1
|
Li X, Li X, Yang B, Sun S, Wang S, Yu F, Wang T. Deciphering breast cancer prognosis: a novel machine learning-driven model for vascular mimicry signature prediction. Front Immunol 2024; 15:1414450. [PMID: 39165361 PMCID: PMC11333250 DOI: 10.3389/fimmu.2024.1414450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Background In the ongoing battle against breast cancer, a leading cause of cancer-related mortality among women globally, the urgent need for innovative prognostic markers and therapeutic targets is undeniable. This study pioneers an advanced methodology by integrating machine learning techniques to unveil a vascular mimicry signature, offering predictive insights into breast cancer outcomes. Vascular mimicry refers to the phenomenon where cancer cells mimic blood vessel formation absent of endothelial cells, a trait associated with heightened tumor aggression and diminished response to conventional treatments. Methods The study's comprehensive analysis spanned data from over 6,000 breast cancer patients across 12 distinct datasets, incorporating both proprietary clinical data and single-cell data from 7 patients, accounting for a total of 43,095 cells. By employing an integrative strategy that utilized 10 machine learning algorithms across 108 unique combinations, the research scrutinized 100 existing breast cancer signatures. Empirical validation was sought through immunohistochemistry assays, alongside explorations into potential immunotherapeutic and chemotherapeutic avenues. Results The investigation successfully identified six genes related to vascular mimicry from multi-center cohorts, laying the groundwork for a novel predictive model. This model outstripped the prognostic accuracy of traditional clinical and molecular indicators in forecasting recurrence and mortality risks. High-risk individuals identified by our model faced worse outcomes. Further validation through IHC assays in 30 patients underscored the model's extensive applicability. Notably, the model unveiled varying therapeutic responses; low-risk patients might achieve greater benefits from immunotherapy, whereas high-risk patients demonstrated a particular sensitivity to certain chemotherapies, such as ispinesib. Conclusions This model marks a significant step forward in the precise evaluation of breast cancer prognosis and therapeutic responses across different patient groups. It heralds the possibility of refining patient outcomes through tailored treatment strategies, accentuating the potential of machine learning in revolutionizing cancer prognosis and management.
Collapse
Affiliation(s)
- Xue Li
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Xukui Li
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Bin Yang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Songyang Sun
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Shu Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Fuxun Yu
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| | - Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Blanca A, Lopez-Beltran A, Lopez-Porcheron K, Gomez-Gomez E, Cimadamore A, Bilé-Silva A, Gogna R, Montironi R, Cheng L. Risk Classification of Bladder Cancer by Gene Expression and Molecular Subtype. Cancers (Basel) 2023; 15:cancers15072149. [PMID: 37046810 PMCID: PMC10093178 DOI: 10.3390/cancers15072149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
This study evaluated a panel including the molecular taxonomy subtype and the expression of 27 genes as a diagnostic tool to stratify bladder cancer patients at risk of aggressive behavior, using a well-characterized series of non-muscle invasive bladder cancer (NMIBC) as well as muscle-invasive bladder cancer (MIBC). The study was conducted using the novel NanoString nCounter gene expression analysis. This technology allowed us to identify the molecular subtype and to analyze the gene expression of 27 bladder-cancer-related genes selected through a recent literature search. The differential gene expression was correlated with clinicopathological variables, such as the molecular subtypes (luminal, basal, null/double negative), histological subtype (conventional urothelial carcinoma, or carcinoma with variant histology), clinical subtype (NMIBC and MIBC), tumor stage category (Ta, T1, and T2–4), tumor grade, PD-L1 expression (high vs. low expression), and clinical risk categories (low, intermediate, high and very high). The multivariate analysis of the 19 genes significant for cancer-specific survival in our cohort study series identified TP53 (p = 0.0001), CCND1 (p = 0.0001), MKI67 (p < 0.0001), and molecular subtype (p = 0.005) as independent predictors. A scoring system based on the molecular subtype and the gene expression signature of TP53, CCND1, or MKI67 was used for risk assessment. A score ranging from 0 (best prognosis) to 7 (worst prognosis) was obtained and used to stratify our patients into two (low [score 0–2] vs. high [score 3–7], model A) or three (low [score 0–2] vs. intermediate [score 3–4] vs. high [score 5–7], model B) risk categories with different survival characteristics. Mean cancer-specific survival was longer (122 + 2.7 months) in low-risk than intermediate-risk (79.4 + 9.4 months) or high-risk (6.2 + 0.9 months) categories (p < 0.0001; model A); and was longer (122 + 2.7 months) in low-risk than high-risk (58 + 8.3 months) (p < 0.0001; model B). In conclusion, the molecular risk assessment model, as reported here, might be used better to select the appropriate management for patients with bladder cancer.
