1
|
Abdel-Wahab BA, El-Shoura EAM, Habeeb MS, Aldabaan NA, Ahmed YH, Zaafar D. Unraveling the impact of semaglutide in a diabetic rat model of testicular dysfunction: Insights into spermatogenesis pathways and miRNA-148a-5p. Steroids 2024:109537. [PMID: 39551458 DOI: 10.1016/j.steroids.2024.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Diabetes has been a long-known risk factor for male sexual dysfunction, which may be caused by persistent hyperglycemia, oxidative stress, and spermatogenesis inhibition. This study explored the potential of Semaglutide (Sem) to alleviate testicular dysfunction and spermatogenesis impairment in diabetic rats to understand the molecular mechanism of this protective effect. METHODOLOGY A controlled experiment was conducted where 28 adult male rats were divided into four groups: control, Semaglutide, diabetic, and diabetes + Sem. Diabetes was induced using a single STZ dose (50 mg/kg, i.p.). At the same time, Sem was administered as a daily subcutaneous dose (25 nmol/kg) for four weeks after the confirmed diagnosis of diabetes. Several biochemical and histochemical analyses were performed in addition to mating behavior assessments. The estimation of spermatogenesis-related genes and proteins was conducted using PCR and western blotting techniques. RESULTS revealed promising outcomes, wherein Sem treatment effectively mitigated diabetes-induced sexual and testicular dysfunction. Specifically, it regulated the disrupted redox balance, restored spermatogenesis gene and protein levels, modulated hormonal profiles, and mitigated testicular inflammation. CONCLUSION Sem protects against diabetes-induced testicular and sexual impairments by influencing several pathways and restoring spermatogenesis-related genes and proteins. Future studies may involve a potential investigation of Sem translational applications in clinical settings for treating male infertility associated with diabetes.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mohammed S Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Nayef A Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Sun J, Tian Z, Wu J, Li J, Wang Q, Huang S, Wang M. Pristimerin Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2024; 18:1673-1694. [PMID: 38779590 PMCID: PMC11110813 DOI: 10.2147/dddt.s460093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Pristimerin, a natural triterpenoid isolated from the plants of southern snake vine and Maidenwood in the family Weseraceae, is anti-inflammatory, insecticidal, antibacterial, and antiviral substance and has been used for its cardioprotective and antitumor effects and in osteoporosis treatment. These qualities explain Pristimerin's therapeutic effects on different types of tumors and other diseases. More and more studies have shown that pristimerin acts in a wide range of biological activities and has shown great potential in various fields of modern and Chinese medicine. While Pristimerin's wide range of pharmacological effects have been widely studied by others, our comprehensive review suggests that its mechanism of action may be through affecting fundamental cellular events, including blocking the cell cycle, inducing apoptosis and autophagy, and inhibiting cell migration and invasion, or through activating or inhibiting certain key molecules in several cell signaling pathways, including nuclear factor κB (NF-κB), phosphatidylinositol 3-kinase/protein kinase B/mammalian-targeted macromycin (PI3K/Akt/mTOR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase 1/2 (ERK1/2), Jun amino-terminal kinase (JNK1/2/3), reactive oxygen species (ROS), wingless/integrin1 (Wnt)/β-catenin, and other signaling pathways. This paper reviews the research progress of Pristimerin's pharmacological mechanism of action in recent years to provide a theoretical basis for the molecular targeting therapy and further development and utilization of Pristimerin. It also provides insights into improved treatments and therapies for clinical patients and the need to explore pristimerin as a potential facet of treatment.
Collapse
Affiliation(s)
- Jian Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jing Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jiafei Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Qixia Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Prabhu KS, Jessy S, Kuttikrishnan S, Mujeeb F, Mariyam Z, Habeeba U, Ahmad N, Bhat AA, Uddin S. Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies. Pharmaceuticals (Basel) 2024; 17:578. [PMID: 38794148 PMCID: PMC11123949 DOI: 10.3390/ph17050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Serah Jessy
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Farina Mujeeb
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India;
| | - Zahwa Mariyam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Ummu Habeeba
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (S.J.); (S.K.); (Z.M.); (U.H.); (N.A.)
