1
|
Liu AB, Liu J, Wang S, Ma L, Zhang JF. Biological role and expression of translationally controlled tumor protein (TCTP) in tumorigenesis and development and its potential for targeted tumor therapy. Cancer Cell Int 2024; 24:198. [PMID: 38835077 DOI: 10.1186/s12935-024-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Sheng Wang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
2
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
3
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Zhang W, Yang C, Zou L, Zang Y, Hu J, Hu Y, Xu C, Liu R, Wang H, Xiong Z. Combining MTI-31 with RAD001 inhibits tumor growth and invasion of kidney cancer by activating autophagy. J Appl Genet 2024; 65:103-112. [PMID: 37932653 DOI: 10.1007/s13353-023-00796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
At most of the times, patients who are diagnosed with kidney cancer should be provided with systemic treatment as drug resistance is a challenging issue in the treatment of this disease. The progression of the cancer can be inhibited with the help of mTOR inhibitors namely RAD001 (everolimus) and MTI-31. In literature, it has been revealed that these mTOR inhibitors have the potential to stimulate autophagy. This degradation pathway boosts the survival rate of the cancerous cells that are subjected to anti-cancer therapy. In this study, CCK8, colony formation assays, and ethynyl deoxyuridine (EdU) analysis were conducted to detect cell proliferation. Furthermore, Transwell assays were also conducted for cell migration analysis. In addition to these, the researchers also performed the flow cytometry process to identify the cells that are undergoing apoptosis. In vivo, experiments were conducted to measure the growth of tumors and metastasis. In this study, the treatment provided through a combination of MTI-31 and RAD001 significantly inhibited the kidney cancer cells' proliferation and tumor growth. Furthermore, there was a notable reduction in the migration and invasion of kidney cancer cells upon the neighboring cells. The outcomes from the mechanistic studies infer that the combination of MTI-31 and RAD001 increases the LC3 levels, which in turn translates into the activation of autophagy. To conclude, the combination of MTI-31 and RAD001 improves the anti-cancerous impact produced by RAD001 in vivo through the promotion of autophagy.
Collapse
Affiliation(s)
- Wenye Zhang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Chen Yang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Lujia Zou
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Yiwen Zang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jimeng Hu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Yun Hu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Chenyang Xu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Rongzong Liu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Institute of Urology, Fudan University, Shanghai, 200040, China
| | - Hao Wang
- Teaching Center of Experimental Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.
| | - Zuquan Xiong
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Urology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
6
|
Mai N, Abuhadra N, Jhaveri K. Molecularly Targeted Therapies for Triple Negative Breast Cancer: History, Advances, and Future Directions. Clin Breast Cancer 2023; 23:784-799. [PMID: 37336650 DOI: 10.1016/j.clbc.2023.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Triple negative breast cancer (TNBC) remains the subtype with poorest prognosis. Despite the subtype's heterogeneity, there is still a paucity in effective targeted therapeutics that offer both good efficacy and tolerability, and chemotherapy remains the backbone of modern TNBC therapy. In the past few years, immunotherapy as well as novel therapeutic modalities like antibody-drug conjugates (ADCs) have shown clinical benefit and have been FDA approved in various clinical stages of unselected TNBC. However, there has not been similar advancement in molecularly targeted therapies, especially when compared to advancements seen in hormone receptor (HR)-positive or HER2-positive breast cancer. PARP inhibitors have been approved for BRCA-mutated TNBC, but responses are short-lived, and resistance remains a barrier for current treatment. PI3K pathway inhibitors approved in HR+ breast cancer has not worked for TNBC and continue to have significant dose-limiting adverse effects. EGFR inhibition has been thoroughly explored in TNBC, but all trials so far have shown minimal efficacy. Nevertheless, despite these setbacks, current research in targeted therapy for TNBC holds great promise in overcoming the barriers of the past and developing novel therapeutic approaches for the future. In this review, we describe molecular targets both identified and validated in the treatment of TNBC, discuss the historical efforts towards development of targeted agents and current areas of improvement, and address promising advances that have the potential to improve outcomes in this heterogenous and aggressive breast cancer subtype. Immunotherapy, ADCs, and AR targeting will be discussed in separate reviews of this edition.
Collapse
Affiliation(s)
- Nicholas Mai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nour Abuhadra
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
7
|
Farmaki E, Nath A, Emond R, Karimi KL, Grolmusz VK, Cosgrove PA, Bild AH. ONC201/TIC10 enhances durability of mTOR inhibitor everolimus in metastatic ER+ breast cancer. eLife 2023; 12:e85898. [PMID: 37772709 PMCID: PMC10541180 DOI: 10.7554/elife.85898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
The mTOR inhibitor, everolimus, is an important clinical management component of metastatic ER+ breast cancer (BC). However, most patients develop resistance and progress on therapy, highlighting the need to discover strategies that increase mTOR inhibitor effectiveness. We developed ER+ BC cell lines, sensitive or resistant to everolimus, and discovered that combination treatment of ONC201/TIC10 with everolimus inhibited cell growth in 2D/3D in vitro studies. We confirmed increased therapeutic response in primary patient cells progressing on everolimus, supporting clinical relevance. We show that ONC201/TIC10 mechanism in metastatic ER+ BC cells involves oxidative phosphorylation inhibition and stress response activation. Transcriptomic analysis in everolimus resistant breast patient tumors and mitochondrial functional assays in resistant cell lines demonstrated increased mitochondrial respiration dependency, contributing to ONC201/TIC10 sensitivity. We propose that ONC201/TIC10 and modulation of mitochondrial function may provide an effective add-on therapy strategy for patients with metastatic ER+ BCs resistant to mTOR inhibitors.
Collapse
Affiliation(s)
- Elena Farmaki
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Rena Emond
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Kimya L Karimi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Vince K Grolmusz
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Patrick A Cosgrove
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| |
Collapse
|
8
|
Ciołczyk-Wierzbicka D, Krawczyk A, Zarzycka M, Zemanek G, Wierzbicki K. Three generations of mTOR kinase inhibitors in the activation of the apoptosis process in melanoma cells. J Cell Commun Signal 2023; 17:975-989. [PMID: 37097377 PMCID: PMC10409930 DOI: 10.1007/s12079-023-00748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Many signaling pathways are involved in the mammalian target of rapamycin (mTOR), and this serine/threonine kinase regulates the most important cellular processes such as cell proliferation, autophagy, and apoptosis. The subject of this research was the effect of protein kinase inhibitors involved in the AKT, MEK, and mTOR kinase signaling pathways on the expression of pro-survival proteins, activity of caspase-3, proliferation, and induction of apoptosis in melanoma cells. The following inhibitors were used: protein kinase inhibitors such as AKT-MK-2206, MEK-AS-703026, mTOR-everolimus and Torkinib, as well as dual PI3K and mTOR inhibitor-BEZ-235 and Omipalisib, and mTOR1/2-OSI-027 inhibitor in single-mode and their combinations with MEK1/2 kinase inhibitor AS-703026. The obtained results confirm the synergistic effect of nanomolar concentrations of mTOR inhibitors, especially the dual PI3K and mTOR inhibitors (Omipalisib, BEZ-235) in combination with the MAP kinase inhibitor (AS-703026) in the activation of caspase 3, induction of apoptosis, and inhibition of proliferation in melanoma cell lines. Our previous and current studies confirm the importance of the mTOR signal transduction pathway in the neoplastic transformation process. Melanoma is a case of a very heterogeneous neoplasm, which causes great difficulties in treating this neoplasm in an advanced stage, and the standard approach to this topic does not bring the expected results. There is a need for research on the search for new therapeutic strategies aimed at particular groups of patients. Effect of three generations of mTOR kinase inhibitors on caspase-3 activity, apoptosis and proliferation in melanoma cell lines.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Agnieszka Krawczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Grzegorz Zemanek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University, John Paul II Hospital, Ul. Prądnicka 80, 31-202, Kraków, Poland
| |
Collapse
|
9
|
Bezerra PHA, Amaral C, Almeida CF, Correia-da-Silva G, Torqueti MR, Teixeira N. In Vitro Effects of Combining Genistein with Aromatase Inhibitors: Concerns Regarding Its Consumption during Breast Cancer Treatment. Molecules 2023; 28:4893. [PMID: 37446555 DOI: 10.3390/molecules28134893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The third-generation of aromatase inhibitors (AIs)-Exemestane (Exe), Letrozole (Let), and Anastrozole (Ana)-is the main therapeutic approach applied for estrogen receptor-positive (ER+) breast cancer (BC), the most common neoplasm in women worldwide. Despite their success, the development of resistance limits their efficacy. Genistein (G), a phytoestrogen present in soybean, has promising anticancer properties in ER+ BC cells, even when combined with anticancer drugs. Thus, the potential beneficial effects of combining G with AIs were investigated in sensitive (MCF7-aro) and resistant (LTEDaro) BC cells. METHODS The effects on cell proliferation and expression of aromatase, ERα/ERβ, and AR receptors were evaluated. RESULTS Unlike the combination of G with Ana or Let, which negatively affects the Ais' therapeutic efficacy, G enhanced the anticancer properties of the steroidal AI Exe, increasing the antiproliferative effect and apoptosis relative to Exe. The hormone targets studied were not affected by this combination when compared with Exe. CONCLUSIONS This is the first in vitro study that highlights the potential benefit of G as an adjuvant therapy with Exe, emphasizing, however, that soy derivatives widely used in the diet or applied as auxiliary medicines may increase the risk of adverse interactions with nonsteroidal AIs used in therapy.