Collapse
Affiliation(s)
- Ana Blanca
- Department of Urology, Maimonides Biomedical Research Institute of Cordoba, University Hospital of Reina Sofia, UCO, 14004 Cordoba, Spain
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, University of Cordoba Medical School, 14004 Cordoba, Spain
| | - Kevin Lopez-Porcheron
- Department of Morphological Sciences, University of Cordoba Medical School, 14004 Cordoba, Spain
| | - Enrique Gomez-Gomez
- Department of Urology, Maimonides Biomedical Research Institute of Cordoba, University Hospital of Reina Sofia, UCO, 14004 Cordoba, Spain
| | - Alessia Cimadamore
- Department of Medical Area (DAME), Institute of Pathological Anatomy, University of Udine, 33100 Udine, Italy
| | - Andreia Bilé-Silva
- Urology Department, Egas Moniz Hospital, Centro Hospitalar de Lisboa Occidental, 1349-019 Lisbon, Portugal
| | - Rajan Gogna
- Department of Human & Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- BRIC-Biotech Research & Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Sternberg CN, Shin N, Chernyshov K, Calabro F, Cerbone L, Procopio G, Miheecheva N, Sagaradze G, Zaichikova A, Samarina N, Boyko A, Brown JH, Yunusova L, Guevara D, Manohar J, Sigouros M, Al Assaad M, Elemento O, Mosquera JM. Case report: Metastatic urothelial cancer with an exceptional response to immunotherapy and comprehensive understanding of the tumor and the tumor microenvironment. Front Oncol 2022; 12:1006017. [PMID: 36387205 PMCID: PMC9661726 DOI: 10.3389/fonc.2022.1006017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2023] Open
Abstract
Although immune checkpoint inhibitors (ICIs) are increasingly used as second-line treatments for urothelial cancer (UC), only a small proportion of patients respond. Therefore, understanding the mechanisms of response to ICIs is critical to improve clinical outcomes for UC patients. The tumor microenvironment (TME) is recognized as a key player in tumor progression and the response to certain anti-cancer treatments. This study aims to investigate the mechanism of response using integrated genomic and transcriptomic profiling of a UC patient who was part of the KEYNOTE-045 trial and showed an exceptional response to pembrolizumab. Diagnosed in 2014 and receiving first-line chemotherapy without success, the patient took part in the KEYNOTE-045 trial for 2 years. She showed dramatic improvement and has now been free of disease for over 6 years. Recently described by Bagaev et al., the Molecular Functional (MF) Portrait was utilized to dissect genomic and transcriptomic features of the patient's tumor and TME. The patient's tumor was characterized as Immune Desert, which is suggestive of a non-inflamed microenvironment. Integrated whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analysis identified an ATM mutation and high TMB level (33.9 mut/mb), which are both positive biomarkers for ICI response. Analysis further revealed the presence of the APOBEC complex, indicating the potential for use of APOBEC signatures as predictive biomarkers for immunotherapy response. Overall, comprehensive characterization of the patient's tumor and TME with the MF Portrait revealed important insights that could potentially be hypothesis generating to identify clinically useful biomarkers and improve treatment for UC patients.
Collapse
Affiliation(s)
- Cora N. Sternberg
- Englander Institute for Precision Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Hematology and Oncology, New York-Presbyterian, New York, NY, United States
| | - Nara Shin
- BostonGene, Corp, Waltham, MA, United States
| | | | - Fabio Calabro
- Special Operative Unite (UOS) Oncologia Tumori Genito-urinari, Department of Medical Oncology, San Camillo Forlanini Hospital, Rome, Italy
| | - Linda Cerbone
- Special Operative Unite (UOS) Oncologia Tumori Genito-urinari, Department of Medical Oncology, San Camillo Forlanini Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | | - Daniela Guevara
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Long Q, Yuan Y, Li M. RNA-SSNV: A Reliable Somatic Single Nucleotide Variant Identification Framework for Bulk RNA-Seq Data. Front Genet 2022; 13:865313. [PMID: 35846154 PMCID: PMC9279659 DOI: 10.3389/fgene.2022.865313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The usage of expressed somatic mutations may have a unique advantage in identifying active cancer driver mutations. However, accurately calling mutations from RNA-seq data is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap alignment. In the present study, we proposed a framework (named RNA-SSNV, https://github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a machine-learning classification model trained with comprehensively curated features, RNA-SSNV achieved the best precision–recall rate (0.880–0.884) in a testing dataset and robustly retained 0.94 AUC for the precision–recall curve in three validation adult-based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed that subclonal harboring expressed mutations had evolutional selection advantage and RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV will be a useful approach to accurately call expressed somatic mutations for a more insightful analysis of cancer drive genes and carcinogenic mechanisms.
Collapse
Affiliation(s)
- Qihan Long
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Yangyang Yuan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
- *Correspondence: Miaoxin Li,
| |
Collapse
|
5
|
Ye J, Zeng T. Mining database and verification of PIK3CB as a marker predicting prognosis and immune infiltration in renal clear cell carcinoma. Medicine (Baltimore) 2022; 101:e29254. [PMID: 35665729 PMCID: PMC9276396 DOI: 10.1097/md.0000000000029254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) was the most prevalent malignancy of urinary system. Phosphatidylinositol 3-kinase pathway exerted a vital function in tumor proliferation, invasion, and survival by integrating extracellular growth signals. METHODS The expression and clinical significance of PIK3CB in KIRC was explored using bioinformatics analysis. And qRT-PCR was performed to verify our results. RESULTS PIK3CB was downregulated at mRNA and protein level in KIRC. KIRC patients with low PIK3CB expression indicated a worse overall survival, progression free survival, and disease-free survival. A predictive nomogram was constructed and demonstrated that the predicted calibration plots for 1-year, 3-year, and 5-year OS probabilities showed good agreement compared with the actual OS of KIRC patients. Validation research demonstrated a downregulation of PIK3CB in KIRC tissues and a poor overall survival in KIRC patients with low PIK3CB expression. Furthermore, Cox regression analysis revealed that PIK3CB expression was an independent prognostic factor for KIRC. PIK3CB expression showed positive correlation with the abundance of immune cells. Moreover, enrichment analysis revealed that PIK3CB and associated genes were mainly associated with RNA splicing and JAK-STAT signaling pathway. CONCLUSION Our study suggested that PIK3CB was a potential biomarker for prognosis and correlated with immune infiltrates in KIRC.
