1
|
Pravednikova AE, Nikitich A, Witkowicz A, Karabon L, Flouris AD, Vliora M, Nintou E, Dinas PC, Szulińska M, Bogdański P, Metsios GS, Kerchev VV, Yepiskoposyan L, Bylino OV, Larina SN, Shulgin B, Shidlovskii YV. Genotypes of the UCP1 gene polymorphisms and cardiometabolic diseases: A multifactorial study of association with disease probability. Biochimie 2024; 218:162-173. [PMID: 37863280 DOI: 10.1016/j.biochi.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Cardiometabolic diseases (CMDs) are complex disorders with a heterogenous phenotype, which are caused by multiple factors including genetic factors. Single nucleotide polymorphisms (SNPs) rs45539933 (p.Ala64Thr), rs10011540 (c.-112A>C), rs3811791 (c.-1766A>G), and rs1800592 (c.-3826A>G) in the UCP1 gene have been analyzed for association with CMDs in many studies providing controversial results. However, previous studies only considered individual UCP1 SNPs and did not evaluate them in an integrated manner, which is a more powerful approach to uncover genetic component of complex diseases. This study aimed to investigate associations between UCP1 genotype combinations and CMDs or CMD risk factors in the context of non-genetic factors. We performed multiple logistic regression analysis and proposed new methodology of testing different combinations of SNP genotypes. We found that probability of CMDs increased in presence of the three-SNP combination of genotypes with minor alleles of c.-3826A>G and p.Ala64Thr and wild allele of c.-112A>C, with increasing age, body mass index (BMI), body fat percentage (BF%) and may differ between sexes and between countries. The combination of genotypes with c.-3826A>G minor allele and wild homozygotes of c.-112A>C and p.Ala64Thr was associated with increased probability of diabetes. While combination of genotypes with minor alleles of all three SNPs reduced the CMD probability. The present results suggest that age, BMI, sex, and UCP1 three-SNP combinations of genotypes significantly contribute to CMD probability. Varying of c.-112A>C alleles in the genotype combination with minor alleles of c.-3826A>G and p.Ala64Thr markedly changes CMD probability.
Collapse
Affiliation(s)
- Anna E Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Antonina Nikitich
- Center for Mathematical Modeling in Drug Development, Institute of Biodesign and Complex Systems Modeling, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Agata Witkowicz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - George S Metsios
- School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Victor V Kerchev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Oleg V Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana N Larina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Shulgin
- Center for Mathematical Modeling in Drug Development, Institute of Biodesign and Complex Systems Modeling, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Andrzejczak A, Witkowicz A, Kujawa D, Skrypnik D, Szulińska M, Bogdański P, Łaczmański Ł, Karabon L. NGS Sequencing Reveals New UCP1 Gene Variants Potentially Associated with MetS and/or T2DM Risk in the Polish Population—A Preliminary Study. Genes (Basel) 2023; 14:genes14040789. [PMID: 37107547 PMCID: PMC10137642 DOI: 10.3390/genes14040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The number of people suffering from metabolic syndrome (MetS) including type 2 diabetes (T2DM), hypertension, and obesity increased over 10 times through the last 30 years and it is a severe public health concern worldwide. Uncoupling protein 1 (UCP1) is a mitochondrial carrier protein found only in brown adipose tissue involved in thermogenesis and energy expenditure. Several studies showed an association between UCP1 variants and the susceptibility to MetS, T2DM, and/or obesity in various populations; all these studies were, however, limited to a few selected polymorphisms. The present study aimed to search within the entire UCP1 gene for new variants potentially associated with MetS and/or T2DM risk. We performed NGS sequencing of the entire UCP1 gene in 59 MetS patients including 29 T2DM patients, and 36 controls using the MiSeq platform. An analysis of allele and genotype distribution revealed nine variations which seem to be interesting in the context of MetS and fifteen in the context of T2DM. Altogether, we identified 12 new variants, among which only rs3811787 was investigated previously by others. Thereby, NGS sequencing revealed new intriguing UCP1 gene variants potentially associated with MetS and/or T2DM risk in the Polish population.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Agata Witkowicz
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics and Bioinformatics, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
3
|