Collapse
Affiliation(s)
- Patrícia H A Bezerra
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cristina F Almeida
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Maria Regina Torqueti
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Tsoi H, Fung NNC, Man EPS, Leung MH, You CP, Chan WL, Chan SY, Khoo US. SRSF5 Regulates the Expression of BQ323636.1 to Modulate Tamoxifen Resistance in ER-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15082271. [PMID: 37190199 DOI: 10.3390/cancers15082271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
About 70% of breast cancer patients are oestrogen receptor-positive (ER +ve). Adjuvant endocrine therapy using tamoxifen (TAM) is an effective approach for preventing local recurrence and metastasis. However, around half of the patients will eventually develop resistance. Overexpression of BQ323636.1 (BQ) is one of the mechanisms that confer TAM resistance. BQ is an alternative splice variant of NCOR2. The inclusion of exon 11 generates mRNA for NCOR2, while the exclusion of exon 11 produces mRNA for BQ. The expression of SRSF5 is low in TAM-resistant breast cancer cells. Modulation of SRSF5 can affect the alternative splicing of NCOR2 to produce BQ. In vitro and in vivo studies confirmed that the knockdown of SRSF5 enhanced BQ expression, and conferred TAM resistance; in contrast, SRSF5 overexpression reduced BQ expression and, thus, reversed TAM resistance. Clinical investigation using a tissue microarray confirmed the inverse correlation of SRSF5 and BQ. Low SRSF5 expression was associated with TAM resistance, local recurrence and metastasis. Survival analyses showed that low SRSF5 expression was associated with poorer prognosis. We showed that SRPK1 can interact with SRSF5 to phosphorylate it. Inhibition of SRPK1 by a small inhibitor, SRPKIN-1, suppressed the phosphorylation of SRSF5. This enhanced the proportion of SRSF5 interacting with exon 11 of NCOR2, reducing the production of BQ mRNA. As expected, SRPKIN-1 reduced TAM resistance. Our study confirms that SRSF5 is essential for BQ expression. Modulating the activity of SRSF5 in ER +ve breast cancer will be a potential approach to combating TAM resistance.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicholas Nok-Ching Fung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ellen P S Man
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Hong Leung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chan-Ping You
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Lok Chan
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Ui-Soon Khoo
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Lee HJ, Kim SH, Kim YH, Kim SH, Oh GS, Bae JE, Kim JB, Park NY, Park K, Yeom E, Jeong K, Kim P, Jo DS, Cho DH. Nalfurafine Hydrochloride, a κ-Opioid Receptor Agonist, Induces Melanophagy via PKA Inhibition in B16F1 Cells. Cells 2022; 12:cells12010146. [PMID: 36611940 PMCID: PMC9818167 DOI: 10.3390/cells12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Selective autophagy controls cellular homeostasis by degrading unnecessary or damaged cellular components. Melanosomes are specialized organelles that regulate the biogenesis, storage, and transport of melanin in melanocytes. However, the mechanisms underlying melanosomal autophagy, known as the melanophagy pathway, are poorly understood. To better understand the mechanism of melanophagy, we screened an endocrine-hormone chemical library and identified nalfurafine hydrochlorides, a κ-opioid receptor agonist, as a potent inducer of melanophagy. Treatment with nalfurafine hydrochloride increased autophagy and reduced melanin content in alpha-melanocyte-stimulating hormone (α-MSH)-treated cells. Furthermore, inhibition of autophagy blocked melanosomal degradation and reversed the nalfurafine hydrochloride-induced decrease in melanin content in α-MSH-treated cells. Consistently, treatment with other κ-opioid receptor agonists, such as MCOPPB or mianserin, inhibited excessive melanin production but induced autophagy in B16F1 cells. Furthermore, nalfurafine hydrochloride inhibited protein kinase A (PKA) activation, which was notably restored by forskolin, a PKA activator. Additionally, forskolin treatment further suppressed melanosomal degradation as well as the anti-pigmentation activity of nalfurafine hydrochloride in α-MSH-treated cells. Collectively, our data suggest that stimulation of κ-opioid receptors induces melanophagy by inhibiting PKA activation in α-MSH-treated B16F1 cells.
Collapse
Affiliation(s)
- Ha Jung Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong Hwan Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyeong Seok Oh
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon Bum Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Na Yeon Park
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyuhee Park
- Bio-center, Gyeonggido Business & Science Accelerator, Gyeonggido, Suwon 16229, Republic of Korea
| | - Eunbyul Yeom
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwiwan Jeong
- Bio-center, Gyeonggido Business & Science Accelerator, Gyeonggido, Suwon 16229, Republic of Korea
| | - Pansoo Kim
- Bio-center, Gyeonggido Business & Science Accelerator, Gyeonggido, Suwon 16229, Republic of Korea
| | - Doo Sin Jo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (D.S.J.); (D.-H.C.); Tel.: +82-53-950-5382 (D.S.J. & D.-H.C.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- OGASIS Corp. 260, Changyong-daero, Yongtong-gu, Suwon 08826, Republic of Korea
- Correspondence: (D.S.J.); (D.-H.C.); Tel.: +82-53-950-5382 (D.S.J. & D.-H.C.)
| |
Collapse
|
12
|
Wang Z, Liu M, Liu L, Li L, Tan L, Sun Y. The Synergistic Effect of Tacrolimus (FK506) or Everolimus and Azoles Against Scedosporium and Lomentospora Species In Vivo and In Vitro. Front Cell Infect Microbiol 2022; 12:864912. [PMID: 35493742 PMCID: PMC9046971 DOI: 10.3389/fcimb.2022.864912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/24/2022] [Indexed: 01/17/2023] Open
Abstract
Scedosporium and Lomentospora infections in humans are generally chronic and stubborn. The use of azoles alone cannot usually inhibit the growth of these fungi. To further explore the combined effect of multiple drugs and potential mechanisms of action, we tested the antifungal effects of tacrolimus (FK506) and everolimus in combination with azoles in vitro and in vivo on 15 clinical strains of Scedosporium/Lomentospora species and detected the level of Rhodamine 6G, ROS activity, and apoptosis. The in vitro results showed that the combinations of tacrolimus with itraconazole, voriconazole, and posaconazole showed synergistic effects on 9 strains (60%), 10 strains (73%), and 7 strains (47%), respectively, and the combinations of everolimus with itraconazole, voriconazole, and posaconazole showed synergistic effects on 8 strains (53%), 8 strains (53%), and 7 strains (47%), respectively. The synergistic effects might correspond to the elevated ROS activity (the tacrolimus + itraconazole group compared to the itraconazole group, (P < 0.05)), early apoptosis (itraconazole (P < 0.05) and voriconazole (P < 0.05) combined with everolimus), and late apoptosis (the tacrolimus + itraconazole group compared to the itraconazole group, (P < 0.01); the tacrolimus + posaconazole group compared to the posaconazole group, (P < 0.05)), but not inhibition of efflux pump activity. Our in vitro results suggested that a combination of tacrolimus or everolimus and azoles have a synergistic effect against Scedosporium/Lomentospora. The synergistic mechanisms of action might be triggering excessive ROS activity and apoptosis. In vivo, the survival rate of G. mellonella (sixth instar larvae) was significantly improved by tacrolimus alone, everolimus alone, azoles alone, and tacrolimus and everolimus combined with azoles separately (P < 0.05 for the tacrolimus group; P < 0.01 for the everolimus group and the itraconazole group; P = 0.0001 for the tacrolimus and posaconazole group; P < 0.0001 for other groups except the everolimus and itraconazole group, everolimus and posaconazole group, and tacrolimus and itraconazole group). From the results, we infer that the combination of tacrolimus or everolimus with azoles has obvious synergistic effect on Scedosporium/Lomentospora, and might enhance the level of apoptosis and necrosis. However, the synergistic effects were not related to the efflux pump. In conclusion, from our in vitro and in vivo study, tacrolimus and everolimus combined with azoles may have a synergistic effect in the treatment against Scedosporium/Lomentospora, improving the drug activity of azoles and promoting a better prognosis for patients.
