1
|
Li J, Li L, Mahesutihan G, Meng J, Chen Y, Lv J. Identification of STAT5B as a biomarker associated with prognosis and immune infiltration in breast cancer. Medicine (Baltimore) 2023; 102:e32972. [PMID: 36862902 PMCID: PMC9981440 DOI: 10.1097/md.0000000000032972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Breast invasive cancer (BRCA) is the most common malignancy and the second leading cause of malignancy death among women. Signal transducers and activators of transcription (STAT) family played a vital role in regulating certain biological processes and could serve as biomarkers for many diseases or cancers. METHODS The expression, prognostic value, and clinical functions of STAT family in BRCA were evaluated with several bioinformatics web portals. RESULTS The expression of STAT5A/5B were downregulated in BRCA in subgroup analyses based on race, age, gender, race, subclasses, tumor histology, menopause status, nodal metastasis status, and TP53 mutation. BRCA patients with high STAT5B expression had a better overall survival, relapse free survival, MDFS and post progression survival. STAT5B expression level can impact the prognosis in BRCA patients with positive PR status, negative Her2 status and wild type TP53. Moreover, STAT5B was positively correlated with immune cell infiltration and the level of immune biomarkers. Drug sensitivity revealed that low STAT5B expression was resistant to the many small molecules or drugs. Functional enrichment analysis revealed that STAT5B was involved in adaptive immune response, translational initiation, JAK-STAT signaling pathway, Ribosome, NF-kappa B signaling pathway and Cell adhesion molecules. CONCLUSIONS STAT5B was a biomarker associated with prognosis and immune infiltration in breast cancer.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Pharmacy, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Li Li
- Department of Party and government, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Gulijiang Mahesutihan
- Department of Pharmacy, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Juanjuan Meng
- Department of Oncology, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Yuan Chen
- Department of Information, Changji People’s Hospital, Changji, Xinjiang, China
| | - Jingsen Lv
- Forevergen Biosciences Center, Guangzhou, Guangdong, China
- * Correspondence: Jingsen Lv, Forevergen Biosciences Center, No.6 Helix 3rd Road, Guangzhou International Biological Island, Huangpu District, Guangzhou 510000, Guangdong, China (e-mail: )
| |
Collapse
|
2
|
Hou Y, Huang S, Liu J, Wang L, Yuan Y, Liu H, Weng X, Chen Z, Hu J, Liu X. DOT1L promotes cell proliferation and invasion by epigenetically regulating STAT5B in renal cell carcinoma. Am J Cancer Res 2023; 13:276-292. [PMID: 36777512 PMCID: PMC9906067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 02/14/2023] Open
Abstract
DOT1L, the only histone H3 lysine 79 methyltransferase, has a prominent effect on promoting the progression of various malignancies, yet the functional contribution of DOT1L to renal cell carcinoma (RCC) progression remains unclear. DOT1L is overexpressed in RCC and linked to poor clinical outcomes. Chemical (SGC0946) or genetic suppression of DOT1L attenuates the growth and invasion of renal cancer cells and results in S-phase arrest. STAT5B expression was suppressed after DOT1L knockdown, and STAT5B overexpression rescued the DOT1L silencing-induced decrease in cell proliferation. DOT1L was found to epigenetically promote the transcription of STAT5B via H3K79me2, and CDK6 acted as a downstream effector of STAT5B to mediate cell cycle arrest. Our study confirmed that DOT1L promotes STAT5B expression in a histone methyltransferase-dependent manner. Downregulation of DOT1L inhibited RCC proliferation and invasion. Thus, targeting DOT1L might be a potential therapeutic intervention for RCC.
