1
|
Fu K, Su J, Zhou Y, Chen X, Hu X. The role of epigenetic regulation in pancreatic ductal adenocarcinoma progression and drug response: an integrative genomic and pharmacological prognostic prediction model. Front Pharmacol 2024; 15:1498031. [PMID: 39640482 PMCID: PMC11618540 DOI: 10.3389/fphar.2024.1498031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with poor prognosis. Epigenetic dysregulation plays a crucial role in PDAC progression, but its comprehensive landscape and clinical implications remain unclear. Methods We integrated single-cell RNA sequencing, bulk RNA sequencing, and clinical data from multiple public databases. Single-cell analysis was performed using Seurat and hdWGCNA packages to reveal cell heterogeneity and epigenetic features. Weighted gene co-expression network analysis (WGCNA) identified key epigenetic modules. A machine learning-based prognostic model was constructed using multiple algorithms, including Lasso and Random Survival Forest. We further analyzed mutations, immune microenvironment, and drug sensitivity associated with the epigenetic risk score. Results Single-cell analysis revealed distinct epigenetic patterns across different cell types in PDAC. WGCNA identified key modules associated with histone modifications and DNA methylation. Our machine learning model, based on 17 epigenetic genes, showed robust prognostic value (AUC >0.7 for 1-, 3-, and 5-year survival) and outperformed existing models. High-risk patients exhibited distinct mutation patterns, including higher frequencies of KRAS and TP53 mutations. Low-risk patients showed higher immune and stromal scores, with increased infiltration of CD8+ T cells and M2 macrophages. Drug sensitivity analysis revealed differential responses to various therapeutic agents between high- and low-risk groups, with low-risk patients showing higher sensitivity to EGFR and MEK inhibitors. Conclusion Our study provides a comprehensive landscape of epigenetic regulation in PDAC at single-cell resolution and establishes a robust epigenetics-based prognostic model. The integration of epigenetic features with mutation profiles, immune microenvironment, and drug sensitivity offers new insights into PDAC heterogeneity and potential therapeutic strategies. These findings pave the way for personalized medicine in PDAC management and highlight the importance of epigenetic regulation in cancer research.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
3
|
Shan Y, Teng Y, Guan C, Mao Z, Lu C, Ding W, Zhang J. Combined ultrasound endoscopy-guided fine-needle aspiration with DNA methylation of SHOX2 and RASSF1A genes to enhance the auxiliary diagnostic precision of pancreatic cancer. Heliyon 2024; 10:e34028. [PMID: 39071574 PMCID: PMC11282983 DOI: 10.1016/j.heliyon.2024.e34028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The purpose of this study was to assess the influence and the clinical effectiveness of the short stature homeobox 2 (SHOX2) and ras association domain family 1A (RASSF1A) genes by tissue sampling through ultrasound endoscopy-guided fine-needle aspiration (EUS-FNA) as auxiliary diagnostic tools for pancreatic cancer (PC). Methylation markers were detected in 96 patients using real-time fluorescence quantitative PCR (qPCR), and the performance of this diagnostic assay was compared with CA19-9, CEA, and puncture fluid-based exfoliative cytology using receiver operating characteristic curve (ROC) analysis. The PC group exhibited higher methylation rates for SHOX2, RASSF1A, and the combined assay of both genes compared to the control group (95.7 % vs. 54.0 %, 78.3 % vs. 36.0 %, and 73.9 % vs. 16.0 %, P < 0.05). The areas under the ROC curve (AUC) for CA19-9, CEA, liquid-based exfoliative cytology, SHOX2, RASSF1A, the combination of SHOX2 and RASSF1A, the combination assay with CEA, CA19-9, and liquid-based exfoliative cytology were 0.827, 0.692, 0.767, 0.770, 0.732, 0.870, 0.870, 0.933, and 0.900, respectively. Therefore, the methylation assay based on the combined SHOX2 and RASSF1A genes in EUS-FNA puncture fluid is more effective than using a single gene, liquid-based exfoliative cytology, or intravenous tumor markers for diagnosing PC. Combining the conventional marker CA19-9 enhances the diagnostic value, making it a promising approach to complement histology and cytology.