Collapse
|
6
|
Valenza C, Antonarelli G, Giugliano F, Aurilio G, Verri E, Briganti A, Curigliano G, Necchi A. Emerging treatment landscape of non-muscle invasive bladder cancer. Expert Opin Biol Ther 2022; 22:717-734. [PMID: 35634893 DOI: 10.1080/14712598.2022.2082869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Non-muscle invasive bladder cancer (NMIBC) accounts for 70-75% of all bladder cancers and is a heterogeneous disease characterized by a wide spectrum of recurrences and progression. Adjuvant treatment for intermediate- and high-risk NMIBC is mainly represented by Bacillus Calmette Guerin (BCG). However, 20%-40% of patients develop disease recurrences or persistence following BCG treatment and are classified as "BCG unresponsive' (BCGu), thus representing a therapeutic challenge due to their worse prognosis and unavailability of effective intravesical treatments. AREAS COVERED We provide an overview of completed and ongoing clinical trials assessing the role of innovative immunological and target agents in patients with BCGu and BCG naive (BCGn) NMIBCs. New treatment options are emerging, demonstrating promising clinical activity, namely, pembrolizumab, atezolizumab, oportuzumab monatox, nadofaragene firadenovec, and N-803. EXPERT OPINION The increasing number of newer therapeutic agents for patients with NMIBC poses challenges regarding the choice of the most suited treatment option for each patient and the best treatment sequence, given their diverse mechanisms of action and varying degrees of activity. Tailored treatment approaches are advocated, based on a deeper comprehension of disease features, available therapies, patient's characteristics, and consequently, on the identification and validation of prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Gaetano Aurilio
- Division of Urogenital and Head and Neck Tumours, European Institute of Oncology, Milan, Italy
| | - Elena Verri
- Division of Urogenital and Head and Neck Tumours, European Institute of Oncology, Milan, Italy
| | - Alberto Briganti
- San Raffaele Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific InstituteUniversity Vita-Salute, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy.,(DIPO), University of MilanDepartment of Oncology and Hemato-Oncology, Milan, Italy
| | - Andrea Necchi
- San Raffaele Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific InstituteUniversity Vita-Salute, Milan, Italy
| |
Collapse
|
7
|
Gypenoside-Induced Apoptosis via the PI3K/AKT/mTOR Signaling Pathway in Bladder Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9304552. [PMID: 35402614 PMCID: PMC8984741 DOI: 10.1155/2022/9304552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a natural herbal drug that has been widely used to treat many diseases. The antitumor effects of G. pentaphyllum were first described in the illustrated catalog of plants. Gypenosides are the major active components of G. pentaphyllum, and they have been widely reported to possess antitumor effects in prostate cancer, gastric cancer, hepatocellular carcinoma, colon cancer, lung cancer, and breast cancer. However, research on the use of gypenoside in the treatment of bladder cancer has not been conducted. In this study, we explored the potential molecular mechanisms of gypenosides in the treatment of bladder cancer using network pharmacology and experimental validation. First, we used a network pharmacology-based method to identify both the effective components of gypenosides and the molecular mechanism underlying their antibladder cancer effects. The results were further confirmed by molecular docking, CCK8 and colony formation assays, and cell cycle and cell apoptosis analyses. Additionally, a mouse xenograft model of bladder cancer was used to investigate the antitumor effect of gypenosides in vivo. We identified 10 bioactive ingredients and 163 gene targets of gypenosides. Network exploration suggested that VEGFA, STAT3, and PI3KCA may be candidate agents for the antibladder cancer effect of gypenosides. In addition, analysis of the Kyoto Encyclopedia of Genes and Genomes pathway revealed that the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway may play a crucial role in the mechanism of action of gypenosides against bladder cancer. Molecular docking revealed that gypenosides combine well with PI3K, AKT, and mTOR. As expected, gypenosides displayed apoptosis-inducing properties in bladder cancer cells by inactivating the PI3K/AKT/mTOR signaling pathway in vitro. Furthermore, gypenosides significantly (P < 0.05) inhibited the growth of bladder cancer cells in vivo. Mechanistically, gypenosides induced the apoptosis of bladder cancer cells via inactivation of the PI3K/AKT/mTOR signaling pathway.