Collapse
Affiliation(s)
- Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China,Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China,Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China,Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China,Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan 430060, Hubei, PR China
| |
Collapse
|
3
|
Wang Z, Yan Y, Lou Y, Huang X, Liu L, Weng Z, Cui Y, Wu X, Cai H, Chen X, Ji Y. Diallyl trisulfide alleviates chemotherapy sensitivity of ovarian cancer via the AMPK/SIRT1/PGC1α pathway. Cancer Sci 2022; 114:357-369. [PMID: 36309839 PMCID: PMC9899624 DOI: 10.1111/cas.15627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Platinum-based chemotherapy promotes drug resistance in ovarian cancer. We investigated the antichemoresistance characteristics of diallyl trisulfide (DATS) in cisplatin-resistant ovarian cancer cells, in vitro and in vivo. Previous preclinical studies have revealed that DATS regulates distinct hallmark cancer-signaling pathways. The cell cycle pathway is the most investigated signaling pathway in DATS. Additionally, post-DATS treatment has been found to promote proapoptotic capacity through the regulation of intrinsic and extrinsic apoptotic pathway components. In the present study, we found that treating cisplatin-sensitive and cisplatin-resistant ovarian cell lines with DATS inhibited their proliferation and reduced their IC50. It induced cell apoptosis and promoted oxidative phosphorylation through the regulation of the AMPK/SIRT1/PGC1α pathway, OXPHOS, and enhanced chemotherapy sensitivity. DATS treatment alleviated glutamine consumption in cisplatin-resistant cells. Our findings highlight the role of DATS in overcoming drug resistance in ovarian cancer in vitro and in vivo. In addition, we elucidated the role of the AMPK/SIRT1/PGC1α signaling pathway as a potential target for the treatment of drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Zhaojun Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yi Yan
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina,Key Laboratory of Digestive Pathophysiology of Zhejiang ProvinceHangzhouChina
| | - Xiaoyan Huang
- Department of Spleen and Gastric DiseasesThe First Affiliated Hospital of Guangxi University of Chinese MedicineGuangxiChina
| | - Lijian Liu
- Department of Spleen and Gastric DiseasesThe First Affiliated Hospital of Guangxi University of Chinese MedicineGuangxiChina
| | - Zhuofan Weng
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yusheng Cui
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinyue Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Huijun Cai
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaohui Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxi Ji
- Department of General PracticeThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
4
|
Guo D, Zhang L, Zhang L, Han S, Yang K, Lin X, Wen C, Tong A, Zhang M, Yin Y, Deng B. Effect of Dietary Methylsulfonylmethane Supplementation on Growth Performance, Hair Quality, Fecal Microbiota, and Metabolome in Ragdoll Kittens. Front Microbiol 2022; 13:838164. [PMID: 35859746 PMCID: PMC9292726 DOI: 10.3389/fmicb.2022.838164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Methylsulfonylmethane (MSM) is a natural sulfur-containing organic substance that has many biological functions, such as antioxidant, anti-inflammatory, skin nourishing, and hair growth-promoting effects. This study was conducted to determine the effect of MSM supplementation on growth performance, antioxidant capacity, and hair quality in kittens. A total of 21 Ragdoll kittens were assigned to three diets by initial body weight and gender: basal diet supplemented with 0%, 0.2%, and 0.4% MSM (CON, LMSM, and HMSM groups) for 65 days. During the whole period, the food intake of kittens in the MSM-treated groups tended to be higher (P < 0.10) compared with the CON group, and the average daily gain (ADG) had no significant difference when compared to the kittens in the CON group (P > 0.05). Antioxidant capacity had no significant difference (P > 0.05) among the groups. The scale thickness of hair tended to be smaller in the LMSM group compared to the CON group (P < 0.10) and decreased significantly (P < 0.05) over time from d 0 to d 65 in the LMSM group, indicating the improvement of hair quality. Besides, supplementation with LMSM increased bacterial diversity. Kittens fed MSM had no significant differences in fecal genus at the end of the study. No significant differences in fecal short-chain fatty acids were observed among groups. Fecal metabolomics analysis further revealed that MSM hardly affected the metabolites. Overall, dietary supplementation with 0.2% MSM can improve the hair quality of kittens. Furthermore, 0.2∼0.4% of MSM had no detrimental effects on serum biochemistry, growth performance, gut microbiota, and metabolome, which supports the safety inclusion of MSM to a certain degree in feline diets. To the best of our knowledge, this is the first study to investigate the effects of MSM supplementation in cats.
Collapse
Affiliation(s)
- Dan Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sufang Han
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinye Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aorigeile Tong
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Yulong Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Yulong Yin,
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Baichuan Deng,
| |
Collapse
|
5
|
Sp N, Kang DY, Jo ES, Lee JM, Jang KJ. Iron Metabolism as a Potential Mechanism for Inducing TRAIL-Mediated Extrinsic Apoptosis Using Methylsulfonylmethane in Embryonic Cancer Stem Cells. Cells 2021; 10:cells10112847. [PMID: 34831070 PMCID: PMC8616102 DOI: 10.3390/cells10112847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSC using natural compounds is a good approach as it suppresses cancer recurrence with fewer adverse effects, and methylsulfonylmethane (MSM) is a sulfur-containing compound with well-known anticancer activities. This study determined the mechanistic aspects of the anticancer activity of MSM. We used Western blotting and real-time qPCR for molecular signaling studies and conducted flow cytometry for analyzing the processes in cells. Our results suggested an inhibition in the expression of CSC markers and Wnt/β-catenin signaling. MSM induced TRAIL-mediated extrinsic apoptosis in NCCIT and NTERA-2 cells rather than an intrinsic pathway. Inhibition of iron metabolism-dependent reactive oxygen species (ROS) generation takes part in TRAIL-mediated apoptosis induction by MSM. Suppressing iron metabolism by MSM also regulated p38/p53/ERK signaling and microRNA expressions, such as upregulating miR-130a and downregulating miR-221 and miR-222, which resulted in TRAIL induction and thereby extrinsic pathway of apoptosis. Hence, MSM could be a good candidate for neoadjuvant therapy by targeting CSCs by inhibiting iron metabolism.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
- SK Bioscience, Seongnam-si 13493, Korea
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
6
|
Mechanistic Insights of Anti-Immune Evasion by Nobiletin through Regulating miR-197/STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer (NSCLC) Cells. Int J Mol Sci 2021; 22:ijms22189843. [PMID: 34576006 PMCID: PMC8468939 DOI: 10.3390/ijms22189843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.