Collapse
Affiliation(s)
- Zikuo Wang
- Health Science Center, Yangtze University, Jingzhou, China
| | - Mei Liu
- Department of Dermatology, Jingzhou Hospital, Yangtze University, Candidate Branch of National Clinical Research Center for Skin and Immune Diseases, Jingzhou, China
| | - Luyao Liu
- Health Science Center, Yangtze University, Jingzhou, China
| | - Linyun Li
- Clinical Lab, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Lihua Tan
- Health Science Center, Yangtze University, Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital, Yangtze University, Candidate Branch of National Clinical Research Center for Skin and Immune Diseases, Jingzhou, China
- *Correspondence: Yi Sun,
| |
Collapse
|
13
|
Mery B, Poulard C, Le Romancer M, Trédan O. Targeting AKT in ER-Positive HER2-Negative Metastatic Breast Cancer: From Molecular Promises to Real Life Pitfalls? Int J Mol Sci 2021; 22:13512. [PMID: 34948307 PMCID: PMC8706716 DOI: 10.3390/ijms222413512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The AKT protein kinase plays a central role in several interconnected molecular pathways involved in growth, apoptosis, angiogenesis, and cell metabolism. It thereby represents a therapeutic target, especially in hormone receptor-positive (HR) breast cancers, where the PI3K/AKT signaling pathway is largely hyperactivated. Moreover, resistance to therapeutic classes, including endocrine therapy, is associated with the constitutive activation of the PI3K/AKT pathway. Improved knowledge on the molecular mechanisms underlying resistance to endocrine therapy has led to the diversification of the therapeutic arsenal, notably with the development of PI3K and mTOR inhibitors, which are currently approved for the treatment of advanced HR-positive breast cancer patients. AKT itself constitutes a novel pharmacological target for which AKT inhibitors have been developed and tested in clinical trials. However, despite its pivotal role in cell survival and anti-apoptotic mechanisms, as well as in endocrine therapy resistance, few drugs have been developed and are available for clinical practice. The scope of the present review is to focus on the pivotal role of AKT in metastatic breast cancer through the analysis of its molecular features and to discuss clinical implications and remaining challenges in the treatment of HR-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Benoîte Mery
- Medical Oncology Department, Centre Léon Bérard, F-69000 Lyon, France;
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| | - Olivier Trédan
- Medical Oncology Department, Centre Léon Bérard, F-69000 Lyon, France;
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; (C.P.); (M.L.R.)
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Université de Lyon, F-69000 Lyon, France
| |
Collapse
|
14
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
15
|
GPR30 Activation by 17β-Estradiol Promotes p62 Phosphorylation and Increases Estrogen Receptor α Protein Expression by Inducing Its Release from a Complex Formed with KEAP1. J Pers Med 2021; 11:jpm11090906. [PMID: 34575683 PMCID: PMC8468056 DOI: 10.3390/jpm11090906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogens can elicit rapid cellular responses via the G-protein-coupled receptor 30 (GPR30), followed by estrogen receptor α (ERα/ESR1)-mediated genomic effects. Here, we investigated whether rapid estrogen signaling via GRP30 may affect ESR1 expression, and we examined the underlying molecular mechanisms. The exposure of human endometrial cancer cells to 17β-estradiol promoted p62 phosphorylation and increased ESR1 protein expression. However, both a GPR30 antagonist and GPR30 silencing abrogated this phenomenon. GPR30 activation by 17β-estradiol elicited the SRC/EGFR/PI3K/Akt/mTOR signaling pathway. Intriguingly, unphosphorylated p62 and ESR1 were found to form an intracellular complex with the substrate adaptor protein KEAP1. Upon phosphorylation, p62 promoted ESR1 release from the complex, to increase its protein expression. Given the critical role played by p62 in autophagy, we also examined how this process affected ESR1 expression. The activation of autophagy by everolimus decreased ESR1 by promoting p62 degradation, whereas autophagy inhibition with chloroquine increased ESR1 expression. The treatment of female C57BL/6 mice with the autophagy inhibitor hydroxychloroquine—which promotes p62 expression—increased both phosphorylated p62 and ESR1 expression in uterine epithelial cells. Collectively, our results indicate that 17β-estradiol-mediated GPR30 activation elicits the SRC/EGFR/PI3K/Akt/mTOR signaling pathway and promotes p62 phosphorylation. In turn, phosphorylated p62 increased ESR1 expression by inducing its release from complexes that included KEAP1. Our findings may lead to novel pharmacological strategies aimed at decreasing ESR1 expression in estrogen-sensitive cells.
Collapse
|
16
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Wen N, Lv Q, Du ZG. MicroRNAs involved in drug resistance of breast cancer by regulating autophagy. J Zhejiang Univ Sci B 2021; 21:690-702. [PMID: 32893526 DOI: 10.1631/jzus.b2000076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a conserved catabolic process characterized by degradation and recycling of cytosolic components or organelles through a lysosome-dependent pathway. It has a complex and close relationship to drug resistance in breast cancer. MicroRNAs (miRNAs) are small noncoding molecules that can influence numerous cellular processes including autophagy, through the posttranscriptional regulation of gene expression. Autophagy is regulated by many proteins and pathways, some of which in turn have been found to be regulated by miRNAs. These miRNAs may affect the drug resistance of breast cancer. Drug resistance is the main cause of distant recurrence, metastasis and death in breast cancer patients. In this review, we summarize the causative relationship between autophagy and drug resistance of breast cancer. The roles of autophagy-related proteins and pathways and their associated miRNAs in drug resistance of breast cancer are also discussed.
Collapse
Affiliation(s)
- Nan Wen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zheng-Gui Du
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Yang ES, Nassar AH, Adib E, Jegede OA, Alaiwi SA, Manna DLD, Braun DA, Zarei M, Du H, Pal SK, Naik G, Sonpavde GP. Gene Expression Signature Correlates with Outcomes in Metastatic Renal Cell Carcinoma Patients Treated with Everolimus Alone or with a Vascular Disrupting Agent. Mol Cancer Ther 2021; 20:1454-1461. [PMID: 34108261 DOI: 10.1158/1535-7163.mct-20-1091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
Everolimus monotherapy use for metastatic renal cell carcinoma (mRCC) has diminished due to recent approvals of immune checkpoint and VEGF inhibitors. We hypothesized that gene expression associated with everolimus benefit may provide rationale to select appropriate patients. To address this hypothesis, tumors from a phase I/II trial that compared everolimus alone or with BNC105P, a vascular disrupting agent, were profiled using Nanostring as a discovery cohort. A phase III trial (CheckMate 025) was used for validation. Clinical benefit (CB) was defined as response or stable disease for ≥6 months. A propensity score covariate adjustment was used, and model discrimination performance was assessed using the area under the ROC curve (AUC). In a discovery cohort of 82 patients, 35 (43%) were treated with everolimus alone and 47 (57%) received everolimus + BNC105P. Median PFS (mPFS) was 4.9 (95% CI, 2.8-6.2) months. A four-gene signature (ASXL1, DUSP6, ERCC2, and HSPA6) correlated with CB with everolimus ± BNC105P [AUC, 86.9% (95% CI, 79.2-94.7)]. This was validated in 130 patients from CheckMate 025 treated with everolimus [AUC, 60.2% (95% CI, 49.7-70.7)]. Among 43 patients (52.4%) with low expression of an 18-gene signature, everolimus + BNC105P was associated with significantly longer mPFS compared with everolimus alone (10.4 vs. 6.9 months; HR, 0.49; 95% CI, 0.24-1.002; P = 0.047). These signatures warrant further validation to select patients who may benefit from everolimus alone or with a vascular disrupting agent.
Collapse
Affiliation(s)
- Eddy S Yang
- Department of Radiation Oncology, Hugh Kaul Precision Medicine Institute and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Amin H Nassar
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elio Adib
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Opeyemi A Jegede
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Abou Alaiwi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deborah L Della Manna
- Department of Radiation Oncology, Hugh Kaul Precision Medicine Institute and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mahsa Zarei
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heng Du
- Cancer Genetics Lab, Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Gurudatta Naik
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Guru P Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
19
|
Niklaus NJ, Tokarchuk I, Zbinden M, Schläfli AM, Maycotte P, Tschan MP. The Multifaceted Functions of Autophagy in Breast Cancer Development and Treatment. Cells 2021; 10:cells10061447. [PMID: 34207792 PMCID: PMC8229352 DOI: 10.3390/cells10061447] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (herein referred to as autophagy) is a complex catabolic process characterized by the formation of double-membrane vesicles called autophagosomes. During this process, autophagosomes engulf and deliver their intracellular content to lysosomes, where they are degraded by hydrolytic enzymes. Thereby, autophagy provides energy and building blocks to maintain cellular homeostasis and represents a dynamic recycling mechanism. Importantly, the clearance of damaged organelles and aggregated molecules by autophagy in normal cells contributes to cancer prevention. Therefore, the dysfunction of autophagy has a major impact on the cell fate and can contribute to tumorigenesis. Breast cancer is the most common cancer in women and has the highest mortality rate among all cancers in women worldwide. Breast cancer patients often have a good short-term prognosis, but long-term survivors often experience aggressive recurrence. This phenomenon might be explained by the high heterogeneity of breast cancer tumors rendering mammary tumors difficult to target. This review focuses on the mechanisms of autophagy during breast carcinogenesis and sheds light on the role of autophagy in the traits of aggressive breast cancer cells such as migration, invasion, and therapeutic resistance.
