1
|
Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N, Mahimkar MB. Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics 2023; 15:93. [PMID: 37245006 DOI: 10.1186/s13148-023-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis. RESULTS There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls. CONCLUSIONS Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.
Collapse
Affiliation(s)
- Mayuri Inchanalkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Srikant Ambatipudi
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Priyanka G Bhosale
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, King's College London, Tower Wing, London, UK
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
2
|
Mat Lazim N, Yousaf A, Abusalah MAH, Sulong S, Mohd Ismail ZI, Mohamud R, Abu-Harirah HA, AlRamadneh TN, Hassan R, Abdullah B. The Epigenesis of Salivary Glands Carcinoma: From Field Cancerization to Carcinogenesis. Cancers (Basel) 2023; 15:cancers15072111. [PMID: 37046772 PMCID: PMC10093474 DOI: 10.3390/cancers15072111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Salivary gland carcinomas (SGCs) are a diverse collection of malignant tumors with marked differences in biological activity, clinical presentation and microscopic appearance. Although the etiology is varied, secondary radiation, oncogenic viruses as well as chromosomal rearrangements have all been linked to the formation of SGCs. Epigenetic modifications may also contribute to the genesis and progression of SGCs. Epigenetic modifications are any heritable changes in gene expression that are not caused by changes in DNA sequence. It is now widely accepted that epigenetics plays an important role in SGCs development. A basic epigenetic process that has been linked to a variety of pathological as well as physiological conditions including cancer formation, is DNA methylation. Transcriptional repression is caused by CpG islands hypermethylation at gene promoters, whereas hypomethylation causes overexpression of a gene. Epigenetic changes in SGCs have been identified, and they have been linked to the genesis, progression as well as prognosis of these neoplasms. Thus, we conduct a thorough evaluation of the currently known evidence on the involvement of epigenetic processes in SGCs.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anam Yousaf
- Department of Molecular Pathology Laboratory, Pakistan Kidney and Liver Institute and Research Centre, Lahore 54000, Pakistan
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Sarina Sulong
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zul Izhar Mohd Ismail
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rohimah Mohamud
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hashem A. Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Tareq Nayef AlRamadneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Rosline Hassan
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Haematology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
3
|
Prognostic and therapeutic prediction by screening signature combinations from transcriptome-methylome interactions in oral squamous cell carcinoma. Sci Rep 2022; 12:11400. [PMID: 35794182 PMCID: PMC9259703 DOI: 10.1038/s41598-022-15534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
DNA methylation pattern in oral squamous cell carcinoma (OSCC) remains poorly described. This study aimed to perform a genome-wide integrated analysis of the transcriptome and methylome and assess the efficacy of their prognostic signature model in patients with OSCC. We analyzed transcriptome and methylome data from 391 OSCC samples and 41 adjacent normal samples. A total of 8074 differentially expressed genes (DEGs) and 10,084 differentially expressed CpGs (DMCpGs) were identified. Then 241 DEGs with DMCpGs were identified. According to the prognostic analysis, the prognostic signature of methylation-related differentially expressed genes (mrDEGPS) was established. mrDEGPS consisted of seven prognostic methylation-related genes, including ESRRG, CCNA1, SLC20A1, COL6A6, FCGBP, CDKN2A, and ZNF43. mrDEGPS was a significant stratification factor of survival (P < 0.00001) irrespective of the clinical stage. The immune effector components, including B cells, CD4+ T cells, and CD8+ T cells, were decreased in the tumor environment of patients with high mrDEGPS. Immune checkpoint expressions, including CTLA-4, PD-1, LAG3, LGALS9, HAVCR2, and TIGHT, were comprehensively elevated (P < 0.001). The estimated half-maximal inhibitory concentration difference between low- and high-risk patients was inconsistent among chemotherapeutic drugs. In conclusion, the transcriptome–methylome interaction pattern in OSCC is complex. mrDEGPS can predict patient survival and responses to immunotherapy and chemotherapy and facilitate clinical decision-making in patients with OSCC.
