1
|
Rauh U, Wei G, Serrano-Wu M, Kosmidis G, Kaulfuss S, Siegel F, Thede K, McFarland J, Lemke CT, Werbeck N, Nowak-Reppel K, Pilari S, Menz S, Ocker M, Zhang W, Davis K, Poncet-Montange G, Roth J, Daniels D, Kaushik VK, Hubbard B, Ziegelbauer K, Golub TR. BRD-810 is a highly selective MCL1 inhibitor with optimized in vivo clearance and robust efficacy in solid and hematological tumor models. NATURE CANCER 2024; 5:1479-1493. [PMID: 39179926 PMCID: PMC11502502 DOI: 10.1038/s43018-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
The MCL1 gene is frequently amplified in cancer and codes for the antiapoptotic protein myeloid cell leukemia 1 (MCL1), which confers resistance to the current standard of care. Therefore, MCL1 is an attractive anticancer target. Here we describe BRD-810 as a potent and selective MCL1 inhibitor and its key design principle of rapid systemic clearance to potentially minimize area under the curve-driven toxicities associated with MCL1 inhibition. BRD-810 induced rapid cell killing within 4 h in vitro but, in the same 4-h window, had no impact on cell viability or troponin I release in human induced pluripotent stem cell-derived cardiomyocytes, even at suprapharmacologic concentrations. In vivo BRD-810 induced efficacy in xenograft hematological and solid tumor models despite the short residence time of BRD-810 in plasma. In totality, our data support the hypothesis that short-term inhibition of MCL1 with BRD-810 can induce apoptosis in tumor cells while maintaining an acceptable safety profile. We, therefore, intend to advance BRD-810 to clinical trials.
Collapse
Affiliation(s)
- Ulrike Rauh
- Trueline Therapeutics Inc., Cambridge, MA, USA.
| | - Guo Wei
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Kai Thede
- Nuvisan Innovation Campus Berlin, Berlin, Germany
| | | | | | | | | | - Sabine Pilari
- Independent Consultant, Pharmacometrics Modeling and Simulation, Berlin, Germany
| | | | | | - Weiqun Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyle Davis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer Roth
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Gao L, Li L, Zhang D, Qiu J, Qian J, Liu H. TAPI-1 Exhibits Anti-tumor Efficacy in Human Esophageal Squamous Cell Carcinoma Cells via Suppression of NF-κB Signaling Pathway. Dig Dis Sci 2024; 69:81-94. [PMID: 38007701 PMCID: PMC10787672 DOI: 10.1007/s10620-023-08181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND TNF-α processing inhibitor-1 (TAPI-1) is a known metalloproteinase inhibitor with potential anti-inflammatory effects. However, its anti-cancer effects on esophageal squamous cell carcinoma (ESCC) have not been uncovered. AIM In the present study, the effects of TAPI-1 on ESCC cell viability, migration, invasion, and cisplatin resistance and the underlying molecular mechanisms were investigated in TE-1 and Eca109 cells. METHODS To this end, TE-1 and Eca109 cells were exposed to TAPI-1 for indicated time intervals. Cell viability was assessed using cell counting kit-8 assay and apoptosis was evaluated using flow cytometry assay. Migration and invasion were assessed using Transwell assays. Gene expressions were analyzed using quantitative reverse transcription polymerase chain reaction. The activation of NF-κB signaling pathway was elucidated via Western blot and chromatin immunoprecipitation assay. RESULTS We observed that higher doses (10, 20 μM) of TAPI-1 inhibited ESCC cell viability, while a lower dose (5 μM) of TAPI-1 inhibited ESCC cell migration and invasion and enhanced the chemosensitivity of ESCC cells to cisplatin. Moreover, TAPI-1 suppressed the activation of NF-κB signaling and the target genes expression in the stage of transcription initiation. Furthermore, blocking NF-κB signaling in advance could abolish all the effects of TAPI-1 on ESCC cells. CONCLUSION Overall, these results indicated that TAPI-1 impairs ESCC cell viability, migration, and invasion and facilitates cisplatin-induced apoptosis via suppression of NF-κB signaling pathway. TAPI-1 may serve as a potential adjuvant agent with cisplatin for ESCC therapy.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Li Li
- Department of Pathology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Shengli Road No. 666, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Jianwei Qiu
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Junbo Qian