Collapse
Affiliation(s)
- Yangyang Shan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
- Department of General Practice, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226006, PR China
| | - Ying Teng
- Department of General Practice Medicine, and Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Chengqi Guan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Zhenbiao Mao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Weifeng Ding
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, PR China
| |
Collapse
|
4
|
Weidle UH, Nopora A. CircRNAs in Pancreatic Cancer: New Tools for Target Identification and Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:327-349. [PMID: 38944427 PMCID: PMC11215428 DOI: 10.21873/cgp.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
5
|
Mashayekhi M, Asadi M, Hashemzadeh S, Vahedi A, Shanehbandi D, Al-Omar AF, Akbari M, Raeisi M. Promoter methylation levels of RASSF1 and ATIC genes are associated with lung cancer in Iranian patients. Horm Mol Biol Clin Investig 2023:hmbci-2022-0007. [PMID: 36584330 DOI: 10.1515/hmbci-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Epigenetic alterations like methylation of tumor suppressor genes or oncogenes, in respiratory epithelium have been associated with lung cancer. Hypermethylation of genes promoter is an epigenetic event, and is responsible to tumor suppressor genes inactivation as well as oncogenes activation. This study aimed to assess the role of methylation status in promoter of RASSF1 and ATIC genes their potential implication in the pathogenesis of lung tumor in Iranian patients. METHODS In this study, we collected 100 tissue samples (50 lung cancer tissues and 50 adjacent non-cancerous lung tissues) from Iranian lung cancer patients. The genomic DNA was extracted, and methylation status of both RASSF1 and ATIC genes was investigated by methylation-sensitive high-resolution melting (MS-HRM) assay technique and Real-Time PCR. Cancer Genome Atlas (TCGA) dataset was also analyzed for further validation of the gene's methylation. RESULTS Methylation of RASSF1 gene promoter was significantly higher in lung tumor tissues. However, promoter methylation levels of ATIC gene was significantly lower in lung tumor tissues. These results were additionally confirmed by TCGA analysis. Promoter methylation of both RASSF1 and ATIC genes was significantly associated with lymph node metastasis, and clinical stage of lung cancer. The receiver operating characteristic (ROC) curve analysis indicated a high accuracy of promoter methylation in these genes as a diagnostic biomarker for lung cancer. CONCLUSIONS Methylation levels of both RASSF1 and ATIC genes promoters were associated with lung cancer pathogenesis in Iranian population, and may be a suitable biomarker for diagnosis and prognosis of lung cancer in early stage of tumorigenesis.
Collapse
Affiliation(s)
- Mahsa Mashayekhi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Shahriar Hashemzadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Vahedi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Faris Al-Omar
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Asano G, Miyabe K, Kato H, Yoshida M, Sawada T, Okamoto Y, Sahashi H, Atsuta N, Kachi K, Kato A, Jinno N, Natsume M, Hori Y, Naitoh I, Hayashi K, Matsuo Y, Takahashi S, Suzuki H, Kataoka H. Relevance of gene mutations and methylation to the growth of pancreatic intraductal papillary mucinous neoplasms based on pyrosequencing. Sci Rep 2022; 12:419. [PMID: 35013462 PMCID: PMC8748617 DOI: 10.1038/s41598-021-04335-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
We aimed to assess some of the potential genetic pathways for cancer development from non-malignant intraductal papillary mucinous neoplasm (IPMN) by evaluating genetic mutations and methylation. In total, 46 dissected regions in 33 IPMN cases were analyzed and compared between malignant-potential and benign cases, or between malignant-potential and benign tissue dissected regions including low-grade IPMN dissected regions accompanied by malignant-potential regions. Several gene mutations, gene methylations, and proteins were assessed by pyrosequencing and immunohistochemical analysis. RASSF1A methylation was more frequent in malignant-potential dissected regions (p = 0.0329). LINE-1 methylation was inversely correlated with GNAS mutation (r = - 0.3739, p = 0.0105). In cases with malignant-potential dissected regions, GNAS mutation was associated with less frequent perivascular invasion (p = 0.0128), perineural invasion (p = 0.0377), and lymph node metastasis (p = 0.0377) but significantly longer overall survival, compared to malignant-potential cases without GNAS mutation (p = 0.0419). The presence of concordant KRAS and GNAS mutations in the malignant-potential and benign dissected regions were more frequent among branch-duct IPMN cases than among the other types (p = 0.0319). Methylation of RASSF1A, CDKN2A, and LINE-1 and GNAS mutation may be relevant to cancer development, IPMN subtypes, and cancer prognosis.