Collapse
|
4
|
Hurník P, Chyra Z, Ševčíková T, Štembírek J, Trtková KS, Gaykalova DA, Buchtová M, Hrubá E. Epigenetic Regulations of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848557. [PMID: 35571032 PMCID: PMC9091179 DOI: 10.3389/fgene.2022.848557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Pavel Hurník
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Tereza Ševčíková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Kateřina Smešný Trtková
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and University Hospital Olomouc, Olomouc, Czechia
| | - Daria A. Gaykalova
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland Medical Center, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Li J, Wu Z, Wang J, Wu T, Shen Z, Zhang L, Lv J, Bai J, Feng Y. Necdin, one of the important pathway proteins in the regulation of osteosarcoma progression by microRNA-200c. Bioengineered 2022; 13:8915-8925. [PMID: 35333696 PMCID: PMC9161937 DOI: 10.1080/21655979.2022.2056693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
MicroRNA-200c (miR-200c) generally acts as a tumor suppressor in multiple cancer types and a promising therapeutic target in tumorigenesis. However, only a few studies have explained the role of miR-200c in the development of osteosarcoma (OS). In this study, we investigated the role of miR-200c in OS progression and identified the regulatory pathway protein NDN involved in inhibiting the occurrence and development of OS. Firstly, we found that miR-200c is downregulated in OS cells and tissues. As well, in vitro and in vivo experiments showed that upregulating miR-200c inhibits the proliferation, invasion, metastasis of Saos-2 cells, promotes the apoptosis of Saos-2 cells and suppresses tumor growth in mice, indicating miR-200c plays a major role in regulating the OS progression. Furthermore, bioinformatics analysis showed that an anti-tumor protein, necdin (NDN), might be a potential target by miR-200c. To verify this hypothesis, we measured the expression level of NDN in OS cells and tissues and found NDN is downregulated, suggesting NDN is functional in OS progression. Moreover, we found that the expression levels of NDN and miR-200c in in vivo and in vitro experiments were positively correlated. However, the results of dual-luciferase reporter gene experiment showed miR-200c does not directly act on the 3ʹ untranslated region (UTR) of NDN gene, indicating that NDN might be an important pathway protein which regulates OS progression in the presence of miR-200c. Therefore, miR-200c/NDN could be potential targets for developing effective treatment against OS.
Collapse
Affiliation(s)
- Jian Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Zhuangzhuang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiani Wang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Taiyong Wu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Zhen Shen
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, ShanXi, China
| | - Long Zhang
- Second Clinical Medical College, Xiamen University, Xiamen, Fujian, China
| | - Jia Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junjun Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Feng
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Zhao HB, Zeng YR, Han ZD, Zhuo YJ, Liang YK, Hon CT, Wan S, Wu S, Dahl D, Zhong WD, Wu CL. Novel immune-related signature for risk stratification and prognosis in prostatic adenocarcinoma. Cancer Sci 2021; 112:4365-4376. [PMID: 34252262 PMCID: PMC8486177 DOI: 10.1111/cas.15062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial proportion of prostatic adenocarcinoma (PRAD) patients experience biochemical failure (BCF) after radical prostatectomy (RP). The immune microenvironment plays a vital role in carcinogenesis and the development of PRAD. This study aimed to identify a novel immune-related gene (IRG)-based signature for risk stratification and prognosis of BCF in PRAD. Weighted gene coexpression network analysis was carried out to identify a BCF-related module in a discovery cohort of patients who underwent RP at the Massachusetts General Hospital. The median follow-up time was 70.32 months. Random forest and multivariate stepwise Cox regression analyses were used to identify an IRG-based signature from the specific module. Risk plot analyses, Kaplan-Meier curves, receiver operating characteristic curves, univariate and multivariate Cox regression analyses, stratified analysis, and Harrell's concordance index were used to assess the prognostic value and predictive accuracy of the IRG-based signature in the internal discovery cohort; The Cancer Genome Atlas database was used as a validation cohort. Tumor immune estimation resource database analysis and CIBERSORT algorithm were used to assess the immunophenotype of PRAD. A novel IRG-based signature was identified from the specific module. Five IRGs (BUB1B, NDN, NID1, COL4A6, and FLRT2) were verified as components of the risk signature. The IRG-based signature showed good prognostic value and predictive accuracy in both the discovery and validation cohorts. Infiltrations of various immune cells were significantly different between low-risk and high-risk groups in PRAD. We identified a novel IRG-based signature that could function as an index for assessing tumor immune status and risk stratification in PRAD.