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Fang X, Yin Y, Lun H, Liu Y, Zhu S. Assessment of the Effects of Sphingosine Kinase 1/Sphingosine-1-Phosphate on Microangiogenesis at Rat Myofascial Trigger Points Using Contrast-Enhanced Ultrasonography. J Pain Res 2024; 17:609-621. [PMID: 38371480 PMCID: PMC10871147 DOI: 10.2147/jpr.s437111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Few studies have assessed the effects of sphingosine kinase 1/sphingosine-1-phosphate (SPHK1/S1P) on microangiogenesis at rat myofascial trigger points (MTrPs) using contrast-enhanced ultrasonography (CEUS). This study aimed to address these deficiencies. Here, we investigated the effects of SPHK1/S1P on MTrP microangiogenesis and the value of CEUS in evaluating these effects. Methods Forty Sprague‒Dawley rats were subdivided into two groups: control and MTrP groups. MTrPs were established by 8 weeks of the strike procedure combined with eccentric motion and 4 weeks of recovery. All rats were euthanized after having undergone CEUS with an overdose of pentobarbital sodium. MTrP and control tissue samples were removed for haematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM) imaging. The tissue was dehydrated, cleared, and embedded before sectioning. The sections were then incubated overnight at 4°C, and immunohistochemistry was carried out with primary antibodies including rabbit anti-CD31, rabbit anti-SPHK1and rabbit anti-S1PR1. Results MTrP rats exhibited spontaneous electrical activity (SEA) and a local twitch response (LTR) during electromyography (EMG) examination. The CEUS time-intensity curves (TICs) showed that the perfusion intensity in the MTrPs and surrounding tissue area was increased, with faster perfusion than in normal sites, while the TICs in the control group slowly increased and then slowly decreased. The correlation coefficient between the microvessel density (MVD) and sphingosine 1-phosphate receptor 1 (S1PR1) was 0.716 (p <0.01). Spearman correlation analysis revealed that Spearman's rho (ρ) values between the MVD and peak intensity (PI), between the MVD and area under the curve (AUC), and between the MVD and SPHK1 were > 0.5 (p <0.05), > 0.7 (p <0.01), and > 0.7 (p <0.01), respectively. Conclusion CEUS is valuable for detecting microangiogenesis within MTrPs, and SPHK1/S1P plays an important role in promoting MTrP tissue microangiogenesis.
Collapse
Affiliation(s)
- Xin Fang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yalong Yin
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Haimei Lun
- Department of Ultrasound, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Yaoli Liu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shangyong Zhu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
6
|
Chao-shun W, Xiao-Li W. The impacts of SphK1 on inflammatory response and oxidative stress in LPS-induced ALI/ARDS. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
As severe conditions, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) threaten human health. Inflammation and oxidative stress play a vital role in the pathogenesis of ALI/ARDS. Sphingosine kinase 1 (SphK1) significantly contributes to mediating inflammatory responses. Nevertheless, the impact of SphK1 on lipopolysaccharide (LPS)-triggered ALI/ARDS remains largely undetermined. In our current work, we explored the impact of SphK1 on ALI/ARDS using a mouse model. We studied whether it could reduce LPS-triggered inflammatory response and oxidative stress by suppressing SphK1 in ALI/ARDS. The mice were treated with the inhibitor of SphK1 (N,N-dimethylsphingosine, DMS) before intraperitoneal injection of LPS. Moreover, we assessed the survival rate, and several parameters, such as the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and the release of inflammatory cytokines. Western blotting analysis was adopted to evaluate the levels of phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (AKT) pathways. We showed that the inhibitor of SphK1 not only ameliorated LPS-stimulated lung histopathological changes and W/D ratio of lung tissue but also elevated the survival rate, the SOD activity and decreased the MDA content, MPO activity, interleukin-6 (IL-6) and tumor necrosis factor-ɑ (TNF-ɑ) production by regulating the PI3K/AKT signaling pathway in lung tissue. Taken together, SphK1 played an essential role in inflammatory responses and oxidative stress. The underlying mechanism might be linked to the activation and up-regulation of the PI3K/AKT signaling pathway in LPS-triggered ALI/ARDS.