Collapse
|
7
|
Kang DY, Sp N, Jo ES, Rugamba A, Kim HD, Kim IH, Park JC, Bae SW, Jang KJ, Yang YM. Non-toxic sulfur inhibits LPS-induced inflammation by regulating TLR-4 and JAK2/STAT3 through IL-6 signaling. Mol Med Rep 2021; 24:485. [PMID: 33907855 PMCID: PMC8127030 DOI: 10.3892/mmr.2021.12124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
Janus kinase 2 (JAK2) and STAT3 signaling is considered a major pathway in lipopolysaccharide (LPS)‑induced inflammation. Toll‑like receptor 4 (TLR‑4) is an inflammatory response receptor that activates JAK2 during inflammation. STAT3 is a transcription factor for the pro‑inflammatory cytokine IL‑6 in inflammation. Sulfur is an essential element in the amino acids and is required for growth and development. Non‑toxic sulfur (NTS) can be used in livestock feeds as it lacks toxicity. The present study aimed to inhibit LPS‑induced inflammation in C2C12 myoblasts using NTS by regulating TLR‑4 and JAK2/STAT3 signaling via the modulation of IL‑6. The 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay was conducted to analyze cell viability and reverse transcription polymerase chain reaction and western blotting performed to measure mRNA and protein expression levels. Chromatin immunoprecipitation and enzyme‑linked immunosorbent assays were used to determine the binding activity of proteins. The results indicated that NTS demonstrated a protective effect against LPS‑induced cell death and inhibited LPS‑induced expression of TLR‑4, JAK2, STAT3 and IL‑6. In addition, NTS inhibited the expression of nuclear phosphorylated‑STAT3 and its binding to the IL‑6 promoter. Therefore, NTS may be a potential candidate drug for the treatment of inflammation.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Eun Seong Jo
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Hyoung Do Kim
- Nara Bio Co., Ltd., Gunsan, Jeollabuk-do 54006, Republic of Korea
| | - Il Ho Kim
- Nara Bio Co., Ltd., Gunsan, Jeollabuk-do 54006, Republic of Korea
| | - Jong-Chan Park
- Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 34141, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, North Chungcheong 27478, Republic of Korea
| |
Collapse
|
8
|
Rugamba A, Kang DY, Sp N, Jo ES, Lee JM, Bae SW, Jang KJ. Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells 2021; 10:cells10071632. [PMID: 34209829 PMCID: PMC8307196 DOI: 10.3390/cells10071632] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- Alexis Rugamba
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
9
|
Sp N, Kang DY, Kim HD, Rugamba A, Jo ES, Park JC, Bae SW, Lee JM, Jang KJ. Natural Sulfurs Inhibit LPS-Induced Inflammatory Responses through NF-κB Signaling in CCD-986Sk Skin Fibroblasts. Life (Basel) 2021; 11:life11050427. [PMID: 34068523 PMCID: PMC8151259 DOI: 10.3390/life11050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced inflammatory response leads to serious damage, up to and including tumorigenesis. Natural mineral sulfur, non-toxic sulfur (NTS), and methylsulfonylmethane (MSM) have anti-inflammatory activity that may inhibit LPS-induced inflammation. We hypothesized that sulfur compounds could inhibit LPS-induced inflammatory responses in CCD-986Sk skin fibroblasts. We used Western blotting and real-time PCR to analyze molecular signaling in treated and untreated cultures. We also used flow cytometry for cell surface receptor analysis, comet assays to evaluate DNA damage, and ELISA-based cytokine detection. LPS induced TLR4 activation and NF-κB signaling via canonical and protein kinase C (PKC)-dependent pathways, while NTS and MSM downregulated that response. NTS and MSM also inhibited LPS-induced nuclear accumulation and binding of NF-κB to proinflammatory cytokines COX-2, IL-1β, and IL-6. Finally, the sulfur compounds suppressed LPS-induced ROS accumulation and DNA damage in CCD-986Sk cells. These results suggest that natural sulfur compounds could be used to treat inflammation and may be useful in the development of cosmetics.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Hyoung Do Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea;
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.); (H.D.K.); (A.R.)