Collapse
Affiliation(s)
- Nicolas J. Niklaus
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Igor Tokarchuk
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mara Zbinden
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Anna M. Schläfli
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla 74360, Mexico;
| | - Mario P. Tschan
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland; (N.J.N.); (I.T.); (M.Z.); (A.M.S.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-87-80
| |
Collapse
|
20
|
Glucose starvation greatly enhances antiproliferative and antiestrogenic potency of oligomycin A in MCF-7 breast cancer cells. Biochimie 2021; 186:51-58. [PMID: 33872751 DOI: 10.1016/j.biochi.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Energy imbalance is one of the key properties of tumour cells, which in certain cases supports fast cancer progression and resistance to therapy. The simultaneous blocking of glycolytic processes and oxidative phosphorylation pathways seems to be a promising strategy for antitumor therapies. The study aimed to evaluate the effect of glucose starvation on the antiproliferative and antiestrogenic potency of oligomycin A against hormone-dependent breast cancer cells. Cell viability was assessed by the MTT test. Estrogen receptor alpha (ERα) activity was evaluated by reporter assay. mTOR, AMPK, Akt, and S6 kinase expression was assessed by immunoblotting. Glucose starvation caused multiple increases in the antiproliferative potency of oligomycin A in the hormone-dependent breast cancer MCF-7 cells, while its effect on the sensitivity of the second hormone-dependent cancer cell line, named T47D, was weak and limited. Glycolytic inhibitors, 3-bromopyruvate and 2-deoxyglucose, greatly enhanced the antiproliferative potency of oligomycin A in MCF-7 cells. Glucose starvation leads to remarkable activation of Akt in MCF-7 cells, whereas oligomycin A enhances its effect. The mTOR, S6 kinase, and AMPK signalling pathways are significantly modulated by oligomycin A under glucose starvation. Oligomycin A demonstrates more pronounced antiestrogenic effects under glucose starvation. Thus, glucose starvation and pharmacological inhibition of glycolysis are of interest for revealing the antitumor potential of macrolide oligomycin A against hormone-dependent breast cancers.
Collapse
|
21
|
Autophagy Triggers Tamoxifen Resistance in Human Breast Cancer Cells by Preventing Drug-Induced Lysosomal Damage. Cancers (Basel) 2021; 13:cancers13061252. [PMID: 33809171 PMCID: PMC7999102 DOI: 10.3390/cancers13061252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endocrine therapy with tamoxifen or other endocrine drugs represents the standard treatment for estrogen receptor-positive breast cancer. In spite of effectiveness of this therapy, onset of drug resistance worsens the prognosis of about 30% of patients. Autophagy has recently been proposed as a key player of drug resistance, but the underlying mechanisms are not completely understood. In this research, the authors investigate how autophagy triggers drug resistance in breast cancer cells. The results evidence that tamoxifen affects lysosome integrity, which suggests that this effect may contribute to the anticancer activity of this drug. Activation of autophagy and overexpression of iron-binding proteins synergize in protecting the lysosomal compartment, restraining drug effectiveness in breast cancer cells. According to these results, tamoxifen-resistant cells show an increased autophagic flux and overexpress iron-binding proteins. These findings indicate that screening for the level of iron-binding proteins may help to identify patients at risk for developing drug resistance. Abstract Endocrine resistance is a major complication during treatment of estrogen receptor-positive breast cancer. Although autophagy has recently gained increasing consideration among the causative factors, the link between autophagy and endocrine resistance remains elusive. Here, we investigate the autophagy-based mechanisms of tamoxifen resistance in MCF7 cells. Tamoxifen (Tam) triggers autophagy and affects the lysosomal compartment of MCF7 cells, such that activated autophagy supports disposal of tamoxifen-damaged lysosomes by lysophagy. MCF7 cells resistant to 5 µM tamoxifen (MCF7-TamR) have a higher autophagic flux and an enhanced resistance to Tam-induced lysosomal alterations compared to parental cells, which suggests a correlation between the two events. MCF7-TamR cells overexpress messenger RNAs (mRNAs) for metallothionein 2A and ferritin heavy chain, and they are re-sensitized to Tam by inhibition of autophagy. Overexpressing these proteins in parental MCF7 cells protects lysosomes from Tam-induced damage and preserves viability, while inhibiting autophagy abrogates lysosome protection. Consistently, we also demonstrate that other breast cancer cells that overexpress selected mRNAs encoding iron-binding proteins are less sensitive to Tam-induced lysosomal damage when autophagy is activated. Collectively, our data demonstrate that autophagy triggers Tam resistance in breast cancer cells by favoring the lysosomal relocation of overexpressed factors that restrain tamoxifen-induced lysosomal damage.
Collapse
|
22
|
Cloherty APM, van Teijlingen NH, Eisden TJTHD, van Hamme JL, Rader AG, Geijtenbeek TBH, Schreurs RRCE, Ribeiro CMS. Autophagy-enhancing drugs limit mucosal HIV-1 acquisition and suppress viral replication ex vivo. Sci Rep 2021; 11:4767. [PMID: 33637808 PMCID: PMC7910550 DOI: 10.1038/s41598-021-84081-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Current direct-acting antiviral therapies are highly effective in suppressing HIV-1 replication. However, mucosal inflammation undermines prophylactic treatment efficacy, and HIV-1 persists in long-lived tissue-derived dendritic cells (DCs) and CD4+ T cells of treated patients. Host-directed strategies are an emerging therapeutic approach to improve therapy outcomes in infectious diseases. Autophagy functions as an innate antiviral mechanism by degrading viruses in specialized vesicles. Here, we investigated the impact of pharmaceutically enhancing autophagy on HIV-1 acquisition and viral replication. To this end, we developed a human tissue infection model permitting concurrent analysis of HIV-1 cellular targets ex vivo. Prophylactic treatment with autophagy-enhancing drugs carbamazepine and everolimus promoted HIV-1 restriction in skin-derived CD11c+ DCs and CD4+ T cells. Everolimus also decreased HIV-1 susceptibility to lab-adapted and transmitted/founder HIV-1 strains, and in vaginal Langerhans cells. Notably, we observed cell-specific effects of therapeutic treatment. Therapeutic rapamycin treatment suppressed HIV-1 replication in tissue-derived CD11c+ DCs, while all selected drugs limited viral replication in CD4+ T cells. Strikingly, both prophylactic and therapeutic treatment with everolimus or rapamycin reduced intestinal HIV-1 productive infection. Our findings highlight host autophagy pathways as an emerging target for HIV-1 therapies, and underscore the relevancy of repurposing clinically-approved autophagy drugs to suppress mucosal HIV-1 replication.
Collapse
Affiliation(s)
- Alexandra P M Cloherty
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nienke H van Teijlingen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tracy-Jane T H D Eisden
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - John L van Hamme
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Renée R C E Schreurs
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Yao J, Deng K, Huang J, Zeng R, Zuo J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front Pharmacol 2020; 11:592912. [PMID: 33362547 PMCID: PMC7758911 DOI: 10.3389/fphar.2020.592912] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tamoxifen is a drug commonly used in the treatment of breast cancer, especially for postmenopausal patients. However, its efficacy is limited by the development of drug resistance. Downregulation of estrogen receptor alpha (ERα) is an important mechanism of tamoxifen resistance. In recent years, with progress in research into the protective autophagy of drug-resistant cells and cell cycle regulators, major breakthroughs have been made in research on tamoxifen resistance. For a better understanding of the mechanism of tamoxifen resistance, protective autophagy, cell cycle regulators, and some transcription factors and enzymes regulating the expression of the estrogen receptor are summarized in this review. In addition, recent progress in reducing resistance to tamoxifen is reviewed. Finally, we discuss the possible research directions into tamoxifen resistance in the future to provide assistance for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Kun Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Jialu Huang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruimin Zeng
- Nanhua Hospital Affiliated to University of South China, Hengyang, China
| | - Jianhong Zuo
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
24
|
Pecoraro A, Pagano M, Russo G, Russo A. Role of Autophagy in Cancer Cell Response to Nucleolar and Endoplasmic Reticulum Stress. Int J Mol Sci 2020; 21:ijms21197334. [PMID: 33020404 PMCID: PMC7582989 DOI: 10.3390/ijms21197334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells are exposed to many internal and external stimuli that affect their fate. In particular, the exposure to some of these stimuli induces stress triggering a variety of stress responses aimed to re-establish cellular homeostasis. It is now established that the deregulation of stress response pathways plays a central role in cancer initiation and progression, allowing the adaptation of cells to an altered state in the new environment. Autophagy is a tightly regulated pathway which exerts “housekeeping” role in physiological processes. Recently, a growing amount of evidence highlighted the crucial role of autophagy in the regulation of integrated stress responses, including nucleolar and endoplasmic reticulum. In this review, we attempt to afford an overview of the complex role of nucleolar and endoplasmic reticulum stress-response mechanisms in the regulation of autophagy in cancer and cancer treatment.