Collapse
Affiliation(s)
- Go Asano
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Katsuyuki Miyabe
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
- Department of Gastroenterology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, 466-8650, Japan.
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takeshi Sawada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yasuyuki Okamoto
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hidenori Sahashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Naoki Atsuta
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Kenta Kachi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Akihisa Kato
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Naruomi Jinno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
7
|
Human chromosome 3p21.3 carries TERT transcriptional regulators in pancreatic cancer. Sci Rep 2021; 11:15355. [PMID: 34321527 PMCID: PMC8319171 DOI: 10.1038/s41598-021-94711-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Frequent loss of heterozygosity (LOH) on the short arm of human chromosome 3 (3p) region has been found in pancreatic cancer (PC), which suggests the likely presence of tumor suppressor genes in this region. However, the functional significance of LOH in this region in the development of PC has not been clearly defined. The human telomerase reverse transcriptase gene (hTERT) contributes to unlimited proliferative and tumorigenicity of malignant tumors. We previously demonstrated that hTERT expression was suppressed by the introduction of human chromosome 3 in several cancer cell lines. To examine the functional role of putative TERT suppressor genes on chromosome 3 in PC, we introduced an intact human chromosome 3 into the human PK9 and murine LTPA PC cell lines using microcell-mediated chromosome transfer. PK9 microcell hybrids with an introduced human chromosome 3 showed significant morphological changes and rapid growth arrest. Intriguingly, microcell hybrid clones of LTPA cells with an introduced human chromosome 3 (LTPA#3) showed suppression of mTert transcription, cell proliferation, and invasion compared with LTPA#4 cells containing human chromosome 4 and parental LTPA cells. Additionally, the promoter activity of mTert was downregulated in LTPA#3. Furthermore, we confirmed that TERT regulatory gene(s) are present in the 3p21.3 region by transfer of truncated chromosomes at arbitrary regions. These results provide important information on the functional significance of the LOH at 3p for development and progression of PC.
Collapse
|
8
|
Citron F, Fabris L. Targeting Epigenetic Dependencies in Solid Tumors: Evolutionary Landscape Beyond Germ Layers Origin. Cancers (Basel) 2020; 12:cancers12030682. [PMID: 32183227 PMCID: PMC7140038 DOI: 10.3390/cancers12030682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive efforts recently witnessed the complexity of cancer biology; however, molecular medicine still lacks the ability to elucidate hidden mechanisms for the maintenance of specific subclasses of rare tumors characterized by the silent onset and a poor prognosis (e.g., ovarian cancer, pancreatic cancer, and glioblastoma). Recent mutational fingerprints of human cancers highlighted genomic alteration occurring on epigenetic modulators. In this scenario, the epigenome dependency of cancer orchestrates a broad range of cellular processes critical for tumorigenesis and tumor progression, possibly mediating escaping mechanisms leading to drug resistance. Indeed, in this review, we discuss the pivotal role of chromatin remodeling in shaping the tumor architecture and modulating tumor fitness in a microenvironment-dependent context. We will also present recent advances in the epigenome targeting, posing a particular emphasis on how this knowledge could be translated into a feasible therapeutic approach to individualize clinical settings and improve patient outcomes.