- Correspondence: ; Tel.: +82-2-2030-7812
| |
Collapse
|
10
|
Sp N, Kang DY, Lee JM, Bae SW, Jang KJ. Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells. Int J Mol Sci 2021; 22:4660. [PMID: 33925065 PMCID: PMC8124719 DOI: 10.3390/ijms22094660] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju 28159, Korea;
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (N.S.); (D.Y.K.)
| |
Collapse
|
11
|
Kang DY, Sp N, Lee JM, Jang KJ. Antitumor Effects of Ursolic Acid through Mediating the Inhibition of STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer Cells. Biomedicines 2021; 9:biomedicines9030297. [PMID: 33805840 PMCID: PMC7998465 DOI: 10.3390/biomedicines9030297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy based on natural compounds is one of the best approaches against non-small cell lung cancer. Ursolic acid (UA), a pentacyclic triterpenoid derived from medicinal herbs, has anticancer activity. Studies on the molecular mechanism underlying UA’s anticancer activity are ongoing. Here, we demonstrated UA’s anticancer activity and the underlying signaling mechanisms. We used Western blotting and real-time quantitative polymerase chain reaction for molecular signaling analysis. We also used in vitro angiogenesis, wound healing, and invasion assays to study UA’s anticancer activity. In addition, we used tumorsphere formation and chromatin immunoprecipitation assays for binding studies. The results showed that UA inhibited the proliferation of A549 and H460 cells in a concentration-dependent manner. UA exerted anticancer effects by inducing G0/G1 cell cycle arrest and apoptosis. It also inhibited tumor angiogenesis, migration, invasion, and tumorsphere formation. The molecular mechanism underlying UA activity involves UA’s binding to epidermal growth factor receptor (EGFR), reducing the level of phospho-EGFR, and thus inhibiting the downstream JAK2/STAT3 pathway. Furthermore, UA reduced the expressions of vascular endothelial growth factor (VEGF), metalloproteinases (MMPs) and programmed death ligand-1 (PD-L1), as well as the formation of STAT3/MMP2 and STAT3/PD-L1 complexes. Altogether, UA exhibits anticancer activities by inhibiting MMP2 and PD-L1 expression through EGFR/JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (D.Y.K.); (N.S.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
12
|
Ryu JH, Kang TY, Shin H, Kim KM, Hong MH, Kwon JS. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Int J Mol Sci 2020; 21:ijms21228501. [PMID: 33198074 PMCID: PMC7696815 DOI: 10.3390/ijms21228501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Min-Ho Hong
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
13
|
Sulfur Compounds Inhibit High Glucose-Induced Inflammation by Regulating NF-κB Signaling in Human Monocytes. Molecules 2020; 25:molecules25102342. [PMID: 32429534 PMCID: PMC7287819 DOI: 10.3390/molecules25102342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/26/2023] Open
Abstract
High glucose-induced inflammation leads to atherosclerosis, which is considered a major cause of death in type 1 and type 2 diabetic patients. Nuclear factor-kappa B (NF-κB) plays a central role in high glucose-induced inflammation and is activated through toll-like receptors (TLRs) as well as canonical and protein kinase C-dependent (PKC) pathways. Non-toxic sulfur (NTS) and methylsulfonylmethane (MSM) are two sulfur-containing natural compounds that can induce anti-inflammation. Using Western blotting, real-time polymerase chain reaction, and flow cytometry, we found that high glucose-induced inflammation occurs through activation of TLRs. An effect of NTS and MSM on canonical and PKC-dependent NF-κB pathways was also demonstrated by western blotting. The effects of proinflammatory cytokines were investigated using a chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. Our results showed inhibition of the glucose-induced expression of TLR2 and TLR4 by NTS and MSM. These sulfur compounds also inhibited NF-κB activity through reactive oxygen species (ROS)-mediated canonical and PKC-dependent pathways. Finally, NTS and MSM inhibited the high glucose-induced expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and binding of NF-κB protein to the DNA of proinflammatory cytokines. Together, these results suggest that NTS and MSM may be potential drug candidates for anti-inflammation therapy.