- Department of Gastroenterology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Shengli Road No. 666, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Han S, Yu X, Wang R, Wang X, Liu L, Zhao Q, Xie R, Li M, Zhou ZS. Tanshinone IIA inhibits cell viability and promotes PUMA-mediated apoptosis of oral squamous cell carcinoma. J Cancer 2023; 14:2481-2490. [PMID: 37670974 PMCID: PMC10475368 DOI: 10.7150/jca.84537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Apoptosis alteration is responsible for tumorigenesis and tumor resistance to therapies. The natural product Tanshinone IIA (Tan IIA) exhibits potent inhibitory effects against various tumors. However, the effect of Tan IIA on apoptosis and its underlying mechanism remains elusive in oral squamous cell carcinoma (OSCC). Here, we demonstrated that Tan IIA dose-dependently suppressed cell viability and colony formation in CAL27, SCC4, and SCC25 cells. Moreover, Tan IIA inhibited Akt activation from inducing Foxo3a dephosphorylation and PUMA-mediated apoptosis. PUMA or Foxo3a knockdown compromised the inhibitory effect of Tan IIA on OSCC cells. Tan IIA administration inhibited CAL27-deprived xenograft tumor growth and increased PUMA expression in vivo. Tan IIA synergistically intensified the efficacy of CDDP/5-FU-based chemotherapy on OSCC cells. Overall, our results revealed that Tan IIA exerted potent antitumor effects via promoting PUMA-mediated apoptosis in OSCC cells.
Collapse
Affiliation(s)
- Shuangze Han
- The Third Hospital of Changsha, Changsha 410015 Hunan, People's Republic of China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77054, USA
| | - Ruirui Wang
- Department of Radiology, the Third Xiangya Hospital, Changsha, 410013, China
| | - Xiaocong Wang
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - LuLu Liu
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - Qing Zhao
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - RongBo Xie
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - Ming Li
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - Zhong Su Zhou
- The Third Hospital of Changsha, Changsha 410015 Hunan, People's Republic of China
| |
Collapse
|
4
|
Zhu Y, Wen J, Li Q, Chen B, Zhao L, Liu S, Yang Y, Wang S, Lv Y, Li J, Zhang L, Hu Y, Liu M, Xi M. Toripalimab combined with definitive chemoradiotherapy in locally advanced oesophageal squamous cell carcinoma (EC-CRT-001): a single-arm, phase 2 trial. Lancet Oncol 2023; 24:371-382. [PMID: 36990609 DOI: 10.1016/s1470-2045(23)00060-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Toripalimab is a PD-1 inhibitor that is approved for the treatment of advanced oesophageal squamous cell carcinoma, but its efficacy in locally advanced disease is unclear. We administered toripalimab with definitive chemoradiotherapy to patients with unresectable locally advanced oesophageal squamous cell carcinoma, and aimed to investigate the activity and safety of this regimen, and potential biomarkers. METHODS EC-CRT-001 was a single-arm, phase 2 trial done at Sun Yat-sen University Cancer Center (Guangzhou, China). Patients aged 18-70 years with untreated, unresectable, stage I-IVA oesophageal squamous cell carcinoma, with an ECOG performance status of 0-2, and adequate organ and bone marrow function were eligible for inclusion. Patients received concurrent thoracic radiotherapy (50·4 Gy in 28 fractions), chemotherapy (five cycles of weekly intravenous paclitaxel [50 mg/m2] and cisplatin [25 mg/m2]), and toripalimab (240 mg intravenously every 3 weeks for up to 1 year, or until disease progression or unacceptable toxicity). The primary endpoint was the complete response rate at 3 months after radiotherapy by investigator assessment. Secondary endpoints were overall survival, progression-free survival, duration of response, quality of life (not reported here), and safety. All enrolled patients were included in the activity and safety analyses. The trial is registered with ClinicalTrials.gov, NCT04005170; enrolment is completed and follow-up is ongoing. FINDINGS Between Nov 12, 2019, and Jan 25, 2021, 42 patients were enrolled. The median age was 56 years (IQR 53-63), 39 (93%) of 42 patients had stage III or IVA disease, and 32 (76%) patients were male and 10 (24%) were female. 40 (95%) of 42 patients completed the planned chemoradiotherapy and 26 (62%; 95% CI 46-76) of 42 had a complete response. The median duration of response was 12·1 months (95% CI 5·9-18·2). After a median follow-up of 14·9 months (IQR 11·9-18·4), 1-year overall survival was 78·4% (95% CI 66·9-92·0) and 1-year progression-free survival was 54·5% (41·3-72·0). The most common grade 3 or worse adverse event was lymphopenia (36 [86%] of 42). One (2%) patient died from treatment-related pneumonitis. INTERPRETATION Combining toripalimab with definitive chemoradiotherapy provided encouraging activity and acceptable toxicity in patients with locally advanced oesophageal squamous cell carcinoma, and this regimen warrants further investigation. FUNDING National Natural Science Foundation of China and Sci-Tech Project Foundation of Guangzhou. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
