1
|
Caggia S, Johnston A, Walunj DT, Moore AR, Peer BH, Everett RW, Oyelere AK, Khan SA. Gα i2 Protein Inhibition Blocks Chemotherapy- and Anti-Androgen-Induced Prostate Cancer Cell Migration. Cancers (Basel) 2024; 16:296. [PMID: 38254786 PMCID: PMC10813862 DOI: 10.3390/cancers16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. In this study, we have identified potent, metabolically stable, second generation Gαi2 inhibitors which inhibit cell migration in prostate cancer cells. Recent studies have shown that chemotherapy can induce the cancer cells to migrate to distant sites to form metastases. In the present study, we determined the effects of taxanes (docetaxel), anti-androgens (enzalutamide and bicalutamide) and histone deacetylase (HDAC) inhibitors (SAHA and SBI-I-19) on cell migration in prostate cancer cells. All treatments induced cell migration, and simultaneous treatments with new Gαi2 inhibitors blocked their effects on cell migration. We concluded that a combination treatment of Gαi2 inhibitors and chemotherapy could blunt the capability of cancer cells to migrate and form metastases.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Alexis Johnston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Dipak T. Walunj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Aanya R. Moore
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Benjamin H. Peer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Ravyn W. Everett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Shafiq A. Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| |
Collapse
|
2
|
Zhang C, Shen C. Identification of hub gene and lncRNA signature related to entotic cell death in cutaneous melanoma for prognostic and immune prediction. Medicine (Baltimore) 2023; 102:e35881. [PMID: 37960805 PMCID: PMC10637533 DOI: 10.1097/md.0000000000035881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Entotic cell death (ECD), a cell death program observed in cancer cell competition, predominantly occurs in an autophagy protein-dependent, non-apoptotic manner. However, the relationship between cutaneous melanoma (CM) and ECD-associated genes and lncRNAs has remained unclear. This study aimed to elucidate the role and mechanism of ECD-associated genes in CM. To achieve this, 4 mechanism learning algorithms and integrated bioinformatic analyses were employed to identify the core ECD-associated genes and lncRNAs. Subsequently, 2 risk signatures based on ECD-associated genes and hub lncRNAs were constructed for CM patients. As a result, we observed significant differential expression of ECD-associated genes in CM, indicating their potential as valuable predictors for CM patients. Moreover, RHOA was identified as a core ECD-associated gene in CM, and its expression was found to be associated with patients' survival and immune infiltration, suggesting its relevance as a potential therapeutic target. Additionally, this study provided clarification on hub ECD-associated lncRNAs in CM, offering insights into their roles in the disease. Through bioinformatic analyses, we identified 2 risk signatures based on the expression of ECD-associated genes and hub ECD-associated lncRNAs, respectively. Both risk signatures were strongly linked to the prognosis and cancer growth of CM, underscoring their potential as valuable prognostic indicators. Furthermore, mechanistic analyses suggested a significant association between the risk signature and the immune microenvironment in CM, highlighting potential immune-related implications in disease progression. In conclusion, we propose that ECD-associated genes and lncRNAs hold promise as potential targets in CM. Moreover, our findings revealed a significant correlation between ECD and the immune microenvironment, providing crucial insights for guiding individualized treatment strategies in CM.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Emergency Surgery, Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Shen
- Department of Infectious Disease, Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther 2023; 8:11. [PMID: 36604412 PMCID: PMC9816171 DOI: 10.1038/s41392-022-01221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Histone deacetylase (HDAC) is a kind of protease that modifies histone to regulate gene expression, and is usually abnormally activated in tumors. The approved pan-HDAC inhibitors have demonstrated clinical benefits for patients in some hematologic malignancies. Only limited therapeutic success in breast cancer has been observed in clinical trials. In this study, we declare that pan-HDAC inhibitors targeting NEDD9-FAK pathway exacerbate breast cancer metastasis in preclinical models, which may severely impede their clinical success. NEDD9 is not an oncogene, however, it has been demonstrated recently that there are high level or activity changes of NEDD9 in a variety of cancer, including leukemia, colon cancer, and breast cancer. Mechanistically, pan-HDAC inhibitors enhance H3K9 acetylation at the nedd9 gene promoter via inhibition of HDAC4 activity, thus increase NEDD9 expression, and then activate FAK phosphorylation. The realization that pan-HDAC inhibitors can alter the natural history of breast cancer by increasing invasion warrants clinical attention. In addition, although NEDD9 has been reported to have a hand in breast cancer metastasis, it has not received much attention, and no therapeutic strategies have been developed. Notably, we demonstrate that FAK inhibitors can reverse breast cancer metastasis induced by upregulation of NEDD9 via pan-HDAC inhibitors, which may offer a potential combination therapy for breast cancer.