Collapse
Affiliation(s)
| | | | - Giulia Russo
- Correspondence: (G.R.); (A.R.); Tel.: +39-081-678415 (G.R.); +39-081-678414 (A.R.)
| | - Annapina Russo
- Correspondence: (G.R.); (A.R.); Tel.: +39-081-678415 (G.R.); +39-081-678414 (A.R.)
| |
Collapse
|
25
|
Umar S, Soni R, Durgapal SD, Soman S, Balakrishnan S. A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol 2020; 34:e22553. [PMID: 32578917 DOI: 10.1002/jbt.22553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/29/2020] [Accepted: 05/15/2020] [Indexed: 01/16/2023]
Abstract
New chemotherapeutic agents with minimum side effects are indispensable to treat non-small-cell lung cancer (NSCLC) since the mortality rate of patients suffering from NSCLC remains high despite receiving conventional medication. In our previous study, many coumarin derivatives were screened for their anticancer properties in A549, an in vitro NSCLC model. One of these, 4-flourophenylacetamide-acetyl coumarin (4-FPAC), induced cytotoxicity at a concentration as low as 0.16 nM. Herein, initially, the cytotoxic potential of 4-FPAC was tested on a noncancerous cell line NIH3T3 and was found safe at the selected dose of 0.16 nM. Further, we investigated the mechanism by which 4-FPAC induced cytotoxicity and arrested the progression of cell cycle as well as metastasis in A549. Results of ethidium bromide/acridine orange (EtBr/AO), 4,6-diamidino-2-phenylindole, comet, and lactate dehydrogenase assays revealed that 4-FPAC caused cytotoxicity via reactive oxygen species-induced p53-mediated mechanism, which involves both extrinsic and intrinsic pathways of apoptosis. Dichlorodihydrofluorescein diacetate, rhodamine 123, and AO staining confirmed the involvement of both mitochondria and lysosome in inducing apoptosis. However, flow cytometric analysis revealed that it causes cell cycle arrest at the G0/G1 phase by modulating p21, CDK2, and CDK4 expression. Aggregation, soft-agar, clonogenic, and scratch assays as well as gene expression analysis collectively confirmed that 4-FPAC minimizes the metastatic property of A549 by downregulating Snail, matrix metalloproteinase 9, and interleukin-8. Additional studies reaffirmed the above findings and substantiated the role of PI3K/AKT in achieving them. The cell-type-specific selective cytostatic and antimetastatic properties shown by 4-FPAC indicate its potential to emerge as a drug of choice against NSCLC in the future.
Collapse
Affiliation(s)
- Shweta Umar
- Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Rina Soni
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Sunil D Durgapal
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Subhangi Soman
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| |
Collapse
|
26
|
Mele L, Del Vecchio V, Liccardo D, Prisco C, Schwerdtfeger M, Robinson N, Desiderio V, Tirino V, Papaccio G, La Noce M. The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 2020; 88:102043. [PMID: 32505806 DOI: 10.1016/j.ctrv.2020.102043] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a self-degradative cellular process, involved in stress response such as starvation, hypoxia, and oxidative stress. This mechanism balances macro-molecule recycling to regulate cell homeostasis. In cancer, autophagy play a role in the development and progression, while several studies describe it as one of the key processes in drug resistance. In the last years, in addition to standard anti-cancer treatments such as chemotherapies and irradiation, targeted therapy became one of the most adopted strategies in clinical practices, mainly due to high specificity and reduced side effects. However, similar to standard treatments, drug resistance is the main challenge in most patients. Here, we summarize recent studies that investigated the role of autophagy in drug resistance after targeted therapy in different types of cancers. We highlight positive results and limitations of pre-clinical and clinical studies in which autophagy inhibitors are used in combination with targeted therapies.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy
| | - Davide Liccardo
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy
| | - Claudia Prisco
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy; The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Melanie Schwerdtfeger
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy; Department of Medicine IV -Division of Clinical Pharmacology-University of Munich, Germany
| | - Nirmal Robinson
- Centre for Cancer Biology, SA Pathology and University of South Australia, GPO Box 2471, Adelaide, Australia
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy.
| | - Marcella La Noce
- Department of Experimental Medicine, University of Campania "L. Vanvitelli" Naples, Italy
| |
Collapse
|
27
|
Ye L, Lin C, Wang X, Li Q, Li Y, Wang M, Zhao Z, Wu X, Shi D, Xiao Y, Ren L, Jian Y, Yang M, Ou R, Deng G, Ouyang Y, Chen X, Li J, Song L. Epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer. EMBO Mol Med 2019; 11:e10638. [PMID: 31657150 PMCID: PMC6895605 DOI: 10.15252/emmm.201910638] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Resistance to tamoxifen is a clinically major challenge in breast cancer treatment. Although downregulation of estrogen receptor-alpha (ERα) is the dominant mechanism of tamoxifen resistance, the reason for ERα decrease during tamoxifen therapy remains elusive. Herein, we reported that Spalt-like transcription factor 2 (SALL2) expression was significantly reduced during tamoxifen therapy through transcription profiling analysis of 9 paired primary pre-tamoxifen-treated and relapsed tamoxifen-resistant breast cancer tissues. SALL2 transcriptionally upregulated ESR1 and PTEN through directly binding to the DNA promoters. By contrast, silencing SALL2 induced downregulation of ERα and PTEN and activated the Akt/mTOR signaling, resulting in estrogen-independent growth and tamoxifen resistance in ERα-positive breast cancer. Furthermore, hypermethylation of SALL2 promoter was found in tamoxifen-resistant breast cancer. Importantly, in vivo experiments showed that DNA methyltransferase inhibitor-mediated SALL2 restoration resensitized tamoxifen-resistant breast cancer to tamoxifen therapy. These findings shed light on the mechanism of SALL2 in regulation of ER and represent a potential clinical signature that can be used to categorize breast cancer patients who may benefit from co-therapy with tamoxifen and DNMT inhibitor.
Collapse
Affiliation(s)
- Liping Ye
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chuyong Lin
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xi Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qiji Li
- Department of Orthopaedic SurgeryThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yue Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Meng Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zekun Zhao
- Division of BiosciencesUniversity College LondonLondonUK
| | - Xianqiu Wu
- Clinical Experimental CenterDepartment of Pathology (Clinical Biobanks)Jiangmen Central HospitalAffiliated Jiangmen Hospital of Sun Yat‐sen UniversityJiangmenGuangdongChina
| | - Dongni Shi
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yunyun Xiao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liangliang Ren
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yunting Jian
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Meisongzhu Yang
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesAffiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Ruizhang Ou
- Department of PathologySchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouChina
| | - Guangzheng Deng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying Ouyang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
28
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
29
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
30
|
Therapeutic Drug Monitoring of Everolimus in Oncology: Evidences and Perspectives. Ther Drug Monit 2019; 41:568-574. [DOI: 10.1097/ftd.0000000000000628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Chen G, Ding XF, Bouamar H, Pressley K, Sun LZ. Everolimus induces G 1 cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells. Am J Physiol Cell Physiol 2019; 317:C244-C252. [PMID: 31116586 PMCID: PMC6732424 DOI: 10.1152/ajpcell.00390.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Everolimus inhibits mammalian target of rapamycin complex 1 (mTORC1) and is known to cause induction of autophagy and G1 cell cycle arrest. However, it remains unknown whether everolimus-induced autophagy plays a critical role in its regulation of the cell cycle. We, for the first time, suggested that everolimus could stimulate autophagy-mediated cyclin D1 degradation in breast cancer cells. Everolimus-induced cyclin D1 degradation through the autophagy pathway was investigated in MCF-10DCIS.COM and MCF-7 cell lines upon autophagy inhibitor treatment using Western blot assay. Everolimus-stimulated autophagy and decrease in cyclin D1 were also tested in explant human breast tissue. Inhibiting mTORC1 with everolimus rapidly increased cyclin D1 degradation, whereas 3-methyladenine, chloroquine, and bafilomycin A1, the classic autophagy inhibitors, could attenuate everolimus-induced cyclin D1 degradation. Similarly, knockdown of autophagy-related 7 (Atg-7) also repressed everolimus-triggered cyclin D1 degradation. In addition, everolimus-induced autophagy occurred earlier than everolimus-induced G1 arrest, and blockade of autophagy attenuated everolimus-induced G1 arrest. We also found that everolimus stimulated autophagy and decreased cyclin D1 levels in explant human breast tissue. These data support the conclusion that the autophagy induced by everolimus in human mammary epithelial cells appears to cause cyclin D1 degradation resulting in G1 cell cycle arrest. Our findings contribute to our knowledge of the interplay between autophagy and cell cycle regulation mediated by mTORC1 signaling and cyclin D1 regulation.
Collapse
Affiliation(s)
- Guang Chen
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, China
| | - Xiao-Fei Ding
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kyle Pressley
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
32
|
Ciołczyk-Wierzbicka D, Zarzycka M, Gil D, Laidler P. mTOR inhibitor Everolimus-induced apoptosis in melanoma cells. J Cell Commun Signal 2019; 13:357-368. [PMID: 30848427 PMCID: PMC6732148 DOI: 10.1007/s12079-019-00510-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Melanoma is the most aggressive, therapy-resistant skin cancer. The mammalian target of rapamycin (mTOR), the serine/threonine kinase which integrates both intracellular and extracellular signals, plays a crucial role in coordinating the balance between the growth and death of cells. The object of this study is a comparison of the influence of mTOR inhibitor everolimus in the concentration range between 20 nM and 10 μM, used individually and in combination with selected downstream protein kinases inhibitors: LY294002 (PI3K), U0126 (ERK1/2), AS-703026 (MEK) and MK-2206 (AKT) on the expression of pro-survival proteins: p-Bcl-2 (S70), p-Bcl-2 (T56), Bcl-2, Bcl-xL, Mcl-1, activity of caspase-3, proliferation and induction of apoptosis in melanoma cells. Current results clearly show that the nanomolar concentration of the mTOR inhibitor everolimus in combination with the inhibitor of MAP kinase (AS-703026) or AKT kinase (MK-2206) is effective in inducing apoptosis and reducing proliferation of melanoma cells. The herein research results confirm the hypothesis on the important role of mTOR signaling in cancer progression, and gives hope that implementation of successful combination of its inhibitors will find recognition and application in cancer treatment in the near future.