Collapse
|
14
|
Kang DY, Sp N, Jo ES, Rugamba A, Hong DY, Lee HG, Yoo JS, Liu Q, Jang KJ, Yang YM. The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells. Cancers (Basel) 2020; 12:E727. [PMID: 32204508 PMCID: PMC7140102 DOI: 10.3390/cancers12030727] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear-cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Eun Seong Jo
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Dae Young Hong
- Department of Emergency Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Hong Ghi Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Konkuk University Medical Center, Seoul 05029, Korea;
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-0808, Japan;
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun 130000, Jilin, China;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| |
Collapse
|
15
|
Sp N, Kang DY, Jo ES, Rugamba A, Kim WS, Park YM, Hwang DY, Yoo JS, Liu Q, Jang KJ, Yang YM. Tannic Acid Promotes TRAIL-Induced Extrinsic Apoptosis by Regulating Mitochondrial ROS in Human Embryonic Carcinoma Cells. Cells 2020; 9:E282. [PMID: 31979292 PMCID: PMC7072125 DOI: 10.3390/cells9020282] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
: Human embryonic carcinoma (EC; NCCIT) cells have self-renewal ability and pluripotency. Cancer stem cell markers are highly expressed in NCCIT cells, imparting them with the pluripotent nature to differentiate into other cancer types, including breast cancer. As one of the main cancer stem cell pathways, Wnt/β-catenin is also overexpressed in NCCIT cells. Thus, inhibition of these pathways defines the ability of a drug to target cancer stem cells. Tannic acid (TA) is a natural polyphenol present in foods, fruits, and vegetables that has anti-cancer activity. Through Western blotting and PCR, we demonstrate that TA inhibits cancer stem cell markers and the Wnt/β-catenin signaling pathway in NCCIT cells and through a fluorescence-activated cell sorting analysis we demonstrated that TA induces sub-G1 cell cycle arrest and apoptosis. The mechanism underlying this is the induction of mitochondrial reactive oxygen species (ROS) (mROS), which then induce the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated extrinsic apoptosis pathway instead of intrinsic mitochondrial apoptosis pathway. Moreover, ribonucleic acid sequencing data with TA in NCCIT cells show an elevation in TRAIL-induced extrinsic apoptosis, which we confirm by Western blotting and real-time PCR. The induction of human TRAIL also proves that TA can induce extrinsic apoptosis in NCCIT cells by regulating mROS.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| | - Eun Seong Jo
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea;
| | - Dae-Yong Hwang
- Department of Surgery, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-0808, Japan;
| | - Qing Liu
- Jilin Green food Engineering Research Institute, Changchun 130000, Jilin, China;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (N.S.); (D.Y.K.); (E.S.J.); (A.R.); (W.S.K.)
| |
Collapse
|
16
|
Sp N, Kang DY, Kim DH, Lee HG, Park YM, Kim IH, Lee HK, Cho BW, Jang KJ, Yang YM. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp Ther Med 2019; 19:214-222. [PMID: 31853292 PMCID: PMC6909739 DOI: 10.3892/etm.2019.8196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating SDHA, HPRT1 and p53 expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between p53 and SDHA/HPRT1 expression at a transcriptional level, horse gene sequences of SDHA and HPRT1 were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Do Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Il Ho Kim
- Nara Biotech Co., Ltd., Jeonju, Jeollabuk 54852, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| |
Collapse
|
17
|
A qualitative transcriptional signature for determining the grade of colorectal adenocarcinoma. Cancer Gene Ther 2019; 27:680-690. [PMID: 31595030 DOI: 10.1038/s41417-019-0139-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 01/10/2023]
Abstract
Histological grading (HG) is an important prognostic factor of colorectal adenocarcinoma (CRAC): the high-grade CRAC patients have poorer prognosis after tumor resection. Especially, the high-grade stage II CRAC patients are recommended to receive adjuvant chemotherapy. Due to the subjective nature of HG assessment, it is difficult to achieve consistency among pathologists, which brings patients uncertain grading outcomes and inappropriate treatments. We developed a qualitative transcriptional signature based on the within-sample relative expression orderings (REOs) of gene pairs to discriminate high-grade and low-grade CRAC. Using the stage II-III CRAC samples, we detected gene pairs with stable REOs in the high-grade samples and reversal stable REOs in the low-grade samples, and retained the gene pairs whose specific REO patterns were significantly associated with the disease-free survival of patients by univariate Cox regression model. Then, we used a forward-backward searching procedure to extract gene pairs with the highest concordance index as the final grading signature. Finally, 9 gene pairs (9-GPS) were developed to divide CRAC patients into high-grade and low-grade groups. With the signature, there were more differential expression characteristics between reclassified high-grade and low-grade groups. Significant difference of prognosis between the classified two group patients could be seen in four independent datasets. Additionally, genomic analyses showed that the classified high-grade groups were characterized by hypermutation while classified low-grade groups were characterized by frequent copy number alternations. In conclusion, the 9-GPS can provide an objective and robust grading assessment for CRAC patients, which could assist clinical treatment decision.