Collapse
|
4
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
5
|
Pecora A, Laprise J, Dahmene M, Laurin M. Skin Cancers and the Contribution of Rho GTPase Signaling Networks to Their Progression. Cancers (Basel) 2021; 13:4362. [PMID: 34503171 PMCID: PMC8431333 DOI: 10.3390/cancers13174362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Skin cancers are the most common cancers worldwide. Among them, melanoma, basal cell carcinoma of the skin and cutaneous squamous cell carcinoma are the three major subtypes. These cancers are characterized by different genetic perturbations even though they are similarly caused by a lifelong exposure to the sun. The main oncogenic drivers of skin cancer initiation have been known for a while, yet it remains unclear what are the molecular events that mediate their oncogenic functions and that contribute to their progression. Moreover, patients with aggressive skin cancers have been known to develop resistance to currently available treatment, which is urging us to identify new therapeutic opportunities based on a better understanding of skin cancer biology. More recently, the contribution of cytoskeletal dynamics and Rho GTPase signaling networks to the progression of skin cancers has been highlighted by several studies. In this review, we underline the various perturbations in the activity and regulation of Rho GTPase network components that contribute to skin cancer development, and we explore the emerging therapeutic opportunities that are surfacing from these studies.
Collapse
Affiliation(s)
- Alessandra Pecora
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Justine Laprise
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Manel Dahmene
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Mélanie Laurin
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
- Université Laval Cancer Research Center, Université Laval, Québec City, QC G1R 3S3, Canada
- Molecular Biology, Medical Biochemistry and Pathology Department, Faculty of Medicine, Université Laval, Québec City, QC G1V OA6, Canada
| |
Collapse
|
6
|
Diener J, Baggiolini A, Pernebrink M, Dalcher D, Lerra L, Cheng PF, Varum S, Häusel J, Stierli S, Treier M, Studer L, Basler K, Levesque MP, Dummer R, Santoro R, Cantù C, Sommer L. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nat Commun 2021; 12:5056. [PMID: 34417458 PMCID: PMC8379183 DOI: 10.1038/s41467-021-25326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Arianna Baggiolini
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Damian Dalcher
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Luigi Lerra
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Phil F Cheng
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Sandra Varum
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Jessica Häusel
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Salome Stierli
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Mathias Treier
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konrad Basler
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Mitchell P Levesque
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Reinhard Dummer
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Raffaella Santoro
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Lukas Sommer
- University of Zürich, Institute of Anatomy, Zürich, Switzerland.
| |
Collapse
|
7
|
Pacheco MB, Camilo V, Lopes N, Moreira-Silva F, Correia MP, Henrique R, Jerónimo C. Hydralazine and Panobinostat Attenuate Malignant Properties of Prostate Cancer Cell Lines. Pharmaceuticals (Basel) 2021; 14:ph14070670. [PMID: 34358096 PMCID: PMC8308508 DOI: 10.3390/ph14070670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting this subset of patients. Thus, we aimed to evaluate the combined antineoplastic effects of DNA methylation inhibitor hydralazine and histone deacetylase inhibitors panobinostat and valproic acid in several prostate cell lines. The effect of these drugs was assessed in four PCa (LNCaP, 22Rv1, DU145 and PC-3) cell lines, as well as in non-malignant epithelial (RWPE-1) and stromal (WPMY-1) cell lines, using several assays to evaluate cell viability, apoptosis, proliferation, DNA damage and clonogenic potential. We found that exposure to each epidrug separately reduced viability of all PCa cells in a dose-dependent manner and that combined treatments led to synergic growth inhibitory effects, impacting also on colony formation, invasion, apoptotic and proliferation rates. Interestingly, antitumoral effects of combined treatment were particularly expressive in DU145 cells. We concluded that hydralazine and panobinostat attenuate malignant properties of PCa cells, constituting a potential therapeutic tool to counteract PCa progression.