Collapse
Affiliation(s)
| | - Marta Zarzycka
- Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Gil
- Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Piotr Laidler
- Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
33
|
Li S, Wang X, Li Y, Lai H, Liu Y, Jin L. Non-invasive analysis of tumor mutation profiles and druggable mutations by sequencing of cell free DNA of Chinese metastatic breast cancer patients. Thorac Cancer 2019. [PMID: 30793491 DOI: 10.1111/1759‐7714.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Metastatic breast cancer (MBC) remains an incurable disease worldwide. Tumor gene mutations have evolved and led to drug resistance in the treatment course of MBC. However, data on the mutation profiles and druggable genomic alterations of MBC remain limited, particularly among Chinese patients. Our study aimed to depict the mutation profiles and identify druggable mutations in circulating tumor DNA (ctDNA) in Chinese MBC patients. METHODS Targeted deep sequencing of a 1021-gene panel was performed on 17 blood samples and 5 available tissue samples from 17 Chinese MBC patients. RESULTS We identified 60 somatic mutations in 17 blood samples (sensitivity 100%). Somatic mutations were identified in the blood samples of all patients, and 41.18% (7/17) of patients harbored at least one druggable mutation. A high ctDNA level in plasma is associated with shorter progression-free survival. CONCLUSION Targeted deep sequencing of cell free DNA is a highly sensitive, noninvasive method to depict tumor mutation profiles, identify druggable mutations in MBC, and predict patient outcome. Our study shed light on the utility of ctDNA as noninvasive "liquid biopsy" in the management of MBC.
Collapse
Affiliation(s)
- Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaobao Wang
- Department of Otorhinolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuquan Li
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongna Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
34
|
Li S, Wang X, Li Y, Lai H, Liu Y, Jin L. Non-invasive analysis of tumor mutation profiles and druggable mutations by sequencing of cell free DNA of Chinese metastatic breast cancer patients. Thorac Cancer 2019; 10:807-814. [PMID: 30793491 PMCID: PMC6449225 DOI: 10.1111/1759-7714.13002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 11/27/2022] Open
Abstract
Background Metastatic breast cancer (MBC) remains an incurable disease worldwide. Tumor gene mutations have evolved and led to drug resistance in the treatment course of MBC. However, data on the mutation profiles and druggable genomic alterations of MBC remain limited, particularly among Chinese patients. Our study aimed to depict the mutation profiles and identify druggable mutations in circulating tumor DNA (ctDNA) in Chinese MBC patients. Methods Targeted deep sequencing of a 1021‐gene panel was performed on 17 blood samples and 5 available tissue samples from 17 Chinese MBC patients. Results We identified 60 somatic mutations in 17 blood samples (sensitivity 100%). Somatic mutations were identified in the blood samples of all patients, and 41.18% (7/17) of patients harbored at least one druggable mutation. A high ctDNA level in plasma is associated with shorter progression‐free survival. Conclusion Targeted deep sequencing of cell free DNA is a highly sensitive, noninvasive method to depict tumor mutation profiles, identify druggable mutations in MBC, and predict patient outcome. Our study shed light on the utility of ctDNA as noninvasive “liquid biopsy” in the management of MBC.
Collapse
Affiliation(s)
- Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaobao Wang
- Department of Otorhinolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuquan Li
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongna Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
35
|
Nawas A, Narayanan S, Mistry R, Thomas-Jardin S, Ramachandran J, Ravichandran J, Neduvelil E, Luangpanh K, Delk NA. IL-1 induces p62/SQSTM1 and autophagy in ERα + /PR + BCa cell lines concomitant with ERα and PR repression, conferring an ERα - /PR - BCa-like phenotype. J Cell Biochem 2019; 120:1477-1491. [PMID: 30324661 PMCID: PMC6465183 DOI: 10.1002/jcb.27340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Estrogen receptor α (ERα)low/- tumors are associated with breast cancer (BCa) endocrine resistance, where ERα low tumors show a poor prognosis and a molecular profile similar to triple negative BCa tumors. Interleukin-1 (IL-1) downregulates ERα accumulation in BCa cell lines, yet the cells can remain viable. In kind, IL-1 and ERα show inverse accumulation in BCa patient tumors and IL-1 is implicated in BCa progression. IL-1 represses the androgen receptor hormone receptor in prostate cancer cells concomitant with the upregulation of the prosurvival, autophagy-related protein, Sequestome-1 (p62/SQSTM1; hereinafter, p62); and given their similar etiology, we hypothesized that IL-1 also upregulates p62 in BCa cells concomitant with hormone receptor repression. To test our hypothesis, BCa cell lines were exposed to conditioned medium from IL-1-secreting bone marrow stromal cells (BMSCs), IL-1, or IL-1 receptor antagonist. Cells were analyzed for the accumulation of ERα, progesterone receptor (PR), p62, or the autophagosome membrane protein, microtubule-associated protein 1 light chain 3 (LC3), and for p62-LC3 interaction. We found that IL-1 is sufficient to mediate BMSC-induced ERα and PR repression, p62 and autophagy upregulation, and p62-LC3 interaction in ERα+ /PR+ BCa cell lines. However, IL-1 does not significantly elevate the high basal p62 accumulation or high basal autophagy in the ERα- /PR- BCa cell lines. Thus, our observations imply that IL-1 confers a prosurvival ERα- /PR- molecular phenotype in ERα+ /PR+ BCa cells that may be dependent on p62 function and autophagy and may underlie endocrine resistance.
Collapse
Affiliation(s)
- A.F. Nawas
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - S. Narayanan
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - R. Mistry
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - S.E. Thomas-Jardin
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - J. Ramachandran
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - J. Ravichandran
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - E. Neduvelil
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - K. Luangpanh
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| | - N. A. Delk
- Biological Sciences Department, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080
| |
Collapse
|
36
|
Busonero C, Leone S, Bartoloni S, Acconcia F. Strategies to degrade estrogen receptor α in primary and ESR1 mutant-expressing metastatic breast cancer. Mol Cell Endocrinol 2019; 480:107-121. [PMID: 30389467 DOI: 10.1016/j.mce.2018.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
With the advent of omic technologies, our understanding of the molecular mechanisms underlying estrogen receptor α (ERα)-expressing breast cancer (BC) progression has grown exponentially. Nevertheless, the most widely used therapy for inhibiting this disease is endocrine therapy (ET) (i.e., aromatase inhibitors, tamoxifen - Tam, faslodex/fulvestrant - FUL). However, in a considerable number of cases, prolonged patient treatment with ET generates the development of resistant tumor cells and, consequently, tumor relapse, which manifests as metastatic disease that is extremely difficult to manage, especially because such metastatic BCs (MBCs) often express ERα mutations (e.g., Y537S, D538G) that confer pronounced growth advantages to tumor cells. Interestingly, ET continues to be the therapy of choice for this neoplasia, which underscores the need to identify novel drugs that could work in primary and MBCs. In this study, we review the approaches that have been undertaken to discover these new anti-ERα compounds, especially considering those focused on evaluating ERα degradation. A literature analysis demonstrated that current strategies for discovering new anti-BC drugs are focusing on the identification either of novel ERα inhibitors, of compounds that inhibit ERα-related pathways or of drugs that influence ERα-unrelated cellular pathways. Several lines of evidence suggest that all of these molecules alter the ERα content and block the proliferation of both primary and MBCs. In turn, we propose to rationalize all these discoveries into the definition of e.m.eral.d.s (i.e., selective modulators of ERα levels and degradation) as a novel supercategory of anti-ERα drugs that function both as modulators of ERα levels and inhibitors of BC cell proliferation.
Collapse
Affiliation(s)
- Claudia Busonero
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
37
|
Matsui C, Takatani-Nakase T, Maeda S, Takahashi K. High-Glucose Conditions Promote Anchorage-Independent Colony Growth in Human Breast Cancer MCF-7 Cells. Biol Pharm Bull 2018; 41:1379-1383. [PMID: 30175774 DOI: 10.1248/bpb.b18-00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that hyperglycemia is connected to the malignant progression of breast cancer; however, the effects of hyperglycemia on tumorigenic potential in breast cancer cells are largely unknown. Here, we demonstrated that the ability of the human breast cancer cell line MCF-7 to undertake anchorage-independent colony growth was significantly enhanced when cultured under high-glucose conditions compared with that under physiological glucose conditions. The high-glucose conditions also promoted phosphorylation of Akt, suggesting that MCF-7 cells cultured in these conditions acquired an increased ability to undergo anchorage-independent growth at least in part through Akt activation, which has been linked to the development of breast cancer. These results raise the possibility that regulation of Akt activity contributes to the tumorigenesis of breast cancer under high-glucose conditions, and we propose that additional analyses of high glucose-induced tumor formation would provide novel strategies for the diagnosis and therapy of breast cancer with hyperglycemia.