Collapse
|
18
|
Targeting of JAK-STAT Signaling in Breast Cancer: Therapeutic Strategies to Overcome Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:271-281. [PMID: 31456189 DOI: 10.1007/978-3-030-20301-6_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapidly emerging ground-breaking discoveries have provided near to complete resolution of breast cancer signaling landscape and scientists have mapped the knowledge gaps associated with proteins encoded by the human genome. Based on the insights gleaned from decades of research, it seems clear that ligands transmit distinct information through specific receptors that is processed into characteristically unique biological outputs. Advances in imaging, structural biology, proteomics and genome editing have helped us to gain new insights into JAK-STAT signaling and how alterations in this pathway contributed to development of breast cancer and metastatic spread. Data obtained through high-throughput technologies has started to shed light on signal-transducer complexes formed during JAK-STAT signaling. Pharmacologists and molecular biologists are focusing on the strategies to therapeutically target this pathway to overcome drug resistance associated with breast cancer.
Collapse
|
19
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
20
|
Kowalska K, Habrowska-Górczyńska DE, Domińska K, Urbanek KA, Piastowska-Ciesielska AW. Methylsulfonylmethane (organic sulfur) induces apoptosis and decreases invasiveness of prostate cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:101-111. [PMID: 30339981 DOI: 10.1016/j.etap.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
A major challenge in the management of prostate cancer (PC) is to limit tumor growth and metastases. Targeted therapies applying natural compounds might be potentially useful in PC treatment. Methylsulfonylmethane (MSM), also known as organic sulfur, is a dietary supplement used for various clinical purposes, mostly known for its anti-inflammatory properties. Therefore, we decided to evaluate the effect of MSM on PC cells LNCaP, PC3 and DU-145 which represent different in vitro models of PC. We observed that MSM decreases the viability and invasiveness of PC cells through the induction of apoptosis and cell cycle arrest in the G0/G1 cell cycle phase. Moreover, MSM in a low dose (200 mM) is able to reduce the migration and invasion of PC cells. Considering the low overall body toxicity and insignificant side effects of MSM, its apoptosis-inducing properties might be used in PC treatment in the future.
Collapse
Affiliation(s)
- Karolina Kowalska
- Laboratory of Cell Cultures and Genomic Analysis, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Dominika Ewa Habrowska-Górczyńska
- Laboratory of Cell Cultures and Genomic Analysis, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Kamila Domińska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Kinga Anna Urbanek
- Laboratory of Cell Cultures and Genomic Analysis, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agnieszka Wanda Piastowska-Ciesielska
- Laboratory of Cell Cultures and Genomic Analysis, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| |
Collapse
|
21
|
Nicolini A, Ferrari P, Rossi G, Carpi A. Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocr Relat Cancer 2018; 25:R577–R604. [PMID: 30306784 DOI: 10.1530/erc-18-0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become clearer that advanced cancer, especially advanced breast cancer, is an entirely displayed pathological system that is much more complex than previously considered. However, the direct relationship between tumour growth and immune evasion can represent a general rule governing the pathological cancer system from the initial cancer cells to when the system is entirely displayed. Accordingly, a refined pathobiological model and a novel therapeutic strategy are proposed. The novel therapeutic strategy is based on therapeutically induced conditions (undetectable tumour burden and/or a prolonged tumour ‘resting state’), which enable an efficacious immune response in advanced breast and other types of solid cancers.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ, Darvin P, Park YM, Yang YM. Nobiletin Inhibits CD36-Dependent Tumor Angiogenesis, Migration, Invasion, and Sphere Formation Through the Cd36/Stat3/Nf-Κb Signaling Axis. Nutrients 2018; 10:nu10060772. [PMID: 29914089 PMCID: PMC6024609 DOI: 10.3390/nu10060772] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
Targeted cancer therapy with natural compounds is more effective than nontargeted therapy. Nobiletin is a flavonoid derived from citrus peel that has anticancer activity. Cluster of differentiation 36 (CD36) is a member of the class B scavenger receptor family that is involved in importing fatty acids into cells. CD36 plays a role in tumor angiogenesis by binding to its ligand, thrombospondin-1 (TSP-1), and then interacting with transforming growth factor beta 1 (TGFβ1). CD36 is implicated in tumor metastasis through its roles in fatty acid metabolism. This study investigated the molecular mechanisms underlying nobiletin's anticancer activity by characterizing its interactions with CD36 as the target molecule. We hypothesize that the anti-angiogenic activity of nobiletin involving its regulation of CD36 via signal transducer and activator of transcription 3 (STAT3) rather than through TSP-1. Gene analysis identified a Gamma interferon activation site (GAS) element in the CD36 gene promoter that acts as a STAT3 binding site, an interaction that was confirmed by ChIP assay. STAT3 interacts with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), suggesting that nobiletin also acts through the CD36/ (STAT3)/NF-κB signaling axis. Nobiletin inhibited CD36-dependent breast cancer cell migration and invasion as well as CD36-mediated tumor sphere formation. Taken together, these results suggest that nobiletin inhibits cancer stem cells in multiple ways.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Doh Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Inha University College of Medicine, 27 Inhang-Ro, Jung Gu, Incheon 400-103, Korea.