Collapse
Affiliation(s)
- Hai-Bo Zhao
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yan-Ru Zeng
- Department of Anesthesiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Ying-Ke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Chi Tin Hon
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau, China
| | - Song Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Shulin Wu
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas Dahl
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wei-De Zhong
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China.,Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Hier J, Vachon O, Bernstein A, Ibrahim I, Mlynarek A, Hier M, Alaoui-Jamali MA, Maschietto M, da Silva SD. Portrait of DNA methylated genes predictive of poor prognosis in head and neck cancer and the implication for targeted therapy. Sci Rep 2021; 11:10012. [PMID: 33976322 PMCID: PMC8113272 DOI: 10.1038/s41598-021-89476-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
In addition to chronic infection with human papilloma virus (HPV) and exposure to environmental carcinogens, genetic and epigenetic factors act as major risk factors for head and neck cancer (HNC) development and progression. Here, we conducted a systematic review in order to assess whether DNA hypermethylated genes are predictive of high risk of developing HNC and/or impact on survival and outcomes in non-HPV/non-tobacco/non-alcohol associated HNC. We identified 85 studies covering 32,187 subjects where the relationship between DNA methylation, risk factors and survival outcomes were addressed. Changes in DNA hypermethylation were identified for 120 genes. Interactome analysis revealed enrichment in complex regulatory pathways that coordinate cell cycle progression (CCNA1, SFN, ATM, GADD45A, CDK2NA, TP53, RB1 and RASSF1). However, not all these genes showed significant statistical association with alcohol consumption, tobacco and/or HPV infection in the multivariate analysis. Genes with the most robust HNC risk association included TIMP3, DCC, DAPK, CDH1, CCNA1, MGMT, P16, MINT31, CD44, RARβ. From these candidates, we further validated CD44 at translational level in an independent cohort of 100 patients with tongue cancer followed-up beyond 10 years. CD44 expression was associated with high-risk of tumor recurrence and metastasis (P = 0.01) in HPV-cases. In summary, genes regulated by methylation play a modulatory function in HNC susceptibility and it represent a critical therapeutic target to manage patients with advanced disease.
Collapse
Affiliation(s)
- Jessica Hier
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Olivia Vachon
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Allison Bernstein
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Iman Ibrahim
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Alex Mlynarek
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Michael Hier
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre of the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Mariana Maschietto
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP) and Boldrini Children's Center, Campinas, Sao Paulo, Brazil
| | - Sabrina Daniela da Silva
- Department of Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada. .,Segal Cancer Centre of the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Danstrup CS, Marcussen M, Pedersen IS, Jacobsen H, Dybkær K, Gaihede M. DNA methylation biomarkers in peripheral blood of patients with head and neck squamous cell carcinomas. A systematic review. PLoS One 2020; 15:e0244101. [PMID: 33332423 PMCID: PMC7746174 DOI: 10.1371/journal.pone.0244101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinomas (HNSCC) are often diagnosed in advanced stages. In search of new diagnostic tools, focus has shifted towards the biological properties of the HNSCC, and the number of different biomarkers under investigation is rapidly growing. OBJECTIVES The objective was to review the current literature regarding aberrantly methylated DNA found in peripheral blood plasma or serum in patients with HNSCC and to evaluate the diagnostic accuracy of these changes. METHODS The inclusion criteria were clinical studies involving patients with verified HNSCC that reported findings of aberrantly methylated DNA in peripheral blood serum or plasma. We systematically searched PubMed, OVID Embase and Cochrane Library. In addition to the search, we performed forward and backward chaining in references and Web of Science. The protocol was registered in PROSPERO: CRD42019135406. Two authors independently extracted data. The quality and the risk of bias of the included studies were assessed by the QUADAS-2 tool. RESULTS A total of 1,743 studies were found eligible for screening, while ultimately seven studies were included. All studies were found to have methodological weaknesses, mainly concerning patient selection bias. The best individual marker of HNSCC was Septin 9 in plasma with a sensitivity of 57% and a specificity of 95%. CONCLUSIONS None of the aberrantly methylated genes found in the retrieved studies are applicable as single diagnostic markers for HNSCC and the best gene-panels still lack diagnostic accuracy. Future studies may benefit from newer sequencing techniques but validation studies with well-designed cohorts are also needed in the process of developing epigenetic based diagnostic tests for HNSCC.