Dinas PC, Nintou E, Vliora M, Pravednikova AE, Sakellariou P, Witkowicz A, Kachaev ZM, Kerchev VV, Larina SN, Cotton J, Kowalska A, Gkiata P, Bargiota A, Khachatryan ZA, Hovhannisyan AA, Antonosyan MA, Margaryan S, Partyka A, Bogdanski P, Szulinska M, Kregielska-Narozna M, Czepczyński R, Ruchała M, Tomkiewicz A, Yepiskoposyan L, Karabon L, Shidlovskii Y, Metsios GS, Flouris AD. Prevalence of uncoupling protein one genetic polymorphisms and their relationship with cardiovascular and metabolic health. PLoS One 2022; 17:e0266386. [PMID: 35482655 PMCID: PMC9049362 DOI: 10.1371/journal.pone.0266386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Contribution of UCP1 single nucleotide polymorphisms (SNPs) to susceptibility for cardiometabolic pathologies (CMP) and their involvement in specific risk factors for these conditions varies across populations. We tested whether UCP1 SNPs A-3826G, A-1766G, Ala64Thr and A-112C are associated with common CMP and their risk factors across Armenia, Greece, Poland, Russia and United Kingdom. This case-control study included genotyping of these SNPs, from 2,283 Caucasians. Results were extended via systematic review and meta-analysis. In Armenia, GA genotype and A allele of Ala64Thr displayed ~2-fold higher risk for CMP compared to GG genotype and G allele, respectively (p<0.05). In Greece, A allele of Ala64Thr decreased risk of CMP by 39%. Healthy individuals with A-3826G GG genotype and carriers of mutant allele of A-112C and Ala64Thr had higher body mass index compared to those carrying other alleles. In healthy Polish, higher waist-to-hip ratio (WHR) was observed in heterozygotes A-3826G compared to AA homozygotes. Heterozygosity of A-112C and Ala64Thr SNPs was related to lower WHR in CMP individuals compared to wild type homozygotes (p<0.05). Meta-analysis showed no statistically significant odds-ratios across our SNPs (p>0.05). Concluding, the studied SNPs could be associated with the most common CMP and their risk factors in some populations.
Collapse
Affiliation(s)
- Petros C. Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, West Midlands, United Kingdom
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Paraskevi Sakellariou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Agata Witkowicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana N. Larina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - James Cotton
- Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton, United Kingdom
| | - Anna Kowalska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Medical School, Larissa University Hospital, University of Thessaly, Larissa, Greece
| | - Zaruhi A. Khachatryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anahit A. Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Mariya A. Antonosyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sona Margaryan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Anna Partyka
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulinska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Matylda Kregielska-Narozna
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Tomkiewicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Levon Yepiskoposyan
- Department of Bioengineering, Bioinformatics and Molecular Biology, Russian-Armenian University, Yerevan, Armenia
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - George S. Metsios
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
4
|
Ahuja P, Waris A, Siddiqui SS, Mukherjee A. Single nucleotide variants of receptor for advanced glycation end-products (AGER) gene: is it a new opening in the risk assessment of diabetic retinopathy?-a review. J Genet Eng Biotechnol 2022; 20:17. [PMID: 35099614 PMCID: PMC8804138 DOI: 10.1186/s43141-022-00297-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common microvascular complication of diabetes. There is strong evidence suggesting that DR has an inheritable component. The interaction between advanced glycation end products (AGEs) and their receptor is integral in the pathogenesis of diabetic retinopathy and its various complications, retinopathy being one of them. OVERVIEW AND METHODOLOGY This review discusses the existing literature on the association between single nucleotide variants (SNV) of AGER gene and the risk of DR. It also discusses the current understanding of the AGE-AGER pathway in diabetic retinopathy. Through our article we have tried to consolidate all the available information about these SNVs associated with diabetic retinopathy in a succinct tabular form. Additionally, a current understanding of the AGE-AGER interaction and its deleterious effects on the cells of the retina has been discussed in detail to provide comprehensive information about the topic to the reader. A literature review was performed on PubMed, Cochrane Library, and Google Scholar for studies to find existing literature on the association between AGER gene SNVs and the risk, progression and severity of developing DR. This article will encourage scientific communication and discussion about possibly devising genetic markers for an important cause of blindness both in developed and developing countries, i.e., diabetic retinopathy. RESULT Based on genetic studies done in Indian and Chinese population G82S(rs2070600) was positively associated with Diabetic Retinopathy. Patients of diabetic retinopathy in Caucasian population had -T374A(rs1800624) polymorphism. + 20T/A was found to be associated with the disease in a study done in UK. Association with G1704T(rs184003) was seen in Chinese and Malaysian population. A Chinese study found its association with CYB242T. -T429C(rs1800625) SNV was not associated with DR in any of the studies. G2245A(rs55640627) was positively associated with the disease process in Malaysian population. It was not associated in Malaysian and Chinese population. Promoter variant rs1051993 has also been found to a susceptible SNV in the Chinese population. CONCLUSION While providing a comprehensive review of the existing information, we would like to emphasize on a large, multi-centric, trial with a much larger and varied population base to definitely determine these single nucleotide variants predisposing diabetic individuals.