Collapse
Affiliation(s)
- Wei Chao-shun
- Medical College of Jishou University, Jishou, P. R. China
| | - Wang Xiao-Li
- Medical College of Jishou University, Jishou, P. R. China
| |
Collapse
|
7
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|
8
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother 2023; 163:114806. [PMID: 37163782 DOI: 10.1016/j.biopha.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Zhou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunxi Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zifan Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiaoling Wan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
SPHK/HIF-1α Signaling Pathway Has a Critical Role in Chrysin-Induced Anticancer Activity in Hypoxia-Induced PC-3 Cells. Cells 2022; 11:cells11182787. [PMID: 36139362 PMCID: PMC9496844 DOI: 10.3390/cells11182787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/30/2023] Open
Abstract
Hypoxia, a typical feature of locally advanced solid tumors including prostate cancer, is a critical contributor to tumor progression and causes resistance to therapy. In this study, we investigated the effects of chrysin on tumor progression in hypoxic PC-3 cells. Chrysin exerted a significant inhibitory effect on 3D cell growth under normoxic and hypoxic conditions. It also decreased the hypoxia-induced vasculogenic mimicry and attenuated the expression of HIF-1α and VE-cadherin. Chrysin inhibited HIF-1α accumulation in a concentration- and time-dependent manner in hypoxic PC-3 cells, while also suppressing the expression of HIF-1α by inhibiting SPHK-1 in both CoCl2 and hypoxic PC-3 cells. At high concentrations of chrysin, there was a greater increase in apoptosis in the hypoxic cells compared to that in normoxic cells, which was accompanied by sub-G1 phase arrest. Chrysin-induced apoptosis inhibited VEGF and Bcl-2 and induced the cleavage of PARP and caspase-3. SPHK-1 knockdown induced apoptosis and inhibited epithelial–mesenchymal transition. Consistent with the in vitro data, 50 mg/kg of chrysin suppressed the tumor growth of PC-3 xenografts by 80.4% compared to that in the untreated control group. The immunohistochemistry of tumor tissues revealed decreased Ki-67, HIF-1α, and VEGF expression in the chrysin-treated group compared to an untreated control. Western blotting data for tumor tissues showed that chrysin treatment decreased SPHK-1, HIF-1α, and PARP expression while inducing caspase-3 cleavage. Overall, our findings suggest that chrysin exerts anti-tumor activity by inhibiting SPHK-1/HIF-1α signaling and thus represents a potent chemotherapeutic agent for hypoxia, which promotes cancer progression and is related to poor prognoses in prostate cancer patients.
Collapse
|
10
|
The multifaceted mechanisms of pristimerin in the treatment of tumors state-of-the-art. Biomed Pharmacother 2022; 154:113575. [PMID: 35988422 DOI: 10.1016/j.biopha.2022.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 01/30/2023] Open
Abstract
As a globally complicated disease, malignant tumor has long been posing a threat to human health with increasingly high morbidity and mortality. Notably, existing treatments for tumors like chemotherapy generally carry intolerable toxicity, necessitating novel agents balancing safety and potency. Among them, the anti-tumor potency of herbs, featuring few adverse effects and promising efficacy, has attracted much attention recently. Pristimerin, a Quinone formamide triterpenoid compound extracted from Celastraceae and Portulacaceae, carries pronounced anti-tumor activity. It applies to various malignant tumors, including breast cancer, bile duct cancer, gastric cancer, pancreatic cancer, prostate cancer, glioblastoma, colorectal cancer, oral squamous cell carcinoma, cervical cancer, and lung cancer. In state-of-the-art understanding, pristimerin, alone or combined, can inhibit tumor cell proliferation, induce tumor cell apoptosis, inhibit tumor migration and invasion, inhibit angiogenesis, induce tumor cell autophagy, regulate the occurrence of inflammation related tumors, enhance chemosensitivity and regulate tumor microenvironment and immune cells. Despite the abundance of pristimerin-based research, systematic reviews on its anti-tumor mechanism remain needed. This study presented the anti-tumor mechanism of pristimerin by literature review, which might serve as a reference for further research and clinical practice.
Collapse
|
11
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
12
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
13
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
14
|
Zhao Q, Cheng X, Yu W, Bi Y, Guo J, Ma Q, Gong Y, He L, Yu X. Pristimerin induces apoptosis and tumor inhibition of oral squamous cell carcinoma through activating ROS-dependent ER stress/Noxa pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153723. [PMID: 34482221 DOI: 10.1016/j.phymed.2021.153723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Pristimerin (Pri), a natural quinone methide triterpenoid isolated from Celastraceae and Hippocrateaceae, exhibits potent antitumor activity against various cancers. However, the mechanism of apoptosis induction by Pri in oral squamous cell carcinoma (OSCC) and its anti-OSCC effect in vivo has not been widely studied. PURPOSE This study aimed to investigate the anti-OSCC activities of Pri in vitro and in vivo and addressed the potential mechanisms of Pri-induced apoptosis. METHODS The effects of Pri on OSCC cells were analyzed by cell viability, colony formation and flow cytometry assays. Western blotting and qRT-PCR assays were chosen to detect the expression of proteins and genes. The anti-OSCC efficacy of Pri in vivo was evaluated by CAL-27 xenografts. RESULTS We showed that Pri inhibited the proliferation of human OSCC cell lines. Additionally, Pri induced apoptosis by upregulating Noxa expression. Furthermore, Pri treatment triggered excessive endoplasmic reticulum (ER) stress activation and subsequently induced c-Jun N-terminal kinase (JNK) signaling. ROS scavengers and ER stress inhibitors significantly attenuated Pri-induced OSCC cell apoptosis. Finally, Pri suppressed tumor growth in CAL-27 xenografts, accompanied ER stress activation and cell apoptosis. CONCLUSION These results reveal that Pri suppressed tumor growth and triggered cell apoptosis through ER stress activation in OSCC cells and xenografts, suggesting that Pri may serve as a therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xinran Cheng
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wei Yu
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Qingzhao Ma
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yingxia Gong
