1
|
Xu XH, Li YM, Ren LN, Xu XF, Dai YL, Jin CQ, Yang RR. Cluster headache: understandings of current knowledge and directions for whole process management. Front Neurol 2024; 15:1456517. [PMID: 39233684 PMCID: PMC11371566 DOI: 10.3389/fneur.2024.1456517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cluster headache (CH) is a common primary headache that severely impacts patients' quality of life, characterized by recurrent, severe, unilateral headaches often centered around the eyes, temples, or forehead. Distinguishing CH from other headache disorders is challenging, and its pathogenesis remains unclear. Notably, patients with CH often experience high levels of depression and suicidal tendencies, necessitating increased clinical attention. This comprehensive assessment combines various reports and the latest scientific literature to evaluate the current state of CH research. It covers epidemiology, population characteristics, predisposing factors, and treatment strategies. Additionally, we provide strategic insights into the holistic management of CH, which involves continuous, individualized care throughout the prevention, treatment, and rehabilitation stages. Recent advances in the field have revealed new insights into the pathophysiology of CH. While these findings are still evolving, they offer a more detailed understanding of the neurobiological mechanisms underlying this disorder. This growing body of knowledge, alongside ongoing research efforts, promises to lead to the development of more targeted and effective treatments in the future.
Collapse
Affiliation(s)
- Xiao-Hu Xu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yi-Ming Li
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Li-Na Ren
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiao-Fan Xu
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yi-Long Dai
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng-Qiang Jin
- Medical Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rui-Rui Yang
- Neurology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Coppola G, Abagnale C, Sebastianelli G, Goadsby PJ. Pathophysiology of cluster headache: From the trigeminovascular system to the cerebral networks. Cephalalgia 2024; 44:3331024231209317. [PMID: 38415635 DOI: 10.1177/03331024231209317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND Despite advances in neuroimaging and electrophysiology, cluster headache's pathogenesis remains unclear. This review will examine clinical neurophysiology studies, including electrophysiological and functional neuroimaging, to determine if they might help us construct a neurophysiological model of cluster headache. RESULTS Clinical, biochemical, and electrophysiological research have implicated the trigeminal-parasympathetic system in cluster headache pain generation, although the order in which these two systems are activated, which may be somewhat independent, is unknown. Electrophysiology and neuroimaging have found one or more central factors that may cause seasonal and circadian attacks. The well-known posterior hypothalamus, with its primary circadian pacemaker suprachiasmatic nucleus, the brainstem monoaminergic systems, the midbrain, with an emphasis on the dopaminergic system, especially when cluster headache is chronic, and the descending pain control systems appear to be involved. Functional connection investigations have verified electrophysiological evidence of functional changes in distant brain regions connecting to wide cerebral networks other than pain. CONCLUSION We propose that under the impact of external time, an inherited misalignment between the primary circadian pacemaker suprachiasmatic nucleus and other secondary extra- suprachiasmatic nucleus clocks may promote disturbance of the body's internal physiological clock, lowering the threshold for bout recurrence.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, and Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Li ML, Zhang F, Chen YY, Luo HY, Quan ZW, Wang YF, Huang LT, Wang JH. A state-of-the-art review of functional magnetic resonance imaging technique integrated with advanced statistical modeling and machine learning for primary headache diagnosis. Front Hum Neurosci 2023; 17:1256415. [PMID: 37746052 PMCID: PMC10513061 DOI: 10.3389/fnhum.2023.1256415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Primary headache is a very common and burdensome functional headache worldwide, which can be classified as migraine, tension-type headache (TTH), trigeminal autonomic cephalalgia (TAC), and other primary headaches. Managing and treating these different categories require distinct approaches, and accurate diagnosis is crucial. Functional magnetic resonance imaging (fMRI) has become a research hotspot to explore primary headache. By examining the interrelationships between activated brain regions and improving temporal and spatial resolution, fMRI can distinguish between primary headaches and their subtypes. Currently the most commonly used is the cortical brain mapping technique, which is based on blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). This review sheds light on the state-of-the-art advancements in data analysis based on fMRI technology for primary headaches along with their subtypes. It encompasses not only the conventional analysis methodologies employed to unravel pathophysiological mechanisms, but also deep-learning approaches that integrate these techniques with advanced statistical modeling and machine learning. The aim is to highlight cutting-edge fMRI technologies and provide new insights into the diagnosis of primary headaches.
Collapse
Affiliation(s)
- Ming-Lin Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Yang Chen
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Family Medicine, Liaoning Health Industry Group Fukuang General Hospital, Fushun, Liaoning, China
| | - Han-Yong Luo
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zi-Wei Quan
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi-Fei Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Yang X, Guo D, Huang W, Chen B. Intrinsic Brain Functional Activity Abnormalities in Episodic Tension-Type Headache. Neural Plast 2023; 2023:6560298. [PMID: 37266410 PMCID: PMC10232109 DOI: 10.1155/2023/6560298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Objective The neurobiological basis of episodic tension-type headache (ETTH) remains largely unclear. The aim of the present study was to explore intrinsic brain functional activity alterations in ETTH. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 32 patients with ETTH and 32 age- and gender-matched healthy controls (HCs). Differences in intrinsic brain functional activity between patients with ETTH and HCs were analyzed utilizing the fractional amplitude of low-frequency fluctuation (fALFF) approach. Correlation analyses were performed to examine the relationship between fALFF alterations and clinical characteristics. Results Compared to HCs, patients with ETTH exhibited increased fALFF in the right posterior insula and anterior insula and decreased fALFF in the posterior cingulate cortex. Moreover, the fALFF in the right anterior insula was negatively correlated with attack frequency in ETTH. Conclusions This study highlights alterations in the intrinsic brain functional activity in the insula and posterior cingulate cortex in ETTH that can help us understand its neurobiological underpinnings.
Collapse
Affiliation(s)
- Xiu Yang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - DianXuan Guo
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Wei Huang
- Department of Medical Imaging, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Bing Chen
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|