Collapse
|
8
|
El Ahanidi H, El Azzouzi M, Arrouchi H, Alaoui CH, Tetou M, Bensaid M, Oukabli M, Ameur A, Al Bouzidi A, El Mzibri M, Attaleb M. AKT1 and PIK3CA activating mutations in Moroccan bladder cancer patients´ biopsies and matched urine. Pan Afr Med J 2022; 41:59. [PMID: 35317488 PMCID: PMC8917451 DOI: 10.11604/pamj.2022.41.59.31383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction in cancer cells, activating mutations in PIK3CA and AKT1 genes, major players of PI3K-AKT-mTOR signalling pathway, are widely reported in many cancers and present attractive targets for the identification of new therapeutics and better cancer management. The present study was planned to evaluate the mutational status of PIK3CA and AKT1 genes in bladder cancer patients and to assess the association between these mutations and patients´ clinico-pathological features. Methods in this prospective study, bladder cancer biopsies and matched urine sediments samples were collected form 70 patients. Mutations were assessed by deoxyribonucleic acid (DNA) sequencing and correlation with clinico-pathological data was performed using SPSS software. Results AKT1 alterations were poorly detected. Only one patient with pT1 stage and high-grade tumour carried the E17K mutation. In PIK3CA exon 9, 2 point mutations, E545K and Q546E, and a SNP (E547E) were reported, whereas in exon 20, 2 point mutations (L989V and H1047R) and 2 SNPs (I1022I and T1025T) were detected. PIK3CA mutations were mainly observed in early stages and high-grade tumours. Statistical analysis showed no significant association between the studied AKT1 and PIK3CA mutations and patients´ clinico-pathological parameters (p > 0.05). Detection of these mutations in voided urine samples showed a high specificity (100%) for both genes and a moderate sensitivity: 100% for AKT1 and 66.7% for PIK3CA genes. Conclusion this study shows clearly that mutations in AKT1 and PIK3CA are rare events and could not be considered as valuable biomarkers for bladder cancer management.
Collapse
Affiliation(s)
- Hajar El Ahanidi
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco.,Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco.,Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Housna Arrouchi
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| | | | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Military Hospital Mohammed V, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| | - Mohammed Attaleb
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| |
Collapse
|
9
|
Huan J, Grivas P, Birch J, Hansel DE. Emerging Roles for Mammalian Target of Rapamycin (mTOR) Complexes in Bladder Cancer Progression and Therapy. Cancers (Basel) 2022; 14:1555. [PMID: 35326708 PMCID: PMC8946148 DOI: 10.3390/cancers14061555] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates important cellular functions. Aberrant activation of this pathway, either through upstream activation by growth factors, loss of inhibitory controls, or molecular alterations, can enhance cancer growth and progression. Bladder cancer shows high levels of mTOR activity in approximately 70% of urothelial carcinomas, suggesting a key role for this pathway in this cancer. mTOR signaling initiates through upstream activation of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) and results in activation of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2). While these complexes share several key protein components, unique differences in their complex composition dramatically alter the function and downstream cellular targets of mTOR activity. While significant work has gone into analysis of molecular alterations of the mTOR pathway in bladder cancer, this has not yielded significant benefit in mTOR-targeted therapy approaches in urothelial carcinoma to date. New discoveries regarding signaling convergence onto mTOR complexes in bladder cancer could yield unique insights the biology and targeting of this aggressive disease. In this review, we highlight the functional significance of mTOR signaling in urothelial carcinoma and its potential impact on future therapy implications.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA 98195, USA;
| | - Jasmine Birch
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| |
Collapse
|
10
|
Identification and Validation of PIK3CA as a Marker Associated with Prognosis and Immune Infiltration in Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:3632576. [PMID: 34367282 PMCID: PMC8337125 DOI: 10.1155/2021/3632576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most prevalent renal malignancy. The therapeutic strategies for advanced KIRC are very few, with only sunitinib being widely approved. Mutations in the PIK3CA gene can affect tumor cell proliferation, metastasis, and patients' survival. Methods Bioinformatics analysis was performed to explore the expression and clinical significance of PIK3CA in KIRC. Moreover, qRT-PCR was conducted to verify the result. Results Subgroup analyses of KIRC tissue based on gender, tumor grade, and cancer stage indicated downregulation of PIK3CA mRNA expression. The KIRC patients with high PIK3CA expression indicated a better overall survival, progression-free survival, and disease-free survival. A predictive nomogram was constructed and demonstrated that the calibration plots for the 3-year and 5-year OS rates were predicted relatively well compared with an ideal model in the TCGA KIRC cohort. The validation study revealed that downregulation of PIK3CA in KIRC tissues and low PIK3CA expression had a poor overall survival with an AUC of 0.775 in the ROC curve. Moreover, Cox regression analysis revealed that PIK3CA expression and clinical stage were independent factors affecting the prognosis of KIRC patients. PIK3CA expression was found to be significantly associated with the abundance of immune cells and immune biomarker sets. PIK3CA and associated genes were found to be mainly associated with immune response and the JAK-STAT signaling pathway. Conclusion We identified PIK3CA as a potential biomarker for prognosis correlated with immune infiltrates in KIRC. Further studies should focus on the functions of PIK3CA in KIRC carcinogenesis.