Collapse
Affiliation(s)
- Christian Sander Danstrup
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Marcussen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Jacobsen
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Gaihede
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
10
|
Rozek LS, Virani S, Bellile EL, Taylor JMG, Sartor MA, Zarins KR, Virani A, Cote C, Worden FP, Mark MEP, McLean SA, Duffy SA, Yoo GH, Saba NF, Shin DM, Kucuk O, Wolf GT. Soy Isoflavone Supplementation Increases Long Interspersed Nucleotide Element-1 (LINE-1) Methylation in Head and Neck Squamous Cell Carcinoma. Nutr Cancer 2019; 71:772-780. [PMID: 30862188 PMCID: PMC6513708 DOI: 10.1080/01635581.2019.1577981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
AIM Soy isoflavones have been suggested as epigenetic modulating agents with effects that could be important in carcinogenesis. Hypomethylation of LINE-1 has been associated with head and neck squamous cell carcinoma (HNSCC) development from oral premalignant lesions and with poor prognosis. To determine if neoadjuvant soy isoflavone supplementation could modulate LINE-1 methylation in HNSCC, we undertook a clinical trial. METHODS Thirty-nine patients received 2-3 weeks of soy isoflavone supplements (300 mg/day) orally prior to surgery. Methylation of LINE-1, and 6 other genes was measured by pyrosequencing in biopsy, resection, and whole blood (WB) specimens. Changes in methylation were tested using paired t tests and ANOVA. Median follow up was 45 months. RESULTS LINE-1 methylation increased significantly after soy isoflavone (P < 0.005). Amount of change correlated positively with days of isoflavone taken (P = 0.04). Similar changes were not seen in corresponding WB samples. No significant changes in tumor or blood methylation levels were seen in the other candidate genes. CONCLUSION This is the first demonstration of in vivo increases in tissue-specific global methylation associated with soy isoflavone intake in patients with HNSCC. Prior associations of LINE-1 hypomethylation with genetic instability, carcinogenesis, and prognosis suggest that soy isoflavones maybe potential chemopreventive agents in HNSCC.