Collapse
Affiliation(s)
- Chihiro Matsui
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Sachie Maeda
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
38
|
Amaral C, Augusto TV, Tavares-da-Silva E, Roleira FMF, Correia-da-Silva G, Teixeira N. Hormone-dependent breast cancer: Targeting autophagy and PI3K overcomes Exemestane-acquired resistance. J Steroid Biochem Mol Biol 2018; 183:51-61. [PMID: 29791862 DOI: 10.1016/j.jsbmb.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/26/2018] [Accepted: 05/20/2018] [Indexed: 01/15/2023]
Abstract
The leading cause of cancer death in women around the world is breast cancer. The aromatase inhibitors (AIs) are considered - as first-line treatment for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Exemestane (Exe) is a powerful steroidal AI, however, despite its therapeutic success, Exe-acquired resistance may occur leading to tumor relapse. Our group previously demonstrated that autophagy acts as a pro-survival process in Exe-induced cell death of ER+ sensitive breast cancer cells. In this work, the role of autophagy and its relationship with the PI3K/AKT/mTOR pathway in Exe-acquired resistance was explored. In that way, the mechanism behind the effects of the combination of Exe with pan-PI3K, or autophagic inhibitors, was studied in a long-term estrogen deprived ER+ breast cancer cell line (LTEDaro cells). Our results indicate that Exe induces autophagy as a cytoprotective mechanism linked to acquired resistance. Moreover, it was demonstrated that by inhibiting autophagy and/or PI3K pathway it is possible to revert Exe-resistance through apoptosis promotion, disruption of cell cycle, and inhibition of cell survival pathways. This work provides new insights into the mechanisms involved in Exe-acquired resistance, pointing autophagy as an attractive therapeutic target to surpass it. Thus, it highlights new targets that together with aromatase inhibition may improve ER+ breast cancer therapy, overcoming AIs-acquired resistance.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Tiago Vieira Augusto
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Elisiário Tavares-da-Silva
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Fernanda M F Roleira
- Pharmaceutical Chemistry Group, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CIEPQPF Centre for Chemical Processes Engineering and Forest Products, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
39
|
Ballinger TJ, Meier JB, Jansen VM. Current Landscape of Targeted Therapies for Hormone-Receptor Positive, HER2 Negative Metastatic Breast Cancer. Front Oncol 2018; 8:308. [PMID: 30148117 PMCID: PMC6095972 DOI: 10.3389/fonc.2018.00308] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
The majority of deaths from MBC are in patients with hormone receptor (HR) positive, HER2 negative disease. Endocrine therapy (ET) remains the backbone of treatment in these cases, improving survival and quality of life. However, treatment can lose effectiveness due to primary or acquired endocrine resistance. Analysis of mechanisms of ET resistance has led to the development of a new generation of targeted therapies for advanced breast cancer. In addition to anti-estrogen therapy with selective estrogen receptor modulators, aromatase inhibitors, and/or selective estrogen receptor degraders, combinations with cyclin dependent kinase (CDK) 4/6 inhibitors have led to substantial progression free survival (PFS) improvements in the first and second line settings. While the PI3K/AKT/mTOR pathway is known to be an important growth pathway in HR positive breast cancer, PI3K inhibitors have been disappointing due to modest effect sizes and significant toxicity. The mTOR inhibitor everolimus significantly improves progression free survival when added to ET, and recent studies have improved supportive care allowing less toxicity. While these combination targeted therapies improve outcomes and often delay initiation of chemotherapy, long term overall survival data are lacking and data for the ideal strategy for sequencing these agents remains unclear. Ongoing research evaluating potential biomarkers and mechanisms of resistance is anticipated to continue to improve outcomes for patients with HR positive metastatic breast cancer. In this review, we will discuss management and ongoing challenges in the treatment of advanced HR positive, HER2 negative breast cancer, highlighting single agent and combination endocrine therapies, targeted therapies including palbociclib, ribociclib, abemaciclib, and everolimus, and sequencing of therapies in the clinic.
Collapse
Affiliation(s)
- Tarah J. Ballinger
- Division of Hematology-Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jason B. Meier
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Valerie M. Jansen
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
40
|
Mills JN, Rutkovsky AC, Giordano A. Mechanisms of resistance in estrogen receptor positive breast cancer: overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol 2018; 41:59-65. [PMID: 29719270 PMCID: PMC6454890 DOI: 10.1016/j.coph.2018.04.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Several mechanisms of resistance have been identified, underscoring the complex nature of estrogen receptor (ER) signaling and the many connections between this pathway and other essential signaling pathways in breast cancer cells. Many therapeutic targets of cell signaling and cell cycle pathways have met success with endocrine therapy and remain an ongoing area of investigation. This review focuses on two major pathways that have recently emerged as important opportunities for therapeutic intervention in endocrine resistant breast tumors: PI3K/AKT/mTOR cell signaling and cyclinD1/cyclin-dependent kinase 4/6 cell cycle pathways. Additionally, we highlight individual and combination strategies in current clinical trials that target these pathways and others under investigation for the treatment of ER positive breast cancer.
Collapse
Affiliation(s)
- Jamie N Mills
- Medical University of South Carolina, Department of Medicine, Division of Hematology and Oncology, 39 Sabin St. MSC 635, Charleston, SC 29425, USA
| | - Alex C Rutkovsky
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, 39 Sabin St, Charleston, SC 29425, USA
| | - Antonio Giordano
- Medical University of South Carolina, Department of Medicine, Division of Hematology and Oncology, 39 Sabin St. MSC 635, Charleston, SC 29425, USA.
| |
Collapse
|
41
|
Autophagy in cancer: a complex relationship. Biochem J 2018; 475:1939-1954. [DOI: 10.1042/bcj20170847] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
Macroautophagy is the process by which cells package and degrade cytosolic components, and recycle the breakdown products for future use. Since its initial description by Christian de Duve in the 1960s, significant progress has been made in understanding the mechanisms that underlie this vital cellular process and its specificity. Furthermore, macroautophagy is linked to pathologic conditions such as cancer and is being studied as a therapeutic target. In this review, we will explore the connections between autophagy and cancer, which are tumor- and context-dependent and include the tumor microenvironment. We will highlight the importance of tumor compartment-specific autophagy in both cancer aggressiveness and treatment.
Collapse
|
42
|
Kotula-Balak M, Pawlicki P, Milon A, Tworzydlo W, Sekula M, Pacwa A, Gorowska-Wojtowicz E, Bilinska B, Pawlicka B, Wiater J, Zarzycka M, Galas J. The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function-in vivo and in vitro evaluation. Cell Tissue Res 2018; 374:389-412. [PMID: 29876633 PMCID: PMC6209072 DOI: 10.1007/s00441-018-2861-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
In this study, G-coupled estrogen receptor (GPER) was inactivated, by treatment with antagonist (G-15), in testes of C57BL/6 mice: immature (3 weeks old), mature (3 months old) and aged (1.5 years old) (50 μg/kg bw), as well as MA-10 mouse Leydig cells (10 nM/24 h) alone or in combination with 17β-estradiol or antiestrogen (ICI 182,780). In G-15-treated mice, overgrowth of interstitial tissue was found in both mature and aged testes. Depending on age, differences in structure and distribution of various Leydig cell organelles were observed. Concomitantly, modulation of activity of the mitochondria and tubulin microfibers was revealed. Diverse and complex GPER regulation at the mRNA level and protein of estrogen signaling molecules (estrogen receptor α and β; ERα, ERβ and cytochrome P450 aromatase; P450arom) in G-15 Leydig cells was found in relation to age and the experimental system utilized (in vivo and in vitro). Changes in expression patterns of ERs and P450arom, as well as steroid secretion, reflected Leydig cell heterogeneity to estrogen regulation throughout male life including cell physiological status.We show, for the first time, GPER with ERs and P450arom work in tandem to maintain Leydig cell architecture and supervise its steroidogenic function by estrogen during male life. Full set of estrogen signaling molecules, with involvement of GPER, is crucial for proper Leydig cell function where each molecule acts in a specific and/or complementary manner. Further understanding of the mechanisms by which GPER controls Leydig cells with special regard to male age, cell of origin and experimental system used is critical for predicting and preventing testis steroidogenic disorders based on perturbations in estrogen signaling.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Sekula
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - A Pacwa
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - J Wiater
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Zarzycka
- Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - J Galas
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
43
|
Augusto TV, Correia-da-Silva G, Rodrigues CMP, Teixeira N, Amaral C. Acquired resistance to aromatase inhibitors: where we stand! Endocr Relat Cancer 2018. [PMID: 29530940 DOI: 10.1530/erc-17-0425] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aromatase inhibitors (AIs) are one of the principal therapeutic approaches for estrogen receptor-positive (ER+) breast cancer in postmenopausal women. They block estrogen biosynthesis through aromatase inhibition, thus preventing tumour progression. Besides the therapeutic success of the third-generation AIs, acquired resistance may develop, leading to tumour relapse. This resistance is thought to be the result of a change in the behaviour of ER in these breast cancer cells, presumably by PI3K/AKT pathway enhancement along with alterations in other signalling pathways. Nevertheless, biological mechanisms, such as apoptosis, autophagy, cell cycle modulation and activation of androgen receptor (AR), are also implicated in acquired resistance. Moreover, clinical evidence demonstrated that there is a lack of cross-resistance among AIs, although the reason is not fully understood. Thus, there is a demand to understand the mechanisms involved in endocrine resistance to each AI, since the search for new strategies to surpass breast cancer acquired resistance is of major concern.