Collapse
|
11
|
Ren H, Mai G, Liu Y, Xiang R, Yang C, Su W. Eukaryotic Translation Initiation Factor 3 Subunit B Is a Promoter in the Development and Progression of Pancreatic Cancer. Front Oncol 2021; 11:644156. [PMID: 33996561 PMCID: PMC8116711 DOI: 10.3389/fonc.2021.644156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic cancer (PC) is a malignant tumor with hidden incidence, high degree of malignancy, rapid disease progression, and poor prognosis. Eukaryotic translation initiation factor 3 subunit B (EIF3B) is necessary for tumor growth, which is an alternative therapeutic target for many cancers. However, little is known about the relationship between EIF3B and PC. Methods: The expression of EIF3B in PC was detected by immunohistochemistry. EIF3B knockdown cell models were constructed by lentivirus infection. The MTT assay, the wound-healing assay, the transwell assay, the flow cytometry, and the Human Apoptosis Antibody Array was used to detect the effects of EIF3B knockdown on cell proliferation, cell migration, cell apoptosis, and cell cycle in vitro. Also, the effects of EIF3B knockdown on the tumor growth of PC were determined in vivo. Results: This study showed that the expression level of EIF3B was significantly up-regulated in PC tumor tissues and associated with pathological grade. In vitro, EIF3B knockdown inhibited the PC cell proliferation and migration, and the apoptosis levels were obviously promoted by regulating apoptosis-related proteins including Bcl-2, HSP27, HSP60, Survivin, sTNF-R2, TNF-α, TNF-β, TRAILR-3, TRAILR-4, and XIAP. Furthermore, the tumor growth of PC was inhibited after the knockdown of EIF3B in vivo. Conclusion: EIF3B was up-regulated in PC and was a promoter in the development and progression of PC, which could be considered as a therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Haoyuan Ren
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Gang Mai
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Yong Liu
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Rongchao Xiang
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, China
| | - Chong Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
12
|
Peng M, Xiao D, Bu Y, Long J, Yang X, Lv S, Yang X. Novel Combination Therapies for the Treatment of Bladder Cancer. Front Oncol 2021; 10:539527. [PMID: 33585182 PMCID: PMC7873600 DOI: 10.3389/fonc.2020.539527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is the ninth most frequently diagnosed cancer world-wide and ranks 13th in cancer-related deaths. Two tremendous breakthroughs in bladder cancer therapy over the last decades are the approval of immune checkpoint inhibitors(ICIs)and the fibroblast growth factor receptor tyrosine kinase inhibitor (FGFR-TKI) erdafitinib for treating this deadly disease. Despite the beneficial effects of these approaches, the low response rate and the potential resistance of the cancer are major concerns. Hence, novel combination therapies to overcome these limitations have been investigated. In this context, combining immunotherapy with targeted drugs is an appealing therapeutic option to improve response and reduce the emergence of resistance in the management of bladder cancer. In this review, the rationale of using different therapeutic combinations is discussed according to the mechanistic differences, emphasizing the efficacy and safety based on evidence collected from preclinical and clinical studies. Finally, we highlight the limitations of these combinations and provide suggestions for further efforts in this challenging field.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Jiahui Long
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Shuhe Lv
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Merrill NM, Vandecan NM, Day KC, Palmbos PL, Day ML, Udager AM, Merajver SD, Soellner MB. MEK is a promising target in the basal subtype of bladder cancer. Oncotarget 2020; 11:3921-3932. [PMID: 33216841 PMCID: PMC7646827 DOI: 10.18632/oncotarget.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/24/2020] [Indexed: 12/03/2022] Open
Abstract
While many resources exist for the drug screening of bladder cancer cell lines in 2D culture, it is widely recognized that screening in 3D culture is more representative of in vivo response. Importantly, signaling changes between 2D and 3D culture can result in changes to drug response. To address the need for 3D drug screening of bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 652 investigational small-molecules and 3 clinically relevant drug combinations in 3D cell culture. Our goal was to identify compounds and classes of compounds with efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for these bladder cancer cell lines, we correlated the genomic molecular parameters with drug response, to identify potentially novel groups of tumors that are vulnerable to specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors are a promising targeted therapy for the basal subtype of bladder cancer, and our data indicate that drug screening of 3D cultures provides an important resource for hypothesis generation.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Pritchard JJG, Hamilton G, Hurst CD, Fraser S, Orange C, Knowles MA, Jones RJ, Leung HY, Iwata T. Monitoring of urothelial cancer disease status after treatment by digital droplet PCR liquid biopsy assays. Urol Oncol 2020; 38:737.e1-737.e10. [PMID: 32532529 DOI: 10.1016/j.urolonc.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/12/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Real-time monitoring of disease status would be beneficial for timely decision making in the treatment of urothelial cancer (UC), and may accelerate the evaluation of clinical trials. Use of cell free tumor DNA (cftDNA) as a biomarker in liquid biopsy is minimally invasive and its successful use has been reported in various cancer types, including UC. The objective of this study was to evaluate the use of digital droplet PCR (ddPCR)-based assays to monitor UC after treatment. METHOD AND MATERIALS Blood, urine and matching formalin fixed, paraffin embedded diagnostic specimens were collected from 20 patients diagnosed with stage T1 (n = 2) and T2/T3 (n = 18) disease. SNaPshot assays, Sanger sequencing and whole exome sequencing were used to identify tumor-specific mutations, and somatic mutation status was confirmed using patient-matched DNAs extracted from buffy coats and peripheral blood mononucleocytes. The ddPCR assays of the tumor-specific mutations were used to detect the fractional abundance of cftDNA in plasma and urine. RESULTS SNaPshot and Sanger sequencing identified point mutations in 70% of the patients that were assayable by ddPCR. Cases of remission and relapse monitored by assays for PIK3CA E542K and TP53 Y163C mutations in plasma and urine concurred with clinical observations up to 48 months from the start of chemotherapy. A new ddPCR assay for the telomerase reverse transcriptase (TERT) promoter (-124) mutation was developed. The TERT assay was able to detect mutations in cases below the limit of detection by SNaPshot. Whole exome sequencing identified a novel mutation, CNTNAP4 G727*. A ddPCR assay designed to detect this mutation was able to distinguish mutant from wild-type alleles. CONCLUSIONS The study demonstrated that ddPCR assays could be used to detect cftDNA in liquid biopsy monitoring of the post-therapy disease status in patients with UC. Overall, 70% of the patients in our study harbored mutations that were assayable by ddPCR.
