and neurological function, renal and musculoskeletal impairment, cardiovascular and pulmonary activity, etc.). The metabolic dysfunction induced by the IEMs, as well as the dietary interventions used to treat them, are predicted to impact the gut microbiome in patients, and it is highly likely that microbiome dysbiosis leads to further exacerbation of the clinical phenotype. That said, only recently has the gut microbiome been considered as a potential pathomechanistic consideration in the IEMs. In this review, we overview the function of the gut-brain axis, the crosstalk between these compartments, and the expanding reports of dysbiosis in the IEMs recently reported. The potential use of pre- and probiotics to improve clinical outcomes in IEMs is also highlighted.
Collapse
Affiliation(s)
- Trevor O Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Javier Ochoa-Reparaz
- Department of Biological Sciences, Eastern Washington University, Cheney, WA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
6
|
Succinic Semialdehyde Dehydrogenase Deficiency: In Vitro and In Silico Characterization of a Novel Pathogenic Missense Variant and Analysis of the Mutational Spectrum of ALDH5A1. Int J Mol Sci 2020; 21:ijms21228578. [PMID: 33203024 PMCID: PMC7696157 DOI: 10.3390/ijms21228578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots.
Collapse
|
7
|
Chen XD, Lin YT, Jiang MY, Li XZ, Li D, Hu H, Liu L. Novel mutations in a Chinese family with two patients with succinic semialdehyde dehydrogenase deficiency. Gynecol Endocrinol 2020; 36:929-933. [PMID: 32223457 DOI: 10.1080/09513590.2020.1744555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: A considerable proportion of pediatric disease burden is mainly caused by inborn errors of metabolism. Succinic semi-aldehyde dehydrogenase (SSADH) deficiency is an unusual disorder of the gamma-aminobutyric acid metabolism. Till date, very few cases have been reported in China.Case presentation: Trio-WES was used to characterize the ALDH5A1 gene in two children of a Chinese family, who presented with seizures, psychomotor delay, development regression, borderline cognition, hypotonia, and harbored the compound heterozygotes NM_001080.3: c.1321G > A (p. Gly441Arg) and c.727_735del (p. Leu243_Ser245del). The former has been reported earlier (rs1041467895), whereas the latter is novel. Amino acid coding at highly conserved amino acid residues was observed to be altered by both mutations. This structural impairment influenced the enzyme structure as indicated by the in silico protein modeling. Cerebral magnetic resonance imaging of the proband and her brother showed excessive gap in the cerebrum and abnormal signals in the bilateral frontal lobe, bilateral basal ganglia, and cerebral foot. Elevated levels of Gamma-hydroxybutyric aciduria were found in their patients on urine organic acid analysis.Conclusion: Our findings contribute to the current knowledge of missense and deletion mutations associated with SSADH deficiency.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Yun-Ting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Min-Yan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Xiu-Zhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Duan Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| | - Hao Hu
- Guangzhou Women and Children's Medical Center, Institute of Pediatric Research Center, Guangzhou, P.R. China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, P.R. China
| |
Collapse
|
8
|
Pop A, Smith DEC, Kirby T, Walters D, Gibson KM, Mahmoudi S, van Dooren SJM, Kanhai WA, Fernandez-Ojeda MR, Wever EJM, Koster J, Waterham HR, Grob B, Roos B, Wamelink MMC, Chen J, Natesan S, Salomons GS. Functional analysis of thirty-four suspected pathogenic missense variants in ALDH5A1 gene associated with succinic semialdehyde dehydrogenase deficiency. Mol Genet Metab 2020; 130:172-178. [PMID: 32402538 DOI: 10.1016/j.ymgme.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.
Collapse
Affiliation(s)
- Ana Pop
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Trevor Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Dana Walters
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Soufiane Mahmoudi
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Silvy J M van Dooren
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Warsha A Kanhai
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Matilde R Fernandez-Ojeda
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Eric J M Wever
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Bram Grob
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Birthe Roos
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - Justin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Antonaros F, Ghini V, Pulina F, Ramacieri G, Cicchini E, Mannini E, Martelli A, Feliciello A, Lanfranchi S, Onnivello S, Vianello R, Locatelli C, Cocchi G, Pelleri MC, Vitale L, Strippoli P, Luchinat C, Turano P, Piovesan A, Caracausi M. Plasma metabolome and cognitive skills in Down syndrome. Sci Rep 2020; 10:10491. [PMID: 32591596 PMCID: PMC7319960 DOI: 10.1038/s41598-020-67195-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Trisomy 21 (Down syndrome, DS) is the main human genetic cause of intellectual disability (ID). Lejeune hypothesized that DS could be considered a metabolic disease, and we found that subjects with DS have a specific plasma and urinary metabolomic profile. In this work we confirmed the alteration of mitochondrial metabolism in DS and also investigated if metabolite levels are related to cognitive aspects of DS. We analyzed the metabolomic profiles of plasma samples from 129 subjects with DS and 46 healthy control (CTRL) subjects by 1H Nuclear Magnetic Resonance (NMR). Multivariate analysis of the NMR metabolomic profiles showed a clear discrimination (up to 94% accuracy) between the two groups. The univariate analysis revealed a significant alteration in 7 metabolites out of 28 assigned unambiguously. Correlations among the metabolite levels in DS and CTRL groups were separately investigated and statistically significant relationships appeared. On the contrary, statistically significant correlations among the NMR-detectable part of DS plasma metabolome and the different intelligence quotient ranges obtained by Griffiths-III or WPPSI-III tests were not found. Even if metabolic imbalance provides a clear discrimination between DS and CTRL groups, it appears that the investigated metabolomic profiles cannot be associated with the degree of ID.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Veronica Ghini
- CIRMMP, Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, FI, Italy
| | - Francesca Pulina
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | - Giuseppe Ramacieri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Elisa Mannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Anna Martelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Agnese Feliciello
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Silvia Lanfranchi
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | - Sara Onnivello
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | - Renzo Vianello
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Claudio Luchinat
- CERM, Center of Magnetic Resonance and Department of Chemistry, University of Florence, via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paola Turano
- CERM, Center of Magnetic Resonance and Department of Chemistry, University of Florence, via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
10
|
Didiasova M, Banning A, Brennenstuhl H, Jung-Klawitter S, Cinquemani C, Opladen T, Tikkanen R. Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells 2020; 9:cells9020477. [PMID: 32093054 PMCID: PMC7072817 DOI: 10.3390/cells9020477] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Sabine Jung-Klawitter
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | | | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children’s Hospital Heidelberg, 69120 Heidelberg, Germany; (H.B.); (S.J.-K.); (T.O.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (M.D.); (A.B.)
- Correspondence: ; Tel.: +49-641-9947-420
| |
Collapse
|