Collapse
Affiliation(s)
- Francesca Citron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: ; Tel.: +1-713-563-5635
| |
Collapse
|
9
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Haddadi-Aghdam M, Teimoori-Toolabi L, Tavangar SM. Hypermethylated RASSF1 and SLC5A8 promoters alongside BRAF V600E mutation as biomarkers for papillary thyroid carcinoma. J Cell Physiol 2020; 235:6954-6968. [PMID: 32017063 DOI: 10.1002/jcp.29591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been considered as a diagnostic source to track genetic and epigenetic alterations in cancer. We aimed to study mutation in addition to the methylation status in the promoter regions of RASSF1 and SLC5A8 genes in tissues and circulating free DNA samples of patients affected with papillary thyroid carcinoma (PTC) and thyroid nodules as controls. BRAFV600E mutation was studied by ARMS-scorpion real-time polymerase chain reaction method in 57 PTC and 45 thyroid nodule cases. Methylation status of RASSF1 and SLC5A8 promoter regions was analyzed by methylation-specific high-resolution melting curve analysis. BRAFV600E mutation was found in 39 (68.4%) out of 57 PTC tissue samples, while in 33 (49.1%) cases of cfDNA, this mutation was detected. The frequency of BRAFV600E mutation in cfDNA was significantly different between metastatic and nonmetastatic PTC cases (22 of 33 PTC cases vs. 5 of 34 thyroid nodule samples). Methylation levels of three promoter regions of SLC5A8 and proximal promoter region of RASSF1 was significantly different between PTC and thyroid nodule cases in both cfDNA and tissue DNA. In addition, the methylation status of these two genes in tissue DNA was reflected in methylation status observed in cfDNA. This study confirmed that BRAFV600E mutation is better for discrimination between papillary thyroid carcinoma and thyroid nodules. On the other hand, hypermethylation in the more proximal promoter regions to RASSF1 and SLC5A8 genes showed higher sensitivity and more acceptable specificity for this discrimination.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Haddadi-Aghdam
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed M Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rice A, Del Rio Hernandez A. The Mutational Landscape of Pancreatic and Liver Cancers, as Represented by Circulating Tumor DNA. Front Oncol 2019; 9:952. [PMID: 31608239 PMCID: PMC6769086 DOI: 10.3389/fonc.2019.00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.
Collapse
Affiliation(s)
- Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
11
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Saffar H, Shafiee G, Mossafa A, Tavangar SM. Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:290-298. [PMID: 31754358 PMCID: PMC6824767 DOI: 10.30699/ijp.2019.94401.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & OBJECTIVE Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. METHODS In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls. RESULTS Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001). CONCLUSION RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mossafa
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Malpeli G, Innamorati G, Decimo I, Bencivenga M, Nwabo Kamdje AH, Perris R, Bassi C. Methylation Dynamics of RASSF1A and Its Impact on Cancer. Cancers (Basel) 2019; 11:959. [PMID: 31323949 PMCID: PMC6678546 DOI: 10.3390/cancers11070959] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
5-methyl cytosine (5mC) is a key epigenetic mark entwined with gene expression and the specification of cellular phenotypes. Its distribution around gene promoters sets a barrier for transcriptional enhancers or inhibitor proteins binding to their target sequences. As a result, an additional level of regulation is added to the signals that organize the access to the chromatin and its structural components. The tumor suppressor gene RASSF1A is a microtubule-associated and multitasking scaffold protein communicating with the RAS pathway, estrogen receptor signaling, and Hippo pathway. RASSF1A action stimulates mitotic arrest, DNA repair and apoptosis, and controls the cell cycle and cell migration. De novo methylation of the RASSF1A promoter has received much attention due to its increased frequency in most cancer types. RASSF1A methylation is preceded by histones modifications and could represent an early molecular event in cell transformation. Accordingly, RASSF1A methylation is proposed as an epigenetic candidate marker in many cancer types, even though an inverse correlation of methylation and expression remains to be fully ascertained. Some findings indicate that the epigenetic abrogation of RASSF1A can promote the alternative expression of the putative oncogenic isoform RASSF1C. Understanding the complexity and significance of RASSF1A methylation is instrumental for a more accurate determination of its biological and clinical role. The review covers the molecular events implicated in RASSF1A methylation and gene silencing and provides a deeper view into the significance of the RASSF1A methylation patterns in a number of gastrointestinal cancer types.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, 37134 Verona, Italy.
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy.