Collapse
Affiliation(s)
- John J G Pritchard
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Carolyn D Hurst
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Sioban Fraser
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Clare Orange
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Robert J Jones
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Tomoko Iwata
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
15
|
Jiang J, Han P, Qian J, Zhang S, Wang S, Cao Q, Shao P. Knockdown of ALPK2 blocks development and progression of renal cell carcinoma. Exp Cell Res 2020; 392:112029. [PMID: 32330508 DOI: 10.1016/j.yexcr.2020.112029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/02/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors in the urinary system, whose molecular mechanism is still not clear. ALPK2 is a member of alpha protein kinase family, and its relationship with RCC is never reported. In this study, expression of ALPK2 in tumor tissues or cells of RCC was detected by qPCR, western blotting and immunohistochemical analysis. The effects of ALPK2 knockdown on cell proliferation, colony formation, cell migration and apoptosis were assessed by MTT, colony formation assay, wound-healing assay, Transwell assay and flow cytometry, respectively. The influence of ALPK2 knockdown on tumor growth in vivo was evaluated by mice xenograft models. The results demonstrated that ALPK2 was upregulated in tumor tissues of RCC and its high expression was significantly associated with advanced stage and poor prognosis. Knockdown of ALPK2 could inhibited cell proliferation, colony formation and cell migration of RCC cells, while promoting cell apoptosis. The suppression of tumor growth in vivo by ALPK2 knockdown was also showed by using mice xenograft models. Moreover, the regulation of RCC by ALPK2 may involve Akt, CDK6, Cyclin D1 and PIK3CA signaling. Therefore, our studies suggested that ALPK2 may act as a tumor promotor in the development and progression of RCC, and could be considered as a novel therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Qian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaobo Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Garczyk S, Ortiz-Brüchle N, Schneider U, Lurje I, Guricova K, Gaisa NT, Lorsy E, Lindemann-Docter K, Heidenreich A, Knüchel R. Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:323-332. [PMID: 31734230 DOI: 10.1016/j.ajpath.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
Bacillus Calmette-Guérin instillation after removal of the tumor is the first line of treatment for urothelial carcinoma in situ (CIS), the precursor lesion of most muscle-invasive bladder cancers. Bacillus Calmette-Guérin therapy fails in >50% of cases, and second-line radical cystectomy is associated with overtreatment and drastic lifestyle consequences. Given the need for alternative bladder-preserving therapies, we identified genomic alterations (GAs) in urothelial CIS having the potential to predict response to targeted therapies. Laser-capture microdissection was applied to isolate 30 samples (25 CIS and 5 muscle controls) from 26 fresh-frozen cystectomy specimens. Targeted next-generation sequencing of 31 genes was performed. The panel comprised genes frequently affected in muscle-invasive bladder cancer of nonpapillary origin, focusing on potentially actionable GAs described to predict response to approved targeted therapies or drugs that are in registered clinical trials. Of CIS patients, 92% harbored at least one potentially actionable GA, which was identified in TP53/cell cycle pathway-related genes (eg, TP53 and MDM2) in 72%, genes encoding chromatin-modifying proteins (eg, ARID1A and KDM6A) in 68%, DNA damage repair genes (eg, BRCA2 and ATM) in 60%, and phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes (eg, ERBB2 and FGFR1) in 36% of the cases. These data might help guide the selection of targeted therapies to be investigated in future clinical CIS trials, and they may provide a basis for future mechanistic studies of urothelial CIS pathogenesis.
Collapse
Affiliation(s)
- Stefan Garczyk
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| | - Nadina Ortiz-Brüchle
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ursula Schneider
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Isabella Lurje
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Karolina Guricova
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Eva Lorsy
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Katharina Lindemann-Docter
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Axel Heidenreich
- Department of Urology, University Hospital Cologne, Cologne, Germany; Department of Urology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
17
|
Grivas P, Yu EY. Role of Targeted Therapies in Management of Metastatic Urothelial Cancer in the Era of Immunotherapy. Curr Treat Options Oncol 2019; 20:67. [DOI: 10.1007/s11864-019-0665-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Mues M, Karra L, Romero-Moya D, Wandler A, Hangauer MJ, Ksionda O, Thus Y, Lindenbergh M, Shannon K, McManus MT, Roose JP. High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Cell Rep 2019; 27:631-647.e5. [PMID: 30970263 PMCID: PMC6690758 DOI: 10.1016/j.celrep.2019.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Deregulated signal transduction is a cancer hallmark, and its complexity and interconnectivity imply that combination therapy should be considered, but large data volumes that cover the complexity are required in user-friendly ways. Here, we present a searchable database resource of synthetic lethality with a PI3 kinase signal transduction inhibitor by performing a saturation screen with an ultra-complex shRNA library containing 30 independent shRNAs per gene target. We focus on Ras-PI3 kinase signaling with T cell leukemia as a screening platform for multiple clinical and experimental reasons. Our resource predicts multiple combination-based therapies with high fidelity, ten of which we confirmed with small molecule inhibitors. Included are biochemical assays, as well as the IPI145 (duvelisib) inhibitor. We uncover the mechanism of synergy between the PI3 kinase inhibitor GDC0941 (pictilisib) and the tubulin inhibitor vincristine and demonstrate broad synergy in 28 cell lines of 5 cancer types and efficacy in preclinical leukemia mouse trials.