Collapse
Affiliation(s)
- Tiago Vieira Augusto
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
44
|
Zeng Y, Tian X, Wang Q, He W, Fan J, Gou X. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:911-920. [PMID: 29719377 PMCID: PMC5914548 DOI: 10.2147/dddt.s160557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001.
Collapse
Affiliation(s)
- Yizhou Zeng
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xiaofang Tian
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Quan Wang
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Weiyang He
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jing Fan
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xin Gou
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
45
|
Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| |
Collapse
|
46
|
Maxwell T, Lee KS, Kim S, Nam KS. Arctigenin inhibits the activation of the mTOR pathway, resulting in autophagic cell death and decreased ER expression in ER-positive human breast cancer cells. Int J Oncol 2018; 52:1339-1349. [PMID: 29436614 DOI: 10.3892/ijo.2018.4271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/06/2018] [Indexed: 11/05/2022] Open
Abstract
Arctigenin, a member of the Asteraceae family, is a biologically active lignan that is consumed worldwide due to its several health benefits. However, its use may pose a problem for patients with estrogen receptor (ER)α-positive breast cancer, since studies have shown that arctigenin is a phytoestrogen that exerts a proliferative effect by binding to the ER. Thus, in this study, we examined the effect of arctigenin on ERα-positive MCF-7 human breast cancer cells to determine whether the consumption of arctigenin is safe for patients with breast cancer. First, we found that arctigenin inhibited the viability of the MCF-7 cells, and colony formation assay confirmed that this effect was cytotoxic rather than cytostatic. The cytotoxic effects were not mediated by cell cycle arrest, apoptosis, or necroptosis, despite DNA damage, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and phosphorylated H2A.X. An increase in lipidated LC3, a marker of autophagosome formation, was observed, indicating that autophagy was induced by arctigenin, which was found to be triggered by the inhibition of the mechanistic target of rapamycin (mTOR) pathway. We then examined the effects of arctigenin on ERα expression and determined whether it affects the sensitivity of the cells to tamoxifen, as tamoxifen is commonly used against hormone-responsive cancers and is known to act via the ERα. We found that treatment with arctigenin effectively downregulated ERα expression, which was found to be a consequence of the inhibition of the mTOR pathway. However, treatment with arctigenin in combination with tamoxifen did not affect the sensitivity of the cells to tamoxifen, but instead, exerted a synergistic effect. On the whole, our data indicate that the phytoestrogen, arctigenin, mainly targeted the mTOR pathway in ERα-positive MCF-7 human breast cancer cells, leading to autophagy-induced cell death and the downregulation of ERα expression. Furthermore, the synergistic effects between arctigenin and tamoxifen suggest that the consumption of arctigenin is not only safe for patients with hormone-sensitive cancers, but may also be an effective co-treatment.
Collapse
Affiliation(s)
- Thressi Maxwell
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyu Shik Lee
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
47
|
Ye H, Chai X, Wang X, Zheng Q, Zheng D, Wu F, Zheng C, Chen P. Autophagy flux inhibition augments gastric cancer resistance to the anti-human epidermal growth factor receptor 2 antibody trastuzumab. Oncol Lett 2018. [PMID: 29541179 PMCID: PMC5835962 DOI: 10.3892/ol.2018.7891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The autophagy involved in the occurrence, development and prognosis of human epidermal growth factor receptor 2 (HER2) gene-amplified cancer also controls the resistance of this type of cancer to the monoclonal antibody, trastuzumab (Tzb). In the present study, Tzb resistance was established in HER2-positive NCI-N87 cell lines (Tzb-refractory cells). The cell viability, clonogenic assay, ratios of light chain 3 II/I, sequestosome 1 expression, and the phosphorylation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR) were investigated in the parental and Tzb-refractory cells. The viability of parental NCI-N87 and Tzb-refractory cells with an autophagy inhibitor or inducer was also examined. The results of the present study indicated that autophagic flux may have an important function in the resistance of HER2-positive human gastric cancer NCI-N87 cells to Tzb. Tzb resistance in NCI-N87 cells prevents cell apoptosis via autophagic flux inhibition. Tzb may activate the Akt/mTOR pathway to inhibit autophagic flux in gastric cancer cell lines. Everolimus, an mTOR inhibitor, may inhibit cell viability, indicating that the mTOR pathway may serve a function in HER2-positive gastric cancer and that the resistance of HER2-positive gastric cancer to Tzb may, at least partially, be due to activation of the mTOR pathway.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastrointestinal and Hernia, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Xuyu Chai
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P.R. China
| | - Xiaoyu Wang
- Laboratory of Immunology and Virology, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Zheng
- Department of Gastrointestinal and Hernia, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Dingcheng Zheng
- Department of Gastrointestinal and Hernia, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Feng Wu
- Department of Gastrointestinal and Hernia, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Cheng Zheng
- Department of Gastrointestinal and Hernia, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ping Chen
- Department of Gastrointestinal and Hernia, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
48
|
Yang W, Hosford SR, Traphagen NA, Shee K, Demidenko E, Liu S, Miller TW. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer. FASEB J 2018; 32:1222-1235. [PMID: 29127189 DOI: 10.1096/fj.201700477r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER+ breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER+ breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER+ breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Wei Yang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sarah R Hosford
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Nicole A Traphagen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kevin Shee
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eugene Demidenko
- Community and Family Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; and
| | - Stephanie Liu
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
49
|
Treatment of melanoma with selected inhibitors of signaling kinases effectively reduces proliferation and induces expression of cell cycle inhibitors. Med Oncol 2017; 35:7. [PMID: 29214525 PMCID: PMC5719123 DOI: 10.1007/s12032-017-1069-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023]
Abstract
Cancer treatment often tends to involve direct targeting enzymes essential for the growth and proliferation of cancer cells. The aim of this study was the recognition of the possible role of selected protein kinases: PI3K, ERK1/2, and mTOR in cell proliferation and cell cycle in malignant melanoma. We investigated the role of protein kinase inhibitors: U0126 (ERK1/2), LY294002 (PI3K), rapamycin (mTOR), everolimus (mTOR), GDC-0879 (B-RAF), and CHIR-99021 (GSK3beta) in cell proliferation and expression of crucial regulatory cell cycle proteins in human melanoma cells: WM793 (VGP) and Lu1205 (metastatic). They were used either individually or in various combinations. The study on the effect of signaling kinases inhibitors on proliferation—BrdU ELISA test after 48–72 h. Their effect on the expression of cell cycle regulatory proteins: cyclin D1 and D3, cyclin-dependent kinase CDK4 and CDK6, and cell cycle inhibitors: p16, p21, and p27, was studied at the protein level (western blot). Treatment of melanoma cells with protein kinase inhibitors led to significantly decreased cell proliferation except the use of a GSK-3β kinase inhibitors—CHIR-99021. The significant decrease in the expression of selected cyclins and cyclin-dependent kinases (CDKs) with parallel increase in the expression of some of cyclin-dependent kinases inhibitors and in consequence meaningful reduction in melanoma cell proliferation by the combinations of inhibitors of signaling kinases clearly showed the crucial role of AKT, ERK 1/2, and mTOR signal transduction in melanoma progression. The results unanimously indicate those pathways as an important target for treatment of melanoma.
Collapse
|
50
|
Leone S, Busonero C, Acconcia F. A high throughput method to study the physiology of E2:ERα signaling in breast cancer cells. J Cell Physiol 2017; 233:3713-3722. [PMID: 29091270 DOI: 10.1002/jcp.26251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
17β-estradiol (E2) regulates diverse physiological effects including cell proliferation through the estrogen receptor α (ERα), which as a transcription factor drives gene transcription and as an extra-nuclear localized receptor triggers the membrane-dependent activation of diverse kinase cascades. E2 also modifies ERα intracellular levels via diverse intracellular mechanisms. In this way, the E2-acivated ERα integrates signaling cascades with the modulation of receptor intracellular concentration and with the induction of DNA synthesis and ultimately drives cell proliferation. In turn, E2 signaling deregulation can cause many diseases including breast cancer (BC). Recently, we performed a Western blotting (WB)-based screen to identify novel pathways affecting ERα intracellular levels and BC cell proliferation. However, because WB lacks high throughput potential, a high-content method to detect all aspects of E2:ERα signaling (nuclear and extra-nuclear receptor activity, ERα levels, E2-induced DNA synthesis) is desirable. Here, we set up a rapid way to measure E2:ERα signaling in 96-well plate format. To demonstrate its robustness, we also challenged 4OH-tamoxifen resistant (Tam-Res) BC cells with a library of anti-cancer drugs and identified methotrexate (MTX) as a molecule inducing ERα degradation and preventing BC cell proliferation. Overall, our research provides a high-content technique to study the physiology of E2:ERα signaling in cells and further suggests a possible anti-ERα and anti-proliferative use for MTX in Tam-Res BCs.
Collapse
Affiliation(s)
- Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| |
Collapse
|