Collapse
Affiliation(s)
- Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: or ; Tel.: +351-225-084-000; Fax: +351-225-084-199
| |
Collapse
|
8
|
Dong B, Qiu Z, Wu Y. Tackle Epithelial-Mesenchymal Transition With Epigenetic Drugs in Cancer. Front Pharmacol 2020; 11:596239. [PMID: 33343366 PMCID: PMC7746977 DOI: 10.3389/fphar.2020.596239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Epithelial-mesenchymal Transition (EMT) is a de-differentiation process in which epithelial cells lose their epithelial properties to acquire mesenchymal features. EMT is essential for embryogenesis and wound healing but is aberrantly activated in pathological conditions like fibrosis and cancer. Tumor-associated EMT contributes to cancer cell initiation, invasion, metastasis, drug resistance and recurrence. This dynamic and reversible event is governed by EMT-transcription factors (EMT-TFs) with epigenetic complexes. In this review, we discuss recent advances regarding the mechanisms that modulate EMT in the context of epigenetic regulation, with emphasis on epigenetic drugs, such as DNA demethylating reagents, inhibitors of histone modifiers and non-coding RNA medication. Therapeutic contributions that improve epigenetic regulation of EMT will translate the clinical manifestation as treating cancer progression more efficiently.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Zhaoping Qiu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States,Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY, United States,*Correspondence: Yadi Wu,
| |
Collapse
|
9
|
Pisano S, Wang X, Garcia-Parra J, Gazze A, Edwards K, Feltracco V, Hu Y, He L, Gonzalez D, Francis LW, Conlan RS, Li C. Nanomicelles potentiate histone deacetylase inhibitor efficacy in vitro. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-020-00070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Amphiphilic block copolymers used as nanomicelle drug carriers can effectively overcome poor drug solubility and specificity issues. Hence, these platforms have a broad applicability in cancer treatment. In this study, Pluronic F127 was used to fabricate nanomicelles containing the histone deacetylase inhibitor SAHA, which has an epigenetic-driven anti-cancer effect in several tumor types. SAHA-loaded nanomicelles were prepared using a thin-film drying method and characterized for size, surface charge, drug content, and drug release properties. Loaded particles were tested for in vitro activity and their effect on cell cycle and markers of cancer progression.
Results
Following detailed particle characterization, cell proliferation experiments demonstrated that SAHA-loaded nanomicelles more effectively inhibited the growth of HeLa and MCF-7 cell lines compared with free drug formulations. The 30 nm SAHA containing nanoparticles were able to release up to 100% of the encapsulated drug over a 72 h time window. Moreover, gene and protein expression analyses suggested that their cytoreductive effect was achieved through the regulation of p21 and p53 expression. SAHA was also shown to up-regulate E-cadherin expression, potentially influencing tumor migration.
Conclusions
This study highlights the opportunity to exploit pluronic-based nanomicelles for the delivery of compounds that regulate epigenetic processes, thus inhibiting cancer development and progression.