Collapse
Affiliation(s)
- Marsilius Mues
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laila Karra
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Damia Romero-Moya
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anica Wandler
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew J Hangauer
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yvonne Thus
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marthe Lindenbergh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Shannon
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Schiff JP, Barata PC, Yu EY, Grivas P. Precision therapy in advanced urothelial cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1582298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Joshua P. Schiff
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Pedro C. Barata
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Evan Y. Yu
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Petros Grivas
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA, USA
| |
Collapse
|
20
|
Liang X, Xin X, Qi D, Fu C, Ding M. Silencing the PIK3CA Gene Enhances the Sensitivity of Childhood Leukemia Cells to Chemotherapy Drugs by Suppressing the Phosphorylation of Akt. Yonsei Med J 2019; 60:182-190. [PMID: 30666840 PMCID: PMC6342719 DOI: 10.3349/ymj.2019.60.2.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study aimed to investigate the effects of PIK3CA on the sensitivity of acute B lymphocytic leukemia cells (Nalm-6 cells) to chemotherapy drugs. MATERIALS AND METHODS Children's normal B lymphocytes and Nalm-6 cells were cultured. Nalm-6 cells were transfected with PIK3CA siRNA (siPIK3CA group) or its negative control (PIK3CA-Control group). Normal Nalm-6 cells were named Mock group. Nalm-6 cells transfected by PIK3CA siRNA were treated with Akt inhibitor (siPIK3CA+Akti-1/2 group). mRNA and protein expression was detected by qRT-PCR and Western blot. Proliferation and sensitivity to chemotherapeutic drugs was detected by MTT assay. Cell cycle and apoptosis was explored by low cytometry. Transwell assay was performed to test invasion. RESULTS PIK3CA mRNA (p=0.008) and protein (p=0.006) expression was higher in Nalm-6 cells than that in normal B lymphocytes. Compared with the Mock group and PIK3CA-Control group, Nalm-6 cells of the siPIK3CA group had lower OD495 values (all p<0.05) and invasion cell numbers (p=0.03 and p=0.025), as well as a higher proportion of G0/G1 phase cells (p=0.020 and p=0.022), percentage of apoptosis (p=0.016 and p=0.022), and inhibition rate (all p<0.05). pAkt expression in the siPIK3CA group (p=0.026 and p=0.031) and siPIK3CA+Akti-1/2 group (p=0.019 and p=0.023) was lower than that in the Mock group. CONCLUSION PIK3CA silencing inhibited Nalm-6 cell proliferation and invasion, and promoted their apoptosis and sensitivity to chemotherapeutic drugs, potentially through regulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiuling Liang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Xianfang Xin
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Dongmei Qi
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Chengyan Fu
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Mingde Ding
- Department of Gynecology, Affiliated Hospital of Taishan Medical University, Tai'an, China.
| |
Collapse
|
21
|
Jungels C, Martinez Chanza N, Albisinni S, Mercier M, d’Haene N, Rorive S, Roumeguère T. Interest of next-generation sequencing in BCG-treated high-risk bladder cancer. Prog Urol 2018; 28:344-350. [DOI: 10.1016/j.purol.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/18/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
|
22
|
Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy. PLoS One 2018; 13:e0190854. [PMID: 29357370 PMCID: PMC5777650 DOI: 10.1371/journal.pone.0190854] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Targeting the PI3K pathway has achieved limited success in cancer therapy. One reason for the disappointing activity of drugs that interfere with molecules that are important player in this pathway is the induction of multiple feedback loops that have been only partially understood. To understand these limitations and develop improved treatment strategies, we comprehensively characterized molecular mechanisms of PI3K pathway signaling in bladder cancer cell lines upon using small molecule inhibitors and RNAi technologies against all key molecules and protein complexes within the pathway and analyzed functional and molecular consequences. When targeting either mTORC1, mTOR, AKT or PI3K, only S6K1 phosphorylation was affected in most cell lines examined. Dephosphorylation of 4E-BP1 required combined inhibition of PI3K and mTORC1, independent from AKT, and resulted in a robust reduction in cell viability. Long-term inhibition of PI3K however resulted in a PDK1-dependent, PIP3 and mTORC2 independent rephosphorylation of AKT. AKT rephosphorylation could also be induced by mTOR or PDK1 inhibition. Combining PI3K/mTOR inhibitors with AKT or PDK1 inhibitors suppressed this rephosphorylation, induced apoptosis, decreased colony formation, cell viability and growth of tumor xenografts. Our findings reveal novel molecular mechanisms that explain the requirement for simultaneous targeting of PI3K, AKT and mTORC1 to achieve effective tumor growth inhibition.