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li He
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Xianjun Yu
- Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China; Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
15
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
16
|
Zhong JC, Li XB, Lyu WY, Ye WC, Zhang DM. Natural products as potent inhibitors of hypoxia-inducible factor-1α in cancer therapy. Chin J Nat Med 2021; 18:696-703. [PMID: 32928513 DOI: 10.1016/s1875-5364(20)60008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia is a prominent feature of tumors. Hypoxia-inducible factor-1α (HIF-1α), a major subunit of HIF-1, is overexpressed in hypoxic tumor tissues and activates the transcription of many oncogenes. Accumulating evidence has demonstrated that HIF-1α promotes tumor angiogenesis, metastasis, metabolism, and immune evasion. Natural products are an important source of antitumor drugs and numerous studies have highlighted the crucial role of these agents in modulating HIF-1α. The present review describes the role of HIF-1α in tumor progression, summarizes natural products used as HIF-1α inhibitors, and discusses the potential of developing natural products as HIF-1α inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Cheng Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xiao-Bo Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Yu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Chen RZ, Yang F, Zhang M, Sun ZG, Zhang N. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Front Oncol 2021; 11:671548. [PMID: 34026649 PMCID: PMC8138054 DOI: 10.3389/fonc.2021.671548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Seeking an efficient and safe approach to eliminate tumors is a common goal of medical fields. Over these years, traditional Chinese medicine has attracted growing attention in cancer treatment due to its long history. Pristimerin is a naturally occurring quinone methide triterpenoid used in traditional Chinese medicine to treat various cancers. Recent studies have identified alterations in cellular events and molecular signaling targets of cancer cells under pristimerin treatment. Pristimerin induces cell cycle arrest, apoptosis, and autophagy to exhibit anti-proliferation effects against tumors. Pristimerin also inhibits the invasion, migration, and metastasis of tumor cells via affecting cell adhesion, cytoskeleton, epithelial-mesenchymal transition, cancer stem cells, and angiogenesis. Molecular factors and pathways are associated with the anti-cancer activities of pristimerin. Furthermore, pristimerin reverses multidrug resistance of cancer cells and exerts synergizing effects with other chemotherapeutic drugs. This review aims to discuss the anti-cancer potentials of pristimerin, emphasizing multi-targeted biological and molecular regulations in cancers. Further investigations and clinical trials are warranted to understand the advantages and disadvantages of pristimerin treatment much better.
Collapse
Affiliation(s)
- Run-Ze Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI. Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers (Basel) 2021; 13:1898. [PMID: 33920887 PMCID: PMC8071327 DOI: 10.3390/cancers13081898] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipid metabolites have emerged as critical players in the regulation of various physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas sphingosine-1-phosphate (S1P) promotes cell proliferation and survival. Here, we present an overview of sphingolipid metabolism and the compartmentalization of various sphingolipid metabolites. In addition, the sphingolipid rheostat, a fine metabolic balance between ceramide and S1P, is discussed. Sphingosine kinase (SphK) catalyzes the synthesis of S1P from sphingosine and modulates several cellular processes and is found to be essentially involved in various pathophysiological conditions. The regulation and biological functions of SphK isoforms are discussed. The functions of S1P, along with its receptors, are further highlighted. The up-regulation of SphK is observed in various cancer types and is also linked to radio- and chemoresistance and poor prognosis in cancer patients. Implications of the SphK/S1P signaling axis in human pathologies and its inhibition are discussed in detail. Overall, this review highlights current findings on the SphK/S1P signaling axis from multiple angles, including their functional role, mechanism of activation, involvement in various human malignancies, and inhibitor molecules that may be used in cancer therapy.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| |
Collapse
|
19
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors’ therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Lei X, Zhong Y, Huang L, Li S, Fu J, Zhang L, Zhang Y, Deng Q, Yu X. Identification of a novel tumor angiogenesis inhibitor targeting Shh/Gli1 signaling pathway in Non-small cell lung cancer. Cell Death Dis 2020; 11:232. [PMID: 32286274 PMCID: PMC7156472 DOI: 10.1038/s41419-020-2425-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Although angiogenesis inhibitors targeting VEGF/VEGFR2 have been applied for tumor therapy, the outcomes are still unsatisfactory. Thus, it is urgent to develop novel angiogenesis inhibitor for cancer therapy from new perspectives. Identification of novel angiogenesis inhibitor from natural products is believed to be one of most promising strategy. In this study, we showed that pristimerin, an active agent isolated from traditional Chinese herbal medicine Celastrus aculeatus Merr, was a novel tumor angiogenesis inhibitor that targeting sonic hedgehog (Shh)/glioma associated oncogene 1 (Gli1) signaling pathway in non-small cell lung cancer (NSCLC). We showed that pristimerin affected both the early- and late-stage of angiogenesis, suggesting by that pristimerin inhibited Shh-induced endothelial cells proliferation, migration, invasion as well as pericytes recruitment to the endothelial tubes, which is critical for the new blood vessel maturation. It also suppressed tube formation, vessel sprouts formation and neovascularization in chicken embryo chorioallantoic membrane (CAM). Moreover, it significantly decreased microvessel density (MVD) and pericyte coverage in NCI-H1299 xenografts, resulting in tumor growth inhibition. Further research revealed that pristimerin suppressed tumor angiogenesis by inhibiting the nucleus distribution of Gli1, leading to inactivation of Shh/Gli1 and its downstream signaling pathway. Taken together, our study showed that pristimerin was a promising novel anti-angiogenic agent for the NSCLC therapy and targeting Shh/Gli1 signaling pathway was an effective approach to suppress tumor angiogenesis.