|
5
|
Saikia M, Bhattacharyya DK, Kalita JK. Identification of Potential Biomarkers Using Integrative Approach: A Case Study of ESCC. SN COMPUTER SCIENCE 2023; 4:114. [PMID: 36573207 PMCID: PMC9769493 DOI: 10.1007/s42979-022-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
This paper presents a consensus-based approach that incorporates three microarray and three RNA-Seq methods for unbiased and integrative identification of differentially expressed genes (DEGs) as potential biomarkers for critical disease(s). The proposed method performs satisfactorily on two microarray datasets (GSE20347 and GSE23400) and one RNA-Seq dataset (GSE130078) for esophageal squamous cell carcinoma (ESCC). Based on the input dataset, our framework employs specific DE methods to detect DEGs independently. A consensus based function that first considers DEGs common to all three methods for further downstream analysis has been introduced. The consensus function employs other parameters to overcome information loss. Differential co-expression (DCE) and preservation analysis of DEGs facilitates the study of behavioral changes in interactions among DEGs under normal and diseased circumstances. Considering hub genes in biologically relevant modules and most GO and pathway enriched DEGs as candidates for potential biomarkers of ESCC, we perform further validation through biological analysis as well as literature evidence. We have identified 25 DEGs that have strong biological relevance to their respective datasets and have previous literature establishing them as potential biomarkers for ESCC. We have further identified 8 additional DEGs as probable potential biomarkers for ESCC, but recommend further in-depth analysis.
Collapse
Affiliation(s)
- Manaswita Saikia
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Dhruba K Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Jugal K Kalita
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Colorado Springs, CO 80918 USA
| |
Collapse
|
6
|
Wu BC, Hsu ATW, Abadchi SN, Johnson CR, Bengali S, Lay F, Melinosky K, Shao C, Chang KH, Born LJ, Abraham J, Evans D, Ha JS, Harmon JW. Potential Role of Silencing Ribonucleic Acid for Esophageal Cancer Treatment. J Surg Res 2022; 278:433-444. [PMID: 35667884 DOI: 10.1016/j.jss.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Esophageal cancer is an aggressive malignancy with high mortality. Optimal treatment of esophageal cancer remains an elusive goal. Ribonucleic acid (RNA) interference is a novel potential targeted approach to treat esophageal cancer. Targeting oncogenes that can alter critical cellular functions with silencing RNA molecules is a promising approach. The silencing of specific oncogenes in esophageal cancer cells in the experimental setting has been shown to decrease the expression of oncogenic proteins. This has resulted in cell apoptosis, reduction in cell proliferation, reduced invasion, migration, epithelial-mesenchymal transition, decrease in tumor angiogenesis and metastasis, and overcoming drug resistance. The Hedgehog (Hh) signaling pathway has been shown to be involved in esophageal adenocarcinoma formation in a reflux animal model. In addition to Hh, we will focus on other targets with clinical potential in the treatment of esophageal cancer. MATERIALS AND METHODS We searched for articles published from 2005 to August 2020 that studied the siRNA effects on inhibiting esophageal cancer formation in experimental settings. We used combinations of the following terms for searching: "esophageal cancer," "RNA interference," "small interfering RNA," "siRNA," "silencing RNA," "Smoothened (Smo)," "Gli," "Bcl-2," "Bcl-XL," "Bcl-W,″ "Mcl-1," "Bfl-1," "STAT3,"and "Hypoxia inducible factor (HIF)". A total of 21 relevant articles were found. RESULTS AND CONCLUSIONS Several proto-oncogenes/oncogenes including Hh pathway mediators, glioma-associated oncogene homolog 1 (Gli-1), Smoothened (Smo), and antiapoptotic Bcl-2 have potential as targets for silencing RNA in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Bo-Chang Wu