Collapse
Affiliation(s)
- Pragya Ahuja
- Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Abdul Waris
- Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Sheelu Shafiq Siddiqui
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| |
Collapse
|
5
|
Liu X, Jiang Z, Zhang G, Ng TK, Wu Z. Association of UCP1 and UCP2 variants with diabetic retinopathy susceptibility in type-2 diabetes mellitus patients: a meta-analysis. BMC Ophthalmol 2021; 21:81. [PMID: 33579234 PMCID: PMC7881628 DOI: 10.1186/s12886-021-01838-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetic association of uncoupling proteins (UCPs) variants with the susceptibility of diabetic retinopathy (DR) in diabetes mellitus (DM) patients has been reported but with controversy. Here we aimed to conduct a meta-analysis to confirm the association of different UCPs variants with DR. METHODS Three databases (Medline Ovid, Embase Ovid and CENTRAL) were applied in the literature search. Five genetic models, including allelic, homozygous, heterozygous, dominant and recessive models, were evaluated. Odds ratios (OR) were estimated under the random or fixed-effects models. Subgroup analyses, publication bias and sensitivity analyses were also conducted. RESULTS Eleven studies on 2 UCPs variants (UCP1 rs1800592 and UCP2 rs659366) were included. Our meta-analysis showed that UCP1 rs1800592 was not associated with DR in type-2 DM patients, and UCP2 rs659366 also showed no association with DR. In the subgroup analyses on the stage of DR, allele G of UCP1 rs1800592 significantly increased the susceptibility of proliferative diabetic retinopathy (PDR) in type-2 DM patients in the allelic (OR = 1.26, P = 0.03) and homozygous models (OR = 1.60, P = 0.04). Subgroup analysis on ethnicity did not found any significant association of rs1800592 and rs659366 with DR. CONCLUSION Our meta-analysis confirmed the association of UCP1 rs1800592 variant with PDR in patients with type-2 DM, suggesting its potential as a genetic marker for PDR prediction in population screening.
Collapse
Affiliation(s)
- Xujia Liu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zehua Jiang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Guihua Zhang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhenggen Wu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.
- Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
6
|
Pravednikova AE, Shevchenko SY, Kerchev VV, Skhirtladze MR, Larina SN, Kachaev ZM, Egorov AD, Shidlovskii YV. Association of uncoupling protein (Ucp) gene polymorphisms with cardiometabolic diseases. Mol Med 2020; 26:51. [PMID: 32450815 PMCID: PMC7249395 DOI: 10.1186/s10020-020-00180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The hereditary aspect of obesity is a major focus of modern medical genetics. The genetic background is known to determine a higher-than-average prevalence of obesity in certain regions, like Oceania. There is evidence that dysfunction of brown adipose tissue (BAT) may be a risk factor for obesity and type 2 diabetes (T2D). A significant number of studies in the field focus on the UCP family. The Ucp genes code for electron transport carriers. UCP1 (thermogenin) is the most abundant protein of the UCP superfamily and is expressed in BAT, contributing to its capability of generating heat. Single nucleotide polymorphisms (SNPs) of Ucp1-Ucp3 were recently associated with risk of cardiometabolic diseases. This review covers the main Ucp SNPs A-3826G, A-1766G, A-112C, Met229Leu, Ala64Thr (Ucp1), Ala55Val, G-866A (Ucp2), and C-55 T (Ucp3), which may be associated with the development of obesity, disturbance in lipid metabolism, T2D, and cardiovascular diseases.
Collapse
Affiliation(s)
- Anna E. Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey Y. Shevchenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Kerchev
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Manana R. Skhirtladze
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana N. Larina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zaur M. Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Egorov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|