Collapse
Affiliation(s)
- Xueping Lei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yihang Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Lijuan Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Songpei Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Jijun Fu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yu Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences & the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
21
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
22
|
Moschetta MG, Leonel C, Maschio-Signorini LB, Borin TF, Gelaleti GB, Jardim-Perassi BV, Ferreira LC, Sonehara NM, Carvalho LGS, Hellmén E, de Campos Zuccari DAP. Evaluation of Angiogenesis Process after Metformin and LY294002 Treatment in Mammary Tumor. Anticancer Agents Med Chem 2020; 19:655-666. [PMID: 30569877 DOI: 10.2174/1871520619666181218164050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The angiogenesis process is regulated by many factors, such as Hypoxia-Inducible Factor-1 (HIF-1) and Vascular Endothelial Growth Factor (VEGF). Metformin has demonstrated its ability to inhibit cell growth and the LY294002 is the major inhibitor of PI3K/AKT/mTOR pathway that has antiangiogenic properties. METHODS Canine mammary tumor cell lines CMT-U229 and CF41 were treated with metformin and LY294002. Cell viability, protein and gene expression of VEGF and HIF-1 were determined in vitro. For the in vivo study, CF41 cells were inoculated in female athymic nude mice treated with either metformin or LY294002. The microvessel density by immunohistochemistry for CD31 as well as the gene and protein expression of HIF-1 and VEGF were evaluated. RESULTS The treatment with metformin and LY294002 was able to reduce the cellular viability after 24 hours. The protein and gene expression of HIF-1 and VEGF decreased after treatment with metformin and LY294002. In the in vivo study, there was a decrease in tumor size, protein and gene expression of HIF-1 and VEGFA, in addition to the decreasing of CD31 expression after all treatments. CONCLUSION Our results demonstrate the effectiveness of metformin and LY294002 in controlling the angiogenesis process in mammary tumors by VEGF and HIF-1, the most important angiogenic markers.
Collapse
Affiliation(s)
- Marina G Moschetta
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Camila Leonel
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Larissa B Maschio-Signorini
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Thaiz F Borin
- Augusta University, Department of Biochemistry and Molecular Biology, Tumor Imaging Angiogenesis Laboratory, Augusta, GA, United States
| | - Gabriela B Gelaleti
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | | | - Lívia C Ferreira
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Nathália M Sonehara
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Livia G S Carvalho
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Eva Hellmén
- Swedish University of Agricultural Sciences (SLU), Department of Anatomy, Physiology and Biochemistry, Uppsala, Sweden
| | - Debora A P de Campos Zuccari
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| |
Collapse
|
23
|
Wang Y, Gao TT, Xu DF, Zhu XY, Dong WW, Lv Z, Liu YJ, Jiang L. Upregulation of sphingosine kinase 1 contributes to ventilator-associated lung injury in a two-hit model. Int J Mol Med 2019; 44:2077-2090. [PMID: 31638192 PMCID: PMC6844625 DOI: 10.3892/ijmm.2019.4379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
Ventilator‑associated lung injury (VALI) remains a significant medical problem in intensive care units. The present study aimed to investigate the role of sphingosine kinase 1 (SPHK1) in VALI using a two‑hit model and explore the potential underlying molecular mechanism. Mice were divided into five groups: i) Non‑ventilated group; ii) non‑ventilated + lipopolysaccharide (LPS) group; iii) ventilated group; iv) ventilated + LPS group; and v) ventilated + LPS + SPHK1 inhibitor group. Mice were administered LPS (1 mg/kg) via an intraperitoneal injection. After 12 h, the mice were anesthetized and connected to a ventilator (10 ml/kg at 150 breaths/min) for 4 h. SPHK1 inhibitor (50 mg/kg) was injected intraperitoneally 1 h prior to ventilation. Mouse lung vascular endothelial cells were treated with LPS and SPHK1 inhibitor, and then subjected to cyclic stretch for 4 h. The present results suggested that the expression of SPHK1 and sphingosine 1 phosphate was upregulated in the two‑hit model of VALI; SPHK1 inhibitor could attenuate VALI in the two‑hit model as observed by hematoxylin and eosin staining, and affected the cell count and the protein content levels in the bronchoalveolar lavage fluid. In addition, treatment with SPHK1 