Collapse
Affiliation(s)
- Laura S Rozek
- a University of Michigan , Ann Arbor , Michigan, USA
| | - Shama Virani
- a University of Michigan , Ann Arbor , Michigan, USA
| | | | | | | | | | - A Virani
- a University of Michigan , Ann Arbor , Michigan, USA
| | - C Cote
- a University of Michigan , Ann Arbor , Michigan, USA
| | | | | | | | | | - George H Yoo
- c Karmanos Cancer Institute , Wayne State University , Detroit , Michigan 48201, USA
| | - Nabil F Saba
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | - Dong M Shin
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | - Omer Kucuk
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | | |
Collapse
|
11
|
Wolf GT, Moyer JS, Kaplan MJ, Newman JG, Egan JE, Berinstein NL, Whiteside TL. IRX-2 natural cytokine biologic for immunotherapy in patients with head and neck cancers. Onco Targets Ther 2018; 11:3731-3746. [PMID: 29988729 PMCID: PMC6029613 DOI: 10.2147/ott.s165411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an immunosuppressive malignancy characterized by tumor-driven immune-system abnormalities that contribute to disease progression. For patients with surgically resectable HNSCC, treatment is often curative surgery followed by irradiation or chemoradiation in high-risk settings to reduce the risk of recurrence. Poor survival and considerable morbidity of current treatments suggest the need for new therapeutic modalities that can improve outcomes. Defects in antitumor immunity of HNSCC patients include suppressed dendritic cell (DC) maturation, deficient antigen-presenting cell function, compromised natural killer (NK)-cell cytotoxicity, increased apoptosis of activated T lymphocytes, and impaired immune-cell migration to tumor sites. Strategies for relieving immunosuppression and restoring antitumor immune functions could benefit HNSCC patients. IRX-2 is a primary cell-derived biologic consisting of physiologic levels of T-helper type 1 cytokines produced by stimulating peripheral blood mononuclear cells of normal donors with phytohemagglutinin. The primary active components in IRX-2 are IL2, IL1β, IFNγ, and TNFα. In vitro, IRX-2 acts on multiple immune-system cell types, including DCs, T cells, and NK cells, to overcome tumor-mediated immunosuppression. In clinical settings, IRX-2 is administered as part of a 21-day neoadjuvant regimen, which includes additional pharmacologic agents (low-dose cyclophosphamide, indomethacin, and zinc) to promote anticancer immunoresponses. In a Phase IIA trial in 27 patients with surgically resectable, previously untreated HNSCC, neoadjuvant IRX-2 increased infiltration of T cells, B cells, and DCs into tumors and was associated with radiological reductions in tumor size. Event-free survival was 64% at 2 years, and overall 5-year survival was 65%. Follow-up and data analysis are under way in the multicenter, randomized, Phase IIB INSPIRE trial evaluating the IRX-2 regimen as a stand-alone therapy for activating the immune system to recognize and attack tumors.
Collapse
Affiliation(s)
- Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI,
| | - Jeffrey S Moyer
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI,
| | - Michael J Kaplan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University Medical Center, Stanford, CA
| | - Jason G Newman
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Theresa L Whiteside
- Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Nikolic N, Carkic J, Ilic Dimitrijevic I, Eljabo N, Radunovic M, Anicic B, Tanic N, Falk M, Milasin J. P14 methylation: an epigenetic signature of salivary gland mucoepidermoid carcinoma in the Serbian population. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:52-58. [DOI: 10.1016/j.oooo.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022]
|
13
|
Hoban CW, Beesley LJ, Bellile EL, Sun Y, Spector ME, Wolf GT, Taylor JMG, Shuman AG. Individualized outcome prognostication for patients with laryngeal cancer. Cancer 2017; 124:706-716. [PMID: 29112231 DOI: 10.1002/cncr.31087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Accurate prognostication is essential to the optimal management of laryngeal cancer. Predictive models have been developed to calculate the risk of oncologic outcomes, but extensive external validation of accuracy and reliability is necessary before implementing them into clinical practice. METHOD Four published prognostic calculators that predict 5-year overall survival for patients with laryngeal cancer were evaluated using patient information from a prospective epidemiology study cohort (n = 246; median follow-up, 60 months) with previously untreated, stage I through IVb laryngeal squamous cell carcinoma. RESULTS Different calculators yielded substantially different predictions for individual patients. The observed 5-year overall survival was significantly higher than the averaged predicted 5-year overall survival of the 4 calculators (71.9%; 95% confidence interval [CI], 65%-78%] vs 47.7%). Statistical analyses demonstrated the calculators' limited capacity to discriminate outcomes for risk-stratified patients. The area under the receiver operating characteristic curve ranged from 0.68 to 0.72. C-index values were similar for each of the 4 models (range, 0.66-0.68). There was a lower than expected hazard of death for patients who received induction (bioselective) chemotherapy (hazard ratio, 0.46; 95% CI, 0.24-0.88; P = .024) or primary surgical intervention (hazard ratio, 0.43; 95 % CI, 0.21-0.90; P = .024) compared with those who received concurrent chemoradiation. CONCLUSIONS Suboptimal reliability and accuracy limit the integration of existing individualized prediction tools into routine clinical decision making. The calculators predicted significantly worse than observed survival among patients who received induction chemotherapy and primary surgery, suggesting a need for updated consideration of modern treatment modalities. Further development of individualized prognostic calculators may improve risk prediction, treatment planning, and counseling for patients with laryngeal cancer. Cancer 2018;124:706-16. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Connor W Hoban