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Korea.
| | - Hye Jee Kim
- King's College London GKT School of Medical Education, London SE1 1UL, UK.
| | - Pramod Darvin
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825 Doha, Qatar.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
23
|
Sarkhani E, Najafzadeh N, Tata N, Dastan M, Mazani M, Arzanlou M. Molecular mechanisms of methylsulfonylmethane and allicin in the inhibition of CD44 ± breast cancer cells growth. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
24
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK, Song KD, Park YM, Yang YM. Nobiletin Inhibits Angiogenesis by Regulating Src/FAK/STAT3-Mediated Signaling through PXN in ER⁺ Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18050935. [PMID: 28468300 PMCID: PMC5454848 DOI: 10.3390/ijms18050935] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor angiogenesis is one of the major hallmarks of tumor progression. Nobiletin is a natural flavonoid isolated from citrus peel that has anti-angiogenic activity. Steroid receptor coactivator (Src) is an intracellular tyrosine kinase so that focal adhesion kinase (FAK) binds to Src to play a role in tumor angiogenesis. Signal transducer and activator of transcription 3 (STAT3) is a marker for tumor angiogenesis which interacts with Src. Paxillin (PXN) acts as a downstream target for both FAK and STAT3. The main goal of this study was to assess inhibition of tumor angiogenesis by nobiletin in estrogen receptor positive (ER+) breast cancer cells via Src, FAK, and STAT3-mediated signaling through PXN. Treatment with nobiletin in MCF-7 and T47D breast cancer cells inhibited angiogenesis markers, based on western blotting and RT-PCR. Validation of in vitro angiogenesis in the human umbilical vein endothelial cells (HUVEC) endothelial cell line proved the anti-angiogenic activity of nobiletin. Electrophoretic mobility shift assay and the ChIP assay showed that nobiletin inhibits STAT3/DNA binding activity and STAT3 binding to a novel binding site of the PXN gene promoter. We also investigated the migration and invasive ability of nobiletin in ER+ cells. Nobiletin inhibited tumor angiogenesis by regulating Src, FAK, and STAT3 signaling through PXN in ER+ breast cancer cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Jong Hwan Park
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Wan Seop Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea.
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Korea.
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
26
|
Butawan M, Benjamin RL, Bloomer RJ. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients 2017; 9:E290. [PMID: 28300758 PMCID: PMC5372953 DOI: 10.3390/nu9030290] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Methylsulfonylmethane (MSM) has become a popular dietary supplement used for a variety of purposes, including its most common use as an anti-inflammatory agent. It has been well-investigated in animal models, as well as in human clinical trials and experiments. A variety of health-specific outcome measures are improved with MSM supplementation, including inflammation, joint/muscle pain, oxidative stress, and antioxidant capacity. Initial evidence is available regarding the dose of MSM needed to provide benefit, although additional work is underway to determine the precise dose and time course of treatment needed to provide optimal benefits. As a Generally Recognized As Safe (GRAS) approved substance, MSM is well-tolerated by most individuals at dosages of up to four grams daily, with few known and mild side effects. This review provides an overview of MSM, with details regarding its common uses and applications as a dietary supplement, as well as its safety for consumption.
Collapse
Affiliation(s)
- Matthew Butawan
- Center for Nutraceutical and Dietary Supplement Research, School of Health Studies, The University of Memphis, Memphis, TN 38152, USA.
| | | | - Richard J Bloomer
- Center for Nutraceutical and Dietary Supplement Research, School of Health Studies, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
27
|
Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, Sasidharakurup H, Lee CH, Cho KH, Park KD, Lee HK, Yang YM. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med 2016; 21:720-734. [PMID: 27862996 PMCID: PMC5345631 DOI: 10.1111/jcmm.13015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti-oxidant with anti-proliferative effects on multiple cancers. However, its ability to modulate gene-specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non-canonical STAT pathways to impose the gene-specific induction of G1-arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1-arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non-canonical STAT pathways, each with a specific role in TA-induced anti-cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA-binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1 . However, TA binds to EGF-R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL-2 DNA-binding activity. As a result, the expression and mitochondrial localization of BCl-2 are declined. This altered expression and localization of mitochondrial anti-pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF-R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1-arrest and intrinsic apoptosis in breast carcinomas.