inhibitor reduced the wet‑to‑dry ratio of the lungs and suppressed Evans blue dye leakage into the lung tissue. Furthermore, SPHK1 inhibitor exhibited protective effects on the two‑hit model of VALI by inhibiting the Ras homolog family member a‑mediated phosphorylation of myosin phosphatase target subunit 1 (MYPT‑1) and endothelial hyperpermeability. Additionally, mice were divided into five additional groups: i) Non‑ventilated group; ii) non‑ventilated + LPS group; iii) ventilated group; iv) ventilated + LPS group; and v) ventilated + LPS + Rho‑associated coiled‑coil forming protein kinase (ROCK)1 inhibitor group. ROCK1 inhibitor (10 mg/kg) was injected intraperitoneally 1 h prior to ventilation. The present results suggested that ROCK1 inhibitor could attenuate mechanical stretch‑induced lung endothelial injury and the phosphorylation of MYPT‑1 in vivo and in vitro. Collectively, the present findings indicated that upregulation of SPHK1 may contribute to VALI in a two‑hit model.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ting-Ting Gao
- Department of Anesthesiology, QILU Children's Hospital of Shandong University, Jinan, Shandong 250022, P.R. China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
24
|
Liang HW, Luo B, Du LH, He RQ, Chen G, Peng ZG, Ma J. Expression significance and potential mechanism of hypoxia-inducible factor 1 alpha in patients with myelodysplastic syndromes. Cancer Med 2019; 8:6021-6035. [PMID: 31411003 PMCID: PMC6792495 DOI: 10.1002/cam4.2447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the expression level and potential mechanism of hypoxia‐inducible factor 1 alpha (HIF‐1α) in patients with myelodysplastic syndromes (MDS). Methods Immunohistochemistry (IHC) techniques were used to examine the protein expression of HIF‐1α in paraffin‐embedded myeloid tissues from 82 patients with MDS and 33 controls (patients with lymphoma that is not invading myeloid tissues). In addition, the associations between the protein expression of HIF‐1α and clinical parameters were examined. To further investigate the significance of HIF‐1α expression in MDS patients, the researchers not only extracted the data about HIF‐1α expression from MDS‐related microarrays but also analyzed the correlation between the level of HIF‐1α expression and MDS. The microRNA (miRNA) targeting HIF‐1α was predicted and verified with a dual luciferase experiment. Results Immunohistochemistry revealed that the positive expression rate of HIF‐1α in the bone marrow of patients with MDS was 90.24%. This rate was remarkably higher than that of the controls (72.73%) and was statistically significant (P < .05), which indicated that HIF‐1α was upregulated in the myeloid tissues of MDS patients. For the GSE2779, GSE18366, GSE41130, and GSE61853 microarrays, the average expression of HIF‐1α in MDS patients was higher than in the controls. Particularly for the GSE18366 microarray, HIF‐1α expression was considerably higher in MDS patients than in the controls (P < .05). It was predicted that miR‐93‐5p had a site for binding with HIF‐1α, and a dual luciferase experiment confirmed that miR‐93‐5p could bind with HIF‐1α. Conclusion The upregulated expression of HIF‐1α was examined in the myeloid tissues of MDS patients. The presence of HIF‐1α (+) suggested an unsatisfactory prognosis for patients, which could assist in the diagnosis of MDS. In addition, miR‐93‐5p could bind to HIF‐1α by targeting, showing its potential to be the target of HIF‐1α in MDS.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bin Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Li-Hua Du
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Gang Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
25
|
Li JJ, Yan YY, Sun HM, Liu Y, Su CY, Chen HB, Zhang JY. Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review. Front Pharmacol 2019; 10:746. [PMID: 31354475 PMCID: PMC6640652 DOI: 10.3389/fphar.2019.00746] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
As a quinonemethide triterpenoid extracted from species of the Celastraceae and Hippocrateaceae, pristimerin has been shown potent anti-cancer effects. Specifically, it was found that pristimerin can affect many tumor-related processes, such as apoptosis, autophagy, migration and invasion, vasculogenesis, and drug resistance. Various molecular targets or signaling pathways are also involved, such as cyclins, reactive oxygen species (ROS), microRNA, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways. In this review, we will focus on the research about pristimerin-induced anti-cancer activities to achieve a deeper understanding of the targets and mechanisms, which offer evidences suggesting that pristimerin can be a potent anti-cancer drug.