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Department of Medicine, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Maria Bencivenga
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, 37134 Verona, Italy
| | | | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Claudio Bassi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, 37134 Verona, Italy
| |
Collapse
|
13
|
Yeung YT, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A, Argüelles S. Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacol Res 2019; 143:151-165. [PMID: 30910741 DOI: 10.1016/j.phrs.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Human beings are facing emerging degenerative and cancer diseases, in large part, as a consequence of increased life expectancy. In the near future, researchers will have to put even more effort into fighting these new challenges, one of which will be prevention of cancer while continuing to improve the aging process through this increased life expectancy. In the last few decades, relevance of the Hippo pathway on cancer has become an important study since it is a major regulator of organ size control and proliferation. However, its deregulation can induce tumors throughout the body by regulating cell proliferation, disrupting cell polarity, releasing YAP and TAZ from the Scribble complexes and facilitating survival gene expression via activation of TEAD transcription factors. This pathway is also involved in some of the most important mechanisms that control the aging processes, such as the AMP-activated protein kinase and sirtuin pathways, along with autophagy and oxidative stress response/antioxidant defense. This could be the link between two tightly connected processes that could open a broader range of targeted molecular therapies to fight aging and cancer. Therefore, available knowledge of the processes involved in the Hippo pathway during aging and cancer must necessarily be well understood.
Collapse
Affiliation(s)
- Yiu To Yeung
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Mercedes Cano
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Mario F Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antonio Ayala
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
14
|
Nikbakht Dastjerdi M, Azarnezhad A, Hashemibeni B, Salehi M, Kazemi M, Babazadeh Z. An Effective Concentration of 5-Aza-CdR to Induce Cell Death and Apoptosis in Human Pancreatic Cancer Cell Line through Reactivating RASSF1A and Up-Regulation of Bax Genes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:533-540. [PMID: 30214106 PMCID: PMC6123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Promoter hyper-methylation of tumor suppressor genes is a common event that occurs in cancer. As methylation is a reversible modification, agents capable of reversing an abnormal methylation status should help to combat cancer. 5-Aza-CdR is a DNA methyl-transferase inhibitor. The present study aimed to evaluate the effect of 5-Aza-CdR on the proliferation of human pancreatic cancer cell line (PANC-1) and the expression of RASSF1A and Bax genes. METHODS PANC-1 cells were cultured and treated with 5 and 10 µM/L of 5-Aza-CdR for 24, 48, 72, and 96 hours and the percentages of cell viability and apoptosis were measured by MTT and flow cytometry. RASSF1A gene promoter methylation was assessed by methyl-specific primer-PCR (MSP-PCR) and the expression of RASSF1A and Bax genes was measured using quantitative real-time PCR (qPCR). All quantitative data are presented as mean±SD (standard deviation). The one-way analysis of variance (ANOVA) with the LSD post hoc test was performed for statistical analysis using the SPSS software package, version 16.0. RESULTS 3-[4,5-dimethythiaziazol-2yl]-2,5-diphenyl tetrazoliumbr omide (MTT) assay revealed that 5-Aza-CdR significantly inhibit the growth and proliferation of PANC-1. The flow cytometry results showed over 40% and 70% of early and late apoptotic cells after treatment with 5 and 10 µm/L of 5-Aza-CdR, respectively. MSP-PCR data indicated that the treatment of cells with 10 µm/L 5-Aza-CdR resulted in partial demethylation of RASSF1A gene promoter. qPCR results showed significant re-expression of RASSF1A and up-regulation of Bax genes after 96 hours treatment of cells with 10 µm/L 5-Aza-CdR versus control cells (P<0.01). CONCLUSION The result demonstrated that 5 and 10 µM of 5-Aza-CdR induce cell death and apoptosis by epigenetic reactivation of RASSF1A and up-regulation of Bax genes.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran;
,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mansour Salehi
- Department of Molecular Biology, Isfahan University of Medical Science, Iran;
| | - Mohammad Kazemi
- Department of Molecular Biology, Isfahan University of Medical Science, Iran;
| | - Zahra Babazadeh
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
,Department of Anatomical Sciences, Faculty of Medicine, Babol University of MedicalSciences, Babol, Iran
| |
Collapse
|