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lauren J Beesley
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Emily L Bellile
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Yilun Sun
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Matthew E Spector
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Gregory T Wolf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeremy M G Taylor
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Andrew G Shuman
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
14
|
Iida T, Iwanami A, Sanosaka T, Kohyama J, Miyoshi H, Nagoshi N, Kashiwagi R, Toyama Y, Matsumoto M, Nakamura M, Okano H. Whole-Genome DNA Methylation Analyses Revealed Epigenetic Instability in Tumorigenic Human iPS Cell-Derived Neural Stem/Progenitor Cells. Stem Cells 2017; 35:1316-1327. [PMID: 28142229 DOI: 10.1002/stem.2581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Although human induced pluripotent stem cell (hiPSC) derivatives are considered promising cellular resources for regenerative medicine, their tumorigenicity potentially limits their clinical application in hiPSC technologies. We previously demonstrated that oncogenic hiPSC-derived neural stem/progenitor cells (hiPSC-NS/PCs) produced tumor-like tissues that were distinct from teratomas. To gain insight into the mechanisms underlying the regulation of tumorigenicity in hiPSC-NS/PCs, we performed an integrated analysis using the Infinium HumanMethylation450 BeadChip array and the HumanHT-12 v4.0 Expression BeadChip array to compare the comprehensive DNA methylation and gene expression profiles of tumorigenic hiPSC-NS/PCs (253G1-NS/PCs) and non-tumorigenic cells (201B7-NS/PCs). Although the DNA methylation profiles of 253G1-hiPSCs and 201B7-hiPSCs were similar regardless of passage number, the methylation status of the global DNA methylation profiles of 253G1-NS/PCs and 201B7-NS/PCs differed; the genomic regions surrounding the transcriptional start site of the CAT and PSMD5 genes were hypermethylated in 253G1-NS/PCs but not in 201B7-NS/PCs. Interestingly, the aberrant DNA methylation profile was more pronounced in 253G1-NS/PCs that had been passaged more than 15 times. In addition, we identified aberrations in DNA methylation at the RBP1 gene locus; the DNA methylation frequency in RBP1 changed as 253G1-NS/PCs were sequentially passaged. These results indicate that different NS/PC clones have different DNA methylomes and that DNA methylation patterns are unstable as cells are passaged. Therefore, DNA methylation profiles should be included in the criteria used to evaluate the tumorigenicity of hiPSC-NS/PCs in the clinical setting. Stem Cells 2017;35:1316-1327.
Collapse
Affiliation(s)
- Tsuyoshi Iida
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Akio Iwanami
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Rei Kashiwagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
15
|
Dbeis R, Smart NJ, Daniels IR. Focusing the management of rectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2017; 4:521. [PMID: 28149883 DOI: 10.21037/atm.2016.11.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rectal cancer treatment has undergone major changes over the last 15 years with a focus on individualized care based around MRI assessment of the relationship of the tumour to the mesorectal fascia, improved surgical techniques and targeted use of pre-operative oncological therapies in patients with locally advanced disease. The recognition that some tumours responded completely to pre-operative chemoradiotherapy, and the selective use of a non-operative policy has led to a quest to further identify those patients and their tumour in whom this approach could be used, irrespective of MRI stage. With no clear patient factors identified, the tumour and its gene expression has become a target for research to identify individual single-nucleotide polymorphisms, which may indicate a response to specific treatment, or not. To date some agents have been identified and trialed, such as cetuximab, with individual tumours being assessed for response allowing directed treatment. The reviewed paper by Sebio and colleagues report a study that links polymorphisms in the DNA repair gene XRCC1 with response to neoadjuvant 5-Fluorouracil treatment in rectal cancer patients. However, genetic heterogeneity alone may not explain the variations of drug response and environmental factors may lead to epigenetic effects and therefore alter responses. Therefore whilst this study demonstrates the impact of different single nucleotide polymorphisms (SNPs), it is only one step forward, but perhaps a step in the right direction.