Collapse
|
10
|
Madorsky Rowdo FP, Barón A, Gallagher SJ, Hersey P, Emran AA, Von Euw EM, Barrio MM, Mordoh J. Epigenetic inhibitors eliminate senescent melanoma BRAFV600E cells that survive long‑term BRAF inhibition. Int J Oncol 2020; 56:1429-1441. [PMID: 32236593 PMCID: PMC7170042 DOI: 10.3892/ijo.2020.5031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
It is estimated that ~50% of patients with melanoma harbour B‑Raf (BRAF)V600 driver mutations, with the most common of these being BRAFV600E, which leads to the activation of mitogen‑activated protein kinase proliferative and survival pathways. BRAF inhibitors are used extensively to treat BRAF‑mutated metastatic melanoma; however, acquired resistance occurs in the majority of patients. The effects of long‑term treatment with PLX4032 (BRAFV600 inhibitor) were studied in vitro on sensitive V600E BRAF‑mutated melanoma cell lines. After several weeks of treatment with PLX4032, the majority of the melanoma cells died; however, a proportion of cells remained viable and quiescent, presenting senescent cancer stem cell‑like characteristics. This surviving population was termed SUR cells, as discontinuing treatment allowed the population to regrow while retaining equal drug sensitivity to that of parental cells. RNA sequencing analysis revealed that SUR cells exhibit changes in the expression of 1,415 genes (P<0.05) compared with parental cells. Changes in the expression levels of a number of epigenetic regulators were also observed. These changes and the reversible nature of the senescence state were consistent with epigenetic regulation; thus, it was investigated as to whether the senescent state could be reversed by epigenetic inhibitors. It was found that both parental and SUR cells were sensitive to different histone deacetylase (HDAC) inhibitors, such as SAHA and MGCD0103, and to the cyclin‑dependent kinase (CDK)9 inhibitor, CDKI‑73, which induced apoptosis and reduced proliferation both in the parental and SUR populations. The results suggested that the combination of PLX4032 with HDAC and CDK9 inhibitors may achieve complete elimination of SUR cells that persist after BRAF inhibitor treatment, and reduce the development of resistance to BRAF inhibitors.
Collapse
Affiliation(s)
- Florencia Paula Madorsky Rowdo
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| | - Antonela Barón
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| | - Stuart John Gallagher
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, Sydney, New South Wales 2050, Australia
| | - Erika M Von Euw
- Department of Medicine, Division of Hematology‑Oncology, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90024, USA
| | - María Marcela Barrio
- Oncology Research Center‑Cancer Foundation (FUCA), Buenos Aires C1426 ANZ, Argentina
| | - José Mordoh
- Cancerology Laboratory, Leloir Institute‑Biochemical Research Institute of Buenos Aires (IIBBA), National Scientific and Technical Research Council (CONICET), Buenos Aires C1405BWE, Argentina
| |
Collapse
|
11
|
Liu R, Song K, Hu Z, Cao W, Shuai J, Chen S, Nan H, Zheng Y, Jiang X, Zhang H, Han W, Liao Y, Qu J, Jiao Y, Liu L. Diversity of collective migration patterns of invasive breast cancer cells emerging during microtrack invasion. Phys Rev E 2019; 99:062403. [PMID: 31330694 DOI: 10.1103/physreve.99.062403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Understanding the mechanisms underlying the diversity of tumor invasion dynamics, including single-cell migration, multicellular streaming, and the emergence of various collective migration patterns, is a long-standing problem in cancer research. Here we have designed and fabricated a series of microchips containing high-throughput microscale tracks using protein repelling coating technology, which were then covered with a thin Matrigel layer. By varying the geometrical confinement (track width) and microenvironment factors (Matrigel concentration), we have reproduced a diversity of collective migration patterns in the chips, which were also observed in vivo. We have further classified the collective patterns and quantified the emergence probability of each class of patterns as a function of microtrack width and Matrigel concentration to devise a quantitive "collective pattern diagram." To elucidate the mechanisms behind the emergence of various collective patterns, we employed cellular automaton simulations, incorporating the effects of both direct cell-cell interactions and microenvironment factors (e.g., chemical gradient and extracellular matrix degradation). Our simulations suggest that tumor cell phenotype heterogeneity, and the associated dynamic selection of a favorable phenotype via cell-microenivronment interactions, are key to the emergence of the observed collective patterns in vitro.