Collapse
Affiliation(s)
- Jia-Jun Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao-Yue Su
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Ye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Taddeo VA, Castillo UG, Martínez ML, Menjivar J, Jiménez IA, Núñez MJ, Bazzocchi IL. Development and Validation of an HPLC-PDA Method for Biologically Active Quinonemethide Triterpenoids Isolated from Maytenus chiapensis. MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6010036. [PMID: 30866563 PMCID: PMC6473362 DOI: 10.3390/medicines6010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 04/17/2023]
Abstract
Background: Quinonemethide triterpenoids, known as celastroloids, constitute a relatively small group of biologically active compounds restricted to the Celastraceae family and, therefore, they are chemotaxonomic markers for this family. Among this particular type of metabolite, pristimerin and tingenone are considered traditional medicines in Latin America. The aim of this study was the isolation of the most abundant celastroloids from the root bark of Maytenus chiapensis, and thereafter, to develop an analytical method to identify pristimerin and tingenone in the Celastraceae species. Methods: Pristimerin and tingenone were isolated from the n-hexane-Et₂O extract of the root bark of M. chiapensis through chromatographic techniques, and were used as internal standards. Application of a validated RP HPLC-PDA method was developed for the simultaneous quantification of these two metabolites in three different extracts, n-hexane-Et₂O, methanol, and water, to determine the best extractor solvent. Results: Concentration values showed great variation between the solvents used for extraction, with the n-hexane⁻Et₂O extract being the richest in pristimerin and tingenone. Conclusions: M. chiapensis is a source of two biologically active quinonemethide triterpenoids. An analytical method was developed for the qualification and quantification of these two celastroloids in the root bark extracts of M. chiapensis. The validated method reported herein could be extended and be useful in analyzing Celastraceae species and real commercial samples.
Collapse
Affiliation(s)
- Vito Alessandro Taddeo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
- Dipartimento di Farmacia, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Ulises Guardado Castillo
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador.
| | - Morena Lizette Martínez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador.
| | - Jenny Menjivar
- Museo de Historia Natural de El Salvador, Ministerio de Cultura, San Salvador 1101, El Salvador.
| | - Ignacio Antonio Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Marvin José Núñez
- Laboratorio de Investigación en Productos Naturales, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San Salvador 1101, El Salvador.
| | - Isabel López Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| |
Collapse
|
27
|
Ma T, Yang S, Jing H, Cong L, Cao Z, Liu Z, Huang Z. Apparent diffusion coefficients in prostate cancer: correlation with molecular markers Ki-67, HIF-1α and VEGF. NMR IN BIOMEDICINE 2018; 31:e3884. [PMID: 29315957 DOI: 10.1002/nbm.3884] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PCa) is the second most common cancer in men. The Gleason score (GS) and biomarkers play important roles in the diagnosis and treatment of patients with PCa. The purpose of this study was to investigate the relationship between the apparent diffusion coefficient (ADC) and the molecular markers Ki-67, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in PCa. Thirty-nine patients with 39 lesions, who had been diagnosed with PCa, were enrolled in this study. All patients underwent diffusion-weighted magnetic resonance imaging (DW-MRI) (b = 800 s/mm2 ). The expression of Ki-67, HIF-1α and VEGF was assessed by immunohistochemistry. Statistical analysis was applied to analyze the association between ADC and prostate-specific antigen (PSA), GS and the expression of Ki-67, HIF-1α and VEGF. The group differences in ADC among different grades of Ki-67, HIF-1α and VEGF were also analyzed. The mean ± standard deviation of ADC was (0.76 ± 0.27) × 10-3 mm2 /s. ADC correlated negatively with PSA and GS (p < 0.05). The Ki-67 staining index (SI), HIF-1α expression and VEGF expression in PCa were correlated inversely with ADC, controlling for age (r = -0.332, p < 0.05; r = -0.662, p < 0.0005; and r = -0.714, p < 0.0005, respectively). ADC showed a significant difference among different grades of Ki-67 (F = 9.164, p = 0.005), HIF-1α (F = 40.333, p < 0.0005) and VEGF (F = 22.048, p < 0.0005). In conclusion, ADC was correlated with PSA, GS, and Ki-67, HIF-1α and VEGF expression in patients with PCa. ADC may be used to evaluate tumor proliferation, hypoxia and angiogenesis in PCa.