Collapse
Affiliation(s)
- Rachel Dbeis
- University of Exeter Medical School, St Lukes Campus, Exeter, Devon, UK
| | - Neil J Smart
- Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon & Exeter Hospital, Exeter, Devon, UK
| | - Ian R Daniels
- Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon & Exeter Hospital, Exeter, Devon, UK
| |
Collapse
|
16
|
Prince V, Bellile EL, Sun Y, Wolf GT, Hoban CW, Shuman AG, Taylor JMG. Individualized risk prediction of outcomes for oral cavity cancer patients. Oral Oncol 2016; 63:66-73. [PMID: 27939002 DOI: 10.1016/j.oraloncology.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Optimal management of oral cancer relies upon accurate and individualized risk prediction of relevant clinical outcomes. Individualized prognostic calculators have been developed to guide patient-physician communication and treatment-related decision-making. However it is critical to scrutinize their accuracy prior to integrating into clinical care. AIM To compare and evaluate oral cavity cancer prognostic calculators using an independent dataset. METHODS Five prognostic calculators incorporating patient and tumor characteristics were identified that evaluated five-year overall survival. A total of 505 patients with previously untreated oral cancer diagnosed between 2003 and 2014 were analyzed. Calculators were applied to each patient to generate individual predicted survival probabilities. Predictions were compared among prognostic tools and with observed outcomes using Kaplan-Meier plots, ROC curves and calibration plots. RESULTS Correlation between the five calculators varied from 0.59 to 0.86. There were considerable differences between individual predictions from pairs of calculators, with as many as 64% of patients having predictions that differed by more than 10%. Four of five calculators were well calibrated. For all calculators the predictions were associated with survival outcomes. The area under the ROC curve ranged from 0.65 to 0.71, with C-indices ranging from 0.63 to 0.67. An average of the 5 predictions had slightly better performance than any individual calculator. CONCLUSION Five prognostic calculators designed to predict individual outcomes of oral cancer differed significantly in their assessments of risk. Most were well calibrated and had modest discriminatory ability. Given the increasing importance of individualized risk prediction, more robust models are needed.
Collapse
Affiliation(s)
- Victoria Prince
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Emily L Bellile
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yilun Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Connor W Hoban
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Andrew G Shuman
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jeremy M G Taylor
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
DNA methylation-based variation between human populations. Mol Genet Genomics 2016; 292:5-35. [PMID: 27815639 DOI: 10.1007/s00438-016-1264-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Collapse
|
18
|
Beesley LJ, Bartlett JW, Wolf GT, Taylor JMG. Multiple imputation of missing covariates for the Cox proportional hazards cure model. Stat Med 2016; 35:4701-4717. [PMID: 27439726 DOI: 10.1002/sim.7048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 06/07/2016] [Accepted: 06/27/2016] [Indexed: 11/07/2022]
Abstract
We explore several approaches for imputing partially observed covariates when the outcome of interest is a censored event time and when there is an underlying subset of the population that will never experience the event of interest. We call these subjects 'cured', and we consider the case where the data are modeled using a Cox proportional hazards (CPH) mixture cure model. We study covariate imputation approaches using fully conditional specification. We derive the exact conditional distribution and suggest a sampling scheme for imputing partially observed covariates in the CPH cure model setting. We also propose several approximations to the exact distribution that are simpler and more convenient to use for imputation. A simulation study demonstrates that the proposed imputation approaches outperform existing imputation approaches for survival data without a cure fraction in terms of bias in estimating CPH cure model parameters. We apply our multiple imputation techniques to a study of patients with head and neck cancer. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lauren J Beesley
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A..
| | | | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Jeremy M G Taylor
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A
| |
Collapse
|