Collapse
Affiliation(s)
- Ruchuan Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Kena Song
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Zhijian Hu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Wenbin Cao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Shaohua Chen
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Xuefeng Jiang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Hongfei Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Weijing Han
- Shenzhen Shengyuan Biotechnology Co. Ltd., Shenzhen 518000, China
| | - Yong Liao
- Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400331, China
| | - Junle Qu
- Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China
| |
Collapse
|
12
|
Kaczorowski M, Biecek P, Donizy P, Pieniazek M, Matkowski R, Halon A. Low RhoA expression is associated with adverse outcome in melanoma patients: a clinicopathological analysis. Am J Transl Res 2019; 11:4524-4532. [PMID: 31396356 PMCID: PMC6684925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
RhoA GTPase is physiologically involved in the formation of stress fibers, cellular contractility and polarity, maintenance of cell cycle and transcriptional control. During tumorigenesis, it plays roles in cancer cell proliferation, apoptosis, adhesion, invasion and metastasis. While RhoA seems to act as a tumor promotor in most malignancies, data regarding its function in skin melanoma are fragmentary and conflicting. We aimed to clarify the clinical significance of RhoA expression in melanoma by immunohistochemical evaluation of 134 primary tumors and subsequent statistical analysis with clinicopathological profiles of patients. Increased RhoA expression was associated with thinner tumors, higher grade of tumor-infiltrating lymphocytes and lack of disease recurrence. Moreover, we observed a trend towards higher RhoA expression in cases without concurrent metastases. Recurrence-free survival and melanoma-specific survival of patients with high RhoA-expressing tumors were significantly prolonged. Multivariable regression model adjusting for melanoma thickness and status of regional lymph nodes confirmed independent prognostic value of RhoA immunoreactivity. In summary, we found associations between RhoA expression and histopathological phenotype of primary tumors as well as patient survival which suggest a suppressive role of RhoA in skin melanoma.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical UniversityBorowska 213, Wroclaw, Poland
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of TechnologyKoszykowa 75, Warsaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical UniversityBorowska 213, Wroclaw, Poland
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology CentreKatowicka 66a, Opole, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical UniversityHirszfelda 12, Wroclaw, Poland
- Lower Silesian Oncology CentreHirszfelda 12, Wroclaw, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical UniversityBorowska 213, Wroclaw, Poland
- Lower Silesian Oncology CentreHirszfelda 12, Wroclaw, Poland
| |
Collapse
|
13
|
Lajkó E, Spring S, Hegedüs R, Biri-Kovács B, Ingebrandt S, Mező G, Kőhidai L. Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. Beilstein J Org Chem 2018; 14:2495-2509. [PMID: 30344773 PMCID: PMC6178282 DOI: 10.3762/bjoc.14.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH-III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRH-III(Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a “second drug” proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Sarah Spring
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.,Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Rózsa Hegedüs
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Sven Ingebrandt
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Gábor Mező
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - László Kőhidai
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| |
Collapse
|
14
|
De Francesco EM, Maggiolini M, Tanowitz HB, Sotgia F, Lisanti MP. Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: Implications for optimizing anti-angiogenic therapy. Oncotarget 2017; 8:56126-56142. [PMID: 28915578 PMCID: PMC5593549 DOI: 10.18632/oncotarget.18445] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/12/2022] Open
Abstract
Here, we report new mechanistic insight into how chronic hypoxia increases ‘stemness’ in cancer cells. Using chemical inhibitors, we provide direct experimental evidence that ROS production and mitochondrial biogenesis are both required for the hypoxia-induced propagation of CSCs. More specifically, we show that hypoxic CSCs can be effectively targeted with i) simple mitochondrial anti-oxidants (Mito-TEMPO) and/or ii) inhibitors of mitochondrial biogenesis (Doxycycline). In this context, we discuss the idea that mitochondrial biogenesis itself may be a primary driver of “stemness” in hypoxic cancer cells, with metabolic links to fatty acid oxidation (FAO). As Doxycycline is an FDA-approved drug, we propose that it could be re-purposed to target hypoxic CSCs, either alone or in combination with chemotherapy, i.e., Paclitaxel. For example, we demonstrate that Doxycycline effectively targets the sub-population of hypoxia-induced CSCs that are Paclitaxel-resistant, overcoming hypoxia-induced drug-resistance. Finally, anti-angiogenic therapy often induces tumor hypoxia, allowing CSCs to survive and propagate, ultimately driving tumor progression. Therefore, we suggest that Doxycycline could be used in combination with anti-angiogenic agents, to actively prevent or minimize hypoxia-induced treatment failure. In direct support of this assertion, Paclitaxel is already known to behave as an angiogenesis inhibitor.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.,The Paterson Institute, University of Manchester, Withington, United Kingdom