Collapse
Affiliation(s)
- Teng Ma
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Shaolin Yang
- Departments of Psychiatry, Radiology and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Lin Cong
- Department of Interventional Ultrasound, Shandong Medical Imaging Research Institute, Jinan City, Shandong Province, China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Zhiling Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
28
|
Liu L, Liang Z, Guo K, Wang H. Relationship between the expression of CD133, HIF-1α, VEGF and the proliferation and apoptosis in hypoxic human prostate cancer cells. Oncol Lett 2017; 14:4065-4068. [PMID: 28943913 PMCID: PMC5592884 DOI: 10.3892/ol.2017.6726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023] Open
Abstract
This study measured the levels of expression of CD133, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) in human prostate cancer cells grown under hypoxic and non-hypoxic conditions to compare the values to resulting amounts of proliferation and apoptosis in the cells. Human prostate cancer cell line LNCaP cells were routinely thawed, cultured and passaged. Actively growing cells were divided into batches. Cells in the control group were grown under 5% CO2 + 20% O2, and those in the hypoxia group were grown under 5% CO2 + 1% O2. The experiments were performed after 12, 24 and 72 h under each growth condition. The percentages of CD13+ cells were detected by flow cytometry, the expression of HIF-1α and VEGF was detected by western blot analysis, the cell proliferation rate was detected by the MTT assay, and the apoptotic rate was detected by flow cytometry. The results showed that the percentage of CD133+ cells, and the expressions of HIF-1α and VEGF for the cells in the hypoxia group increased gradually from 12 to 24, to 72 h, while there were no equivalent changes in the control group. Cell proliferation in the two groups increased gradually from 12 to 24, to 72 h, but was significantly higher at all time-points in the hypoxia group (p<0.05). There was no significant difference in terms of the amount of apoptotic cells at any of the three different time-points in either group, but the apoptotic cells in the hypoxia group were significantly less than those in the control group at each time-point, and the difference was statistically significant (p<0.05). We conclude that the expression of CD133+, HIF-1α and VEGF in human prostate cancer cells is related to conditions of hypoxia, which ultimately promotes the proliferation and reduces apoptosis in these cells.
Collapse
Affiliation(s)
- Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zuowen Liang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
29
|
Zhang B, Zhang J, Pan J. Pristimerin effectively inhibits the malignant phenotypes of uveal melanoma cells by targeting NF‑κB pathway. Int J Oncol 2017; 51:887-898. [PMID: 28766683 DOI: 10.3892/ijo.2017.4079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/13/2017] [Indexed: 11/05/2022] Open
Abstract
Uveal melanoma (UM) is a highly aggressive intraocular malignancy that lacks any effective targeted-therapy. Neither survival nor prognosis has been improved for the past decades in patients with metastatic UM. NF‑κB pathway is reported to be abnormally activated in UM. However, the role of NF‑κB pathway as a potential therapeutical target in UM remains unclear. Here, the effect of pristimerin, a potent inhibitor of NF‑κB pathway, on UM cells in terms of growth, apoptosis, motility, invasion and cancer stem-like cells (CSCs) was evaluated in vitro. We showed that pristimerin suppressed tumor necrosis factor α (TNFα)-induced IκBα phosphorylation, translocation of p65, and expression of NF‑κB-dependent genes. Moreover, pristimerin decreased cell viability and clonogenic ability of UM cells. A synergistic effect was observed in the treatment of pristimerin combined with vinblastine, a frontline therapeutic agent, in UM. Pristimerin led to a significant increase in the Annexin V+ cell population as measured by flow cytometry. We also observed that pristimerin impaired the abilities of migration and invasion in UM cells. Furthermore, pristimerin eliminated the ALDH+ cells and weakened serial re-plating ability of melanosphere. Collectively, pristimerin shows remarkable anticancer activities in UM cells through inactivating NF‑κB pathway, revealing that pristimerin may be a promising therapeutic agent in UM.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Zhang
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510060, P.R. China
| | - Jingxuan Pan
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
30
|
Lee MS, Lee SO, Kim KR, Lee HJ. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells. Int J Mol Sci 2017; 18:ijms18020325. [PMID: 28165392 PMCID: PMC5343861 DOI: 10.3390/ijms18020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE) for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1) in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA) is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI). CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA).
Collapse
Affiliation(s)
- Myoung-Sun Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Seon-Ok Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Kyu-Ri Kim
- Graduate School of East-West Medical Science, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyo-Jeong Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|