Collapse
|
23
|
Abstract
The PI3K/AKT/mTOR signaling pathway shows frequent molecular alterations and increased activity in cancer. Given its role in the regulation of cell growth, survival and metastasis, molecules within this pathway are promising targets for pharmacologic intervention. Metastatic bladder cancer (BLCA) continues to have few treatment options. Although various molecular alterations in PI3K/AKT/mTOR signaling have been described in BLCA, clinical trials with small molecule inhibitors have not met their endpoints. In this article, we summarize results from preclinical studies and clinical trials that examined PI3K pathway inhibitors in BLCA focusing on technical challenges that might result in contradictory findings in preclinical studies. Based on published data from our group, we also address challenges that need to be overcome to optimize PI3K inhibition in BLCA and enable its successful translation into the clinic.
Collapse
Affiliation(s)
- Anuja Sathe
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
24
|
Hyaluronic acid family in bladder cancer: potential prognostic biomarkers and therapeutic targets. Br J Cancer 2017; 117:1507-1517. [PMID: 28972965 PMCID: PMC5680466 DOI: 10.1038/bjc.2017.318] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Molecular markers of clinical outcome may aid in designing targeted treatments for bladder cancer. However, only a few bladder cancer biomarkers have been examined as therapeutic targets. Methods: Data from The Cancer Genome Atlas (TCGA) and bladder specimens were evaluated to determine the biomarker potential of the hyaluronic acid (HA) family of molecules – HA synthases, HA receptors and hyaluronidase. The therapeutic efficacy of 4-methylumbelliferone (4MU), a HA synthesis inhibitor, was evaluated in vitro and in xenograft models. Results: In clinical specimens and TCGA data sets, HA synthases and hyaluronidase-1 levels significantly predicted metastasis and poor survival. 4-Methylumbelliferone inhibited proliferation and motility/invasion and induced apoptosis in bladder cancer cells. Oral administration of 4MU both prevented and inhibited tumour growth, without dose-related toxicity. Effects of 4MU were mediated through the inhibition of CD44/RHAMM and phosphatidylinositol 3-kinase/AKT axis, and of epithelial–mesenchymal transition determinants. These were attenuated by HA, suggesting that 4MU targets oncogenic HA signalling. In tumour specimens and the TCGA data set, HA family expression correlated positively with β-catenin, Twist and Snail expression, but negatively with E-cadherin expression. Conclusions: This study demonstrates that the HA family can be exploited for developing a biomarker-driven, targeted treatment for bladder cancer, and 4MU, a non-toxic oral HA synthesis inhibitor, is one such candidate.
Collapse
|
25
|
Zeng SX, Zhu Y, Ma AH, Yu W, Zhang H, Lin TY, Shi W, Tepper CG, Henderson PT, Airhart S, Guo JM, Xu CL, deVere White RW, Pan CX. The Phosphatidylinositol 3-Kinase Pathway as a Potential Therapeutic Target in Bladder Cancer. Clin Cancer Res 2017; 23:6580-6591. [PMID: 28808038 DOI: 10.1158/1078-0432.ccr-17-0033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/07/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Activation of the PI3K pathway occurs in over 40% of bladder urothelial cancers. The aim of this study is to determine the therapeutic potential, the underlying action, and the resistance mechanisms of drugs targeting the PI3K pathway.Experimental Design: Urothelial cancer cell lines and patient-derived xenografts (PDXs) were analyzed for alterations of the PI3K pathway and for their sensitivity to the small-molecule inhibitor pictilisib alone and in combination with cisplatin and/or gemcitabine. Potential predictive biomarkers for pictilisib were evaluated, and RNA sequencing was performed to explore drug resistance mechanisms.Results: The bladder cancer cell line TCCSUP, which harbors a PIK3CA E545K mutation, was sensitive to pictilisib compared to cell lines with wild-type PIK3CA Pictilisib exhibited stronger antitumor activity in bladder cancer PDX models with PI3KCA H1047R mutation or amplification than the control PDX model. Pictilisib synergized with cisplatin and/or gemcitabine in vitro, significantly delayed tumor growth, and prolonged survival compared with single-drug treatment in the PDX models. The phosphorylation of ribosomal protein S6 correlated with response to pictilisib both in vitro and in vivo, and could potentially serve as a biomarker to predict response to pictilisib. Pictilisib activated the compensatory MEK/ERK pathway that likely contributed to pictilisib resistance, which was reversed by cotreatment with the RAF inhibitor sorafenib. RNA sequencing of tumors resistant to treatment suggested that LSP1 downregulation correlated with drug resistance.Conclusions: These preclinical results provide new insights into the therapeutic potential of targeting the PI3K pathway for the treatment of bladder cancer. Clin Cancer Res; 23(21); 6580-91. ©2017 AACR.
Collapse
Affiliation(s)
- Shu-Xiong Zeng
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California.,Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanjun Zhu
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Weimin Yu
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California.,Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Hongyong Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Tzu-Yin Lin
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Wei Shi
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California.,Department of Urology, Xijing Hospital, The Fourth Military Medical University, Shanxi Province, China
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Paul T Henderson
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California
| | | | - Jian-Ming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Liang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Ralph W deVere White
- Department of Urology, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Chong-Xian Pan
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California. .,Department of Urology, University of California Davis Comprehensive Cancer Center, Sacramento, California.,VA Northern California Health Care System, Mather, California
| |
Collapse
|