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Herbert B Tanowitz
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
15
|
Hegedüs L, Padányi R, Molnár J, Pászty K, Varga K, Kenessey I, Sárközy E, Wolf M, Grusch M, Hegyi Z, Homolya L, Aigner C, Garay T, Hegedüs B, Tímár J, Kállay E, Enyedi Á. Histone Deacetylase Inhibitor Treatment Increases the Expression of the Plasma Membrane Ca 2+ Pump PMCA4b and Inhibits the Migration of Melanoma Cells Independent of ERK. Front Oncol 2017; 7:95. [PMID: 28596940 PMCID: PMC5442207 DOI: 10.3389/fonc.2017.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022] Open
Abstract
Several new therapeutic options emerged recently to treat metastatic melanoma; however, the high frequency of intrinsic and acquired resistance among patients shows a need for new therapeutic options. Previously, we identified the plasma membrane Ca2+ ATPase 4b (PMCA4b) as a metastasis suppressor in BRAF-mutant melanomas and found that mutant BRAF inhibition increased the expression of the pump, which then inhibited the migratory and metastatic capability of the cells. Earlier it was also demonstrated that histone deacetylase inhibitors (HDACis) upregulated PMCA4b expression in gastric, colon, and breast cancer cells. In this study, we treated one BRAF wild-type and two BRAF-mutant melanoma cell lines with the HDACis, SAHA and valproic acid, either alone, or in combination with the BRAF inhibitor, vemurafenib. We found that HDACi treatment strongly increased the expression of PMCA4b in all cell lines irrespective of their BRAF mutational status, and this effect was independent of ERK activity. Furthermore, HDAC inhibition also enhanced the abundance of the housekeeping isoform PMCA1. Combination of HDACis with vemurafenib, however, did not have any additive effects on either PMCA isoform. We demonstrated that the HDACi-induced increase in PMCA abundance was coupled to an enhanced [Ca2+]i clearance rate and also strongly inhibited both the random and directional movements of A375 cells. The primary role of PMCA4b in these characteristic changes was demonstrated by treatment with the PMCA4-specific inhibitor, caloxin 1c2, which was able to restore the slower Ca2+ clearance rate and higher motility of the cells. While HDAC treatment inhibited cell motility, it decreased only modestly the ratio of proliferative cells and cell viability. Our results show that in melanoma cells the expression of both PMCA4b and PMCA1 is under epigenetic control and the elevation of PMCA4b expression either by HDACi treatment or by the decreased activation of the BRAF-MEK-ERK pathway can inhibit the migratory capacity of the highly motile A375 cells.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany.,Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Rita Padányi
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Judit Molnár
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Katalin Pászty
- Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics, Semmelweis University, Budapest, Hungary
| | - Karolina Varga
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,MTA-SE-NAP Brain Metastasis Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - István Kenessey
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Sárközy
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Wolf
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Garay
- Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Balázs Hegedüs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - József Tímár
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Ágnes Enyedi
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.,Molecular Oncology Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Ge Z, Cheng Z, Yang X, Huo X, Wang N, Wang H, Wang C, Gu D, Zhao F, Yao M, Fan J, Qin W. Long noncoding RNA SchLAH suppresses metastasis of hepatocellular carcinoma through interacting with fused in sarcoma. Cancer Sci 2017; 108:653-662. [PMID: 28196303 PMCID: PMC5406589 DOI: 10.1111/cas.13200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/26/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence has indicated that deregulation of long non‐coding RNAs (lncRNAs) can contribute to the progression and metastasis of human cancer, including hepatocellular carcinoma (HCC). However, the roles of most lncRNAs in HCC remain largely unknown. Here we found a long noncoding RNA termed SchLAH (seven chromosome locus associated with HCC; also called BC035072) was generally downregulated in HCC. Low expression of SchLAH was significantly correlated with shorter overall survival of HCC patients. In vitro and in vivo assays indicated that overexpression of SchLAH inhibited the migration and lung metastasis of HCC cells. Knockdown of SchLAH by siRNA pool promoted the migration of HCC cells. RNA pull‐down and RNA immunoprecipitation assays demonstrated SchLAH physically interacted with fused in sarcoma (FUS). PCR array analysis showed that RhoA and Rac1 were the downstream effector molecules of SchLAH during HCC metastasis. Knockdown of FUS rescued the mRNA levels of RhoA and Rac1 that were repressed by SchLAH. These results suggest that SchLAH may suppress the metastasis of HCC cells by interacting with FUS, which indicates potential of SchLAH for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhouhong Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoan Cheng
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xisong Huo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|