Collapse
Affiliation(s)
- Pramod Darvin
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyo Joo Byun
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Tae Sook Hwang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hema Sasidharakurup
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University), Kollam, India
| | - Chi Ho Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Kwang Hyun Cho
- National Institute of Animal Science, RDA, Cheonan, South Korea
| | - Kyung Do Park
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
28
|
Huo CW, Huang D, Chew GL, Hill P, Vohora A, Ingman WV, Glynn DJ, Godde N, Henderson MA, Thompson EW, Britt KL. Human glandular organoid formation in murine engineering chambers after collagenase digestion and flow cytometry isolation of normal human breast tissue single cells. Cell Biol Int 2016; 40:1212-1223. [PMID: 27590622 DOI: 10.1002/cbin.10675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/28/2016] [Indexed: 11/07/2022]
Abstract
Women with high mammographic density (MD) are at increased risk of breast cancer (BC) after adjustment for age and body mass index. We have developed a murine biochamber model in which both high MD (HMD) and low MD (LMD) tissue can be propagated. Here, we tested whether cells isolated by collagenase digestion and fluorescence-activated cell sorting (FACS) from normal breast can be reconstituted in our biochamber model, which would allow cell-specific manipulations to be tested. Fresh breast tissue was collected from women (n = 7) undergoing prophylactic mastectomy. The tissue underwent collagenase digestion overnight and, in some cases, additional FACS enrichment to obtain mature epithelial, luminal progenitor, mammary stem, and stromal cells. Cells were then transferred bilaterally into biochambers in SCID mice (n = 5-7) and incubated for 6 weeks, before harvesting for histological analyses, and immunohistochemical staining for cytokeratins (CK), vimentin, Ki-67, murine macrophages, and Cleaved Caspase-3. Biochambers inoculated with single cells after collagenase digestion or with flow cytometry contained glandular structures of human origin (human vimentin-positive), which expressed CK-14 and pan-CK, and were proliferating (Ki-67-positive). Glandular structures from the digested tissues were smaller than those in chambers seeded with finely chopped intact mammary tissue. Mouse macrophage infiltration was higher in the chambers arising from digested tissues. Pooled single cells and FACS fractionated cells were viable in the murine biochambers and formed proliferating glandular organoids of human origin. This is among the first report to demonstrate the success of formed human glandular organoids from isolated primary mammary cells in the murine biochamber model.
Collapse
Affiliation(s)
- Cecilia W Huo
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.
| | - Dexing Huang
- St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Grace L Chew
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Prue Hill
- Department of Pathology, St. Vincent's Hospital, Melbourne, Australia
| | - Ambika Vohora
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Wendy V Ingman
- School of Medicine at the Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- School of Medicine at the Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Nathan Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael A Henderson
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Erik W Thompson
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology and Translational Research Institute, Brisbane, Australia
| | - Kara L Britt
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
29
|
Methylsulfonylmethane Induces p53 Independent Apoptosis in HCT-116 Colon Cancer Cells. Int J Mol Sci 2016; 17:ijms17071123. [PMID: 27428957 PMCID: PMC4964498 DOI: 10.3390/ijms17071123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/27/2023] Open
Abstract
Methylsulfonylmethane (MSM) is an organic sulfur-containing compound which has been used as a dietary supplement for osteoarthritis. MSM has been shown to reduce oxidative stress and inflammation, as well as exhibit apoptotic or anti-apoptotic effects depending on the cell type or activating stimuli. However, there are still a lot of unknowns about the mechanisms of actions of MSM. In this study, MSM was tested on colon cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis revealed that MSM inhibited cell viability and increased apoptotic markers in both HCT-116 p53 +/+ and HCT-116 p53 −/− colon cancer cells. Increased poly (ADP-ribose) polymerase (PARP) fragmentation and caspase-3 activity by MSM also supported these findings. MSM also modulated the expression of various apoptosis-related genes and proteins. Moreover, MSM was found to increase c-Jun N-terminal kinases (JNK) phosphorylation in both cell lines, dose-dependently. In conclusion, our results show for the first time that MSM induces apoptosis in HCT-116 colon cancer cells regardless of their p53 status. Since p53 is defective in >50% of tumors, the ability of MSM to induce apoptosis independently of p53 may offer an advantage in anti-tumor therapy. Moreover, the remarkable effect of MSM on Bim, an apoptotic protein, also suggests its potential use as a novel chemotherapeutic agent for Bim-targeted anti-cancer therapies.
Collapse
|