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angela Ting-Wei Hsu
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanaz Nourmohammadi Abadchi
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher R Johnson
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sameer Bengali
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank Lay
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelsey Melinosky
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kai-Hua Chang
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Louis J Born
- Department of Bioengineering, University of Maryland, College Park, College Park, Maryland
| | - John Abraham
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jinny S Ha
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Harmon
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
7
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
8
|
Liu Z, Gu S, Wu K, Li L, Dong C, Wang W, Zhou Y. CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:361. [PMID: 34781999 PMCID: PMC8591801 DOI: 10.1186/s13046-021-02149-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Background Cisplatin-based chemotherapy is a mainstay systematic therapy for advanced esophageal squamous cell carcinoma (ESCC), and cisplatin resistance, which is not uncommon, is the major barrier to improving patient outcomes. Circular RNAs (circRNAs) are novel noncoding RNAs that are implicated in cancer progression, but their involvement in modulating cisplatin responsiveness in ESCC remains unknown. Methods Bioinformatics analysis was used to profile and identify the circRNAs involved in cisplatin responsiveness in ESCC. The chemosensitive role of cDOPEY2 was confirmed both in vitro and in vivo. The molecular mechanism of cDOPEY2 was investigated by mass spectrometry, immunoprecipitation, and ubiquitination analyses. Results We report that a novel circRNA (cDOPYE2, hsa_circ_0008078) was markedly downregulated in cisplatin-resistant ESCC cells (ESCC-CR) compared with parental chemosensitive cells. Re-expression of cDOPEY2 substantially enhanced the cell-killing ability of cisplatin by augmenting the apoptotic process in ESCC-CR cells, which was achieved by decreasing the abundance of the antiapoptotic protein Mcl-1. Mechanistically, we showed that cDOPEY2 acted as a protein scaffold to enhance the interaction between the cytoplasmic polyadenylation element binding protein (CPEB4) and the E3 ligase TRIM25, which in turn facilitated the ubiquitination and degradation of CPEB4. The increased Mcl-1 expression in ESCC-CR cells was dependent on the binding of CPEB4 to its untranslated mRNA, and depletion of CPEB4 mediated by cDOPEY2 reversed this effect. Rescue experiments confirmed that the critical role of cDOPEY2 in maintaining cisplatin sensitivity was dependent on the depletion of CEPB4 and its downstream target Mcl-1. Clinical and in vivo data further corroborated the significant relevance of cDOPEY2 to cisplatin responsiveness in ESCC. Conclusions We provide evidence that cDOPEY2 inhibits CPEB4-mediated Mcl-1 translation by promoting the ubiquitination and degradation of CPEB4 to alleviate cisplatin resistance, indicating that cDOPEY2 may serve as a valuable biomarker and potential therapeutic target in ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02149-5.
Collapse
Affiliation(s)
- Zhenchuan Liu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Kaiqin Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Lei Li
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Wenli Wang
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, 200065, Shanghai, P.R. China.
| |
Collapse
|
9
|
Zeng H, Yang H, Song Y, Fang D, Chen L, Zhao Z, Wang C, Xie S. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 suppresses tumor growth and metastasis in esophageal squamous cell carcinoma. Cell Death Dis 2021; 12:1048. [PMID: 34741018 PMCID: PMC8571299 DOI: 10.1038/s41419-021-04344-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is one of most lethal causes that confer a poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), whereas there is no available target drug for metastatic ESCC currently. In this study, we aimed to determine whether the transcriptional inhibition by CDK7/9 inhibitor SNS-032 is activity against ESCC. MTT and soft agar assays were performed to examine the influence of SNS-032 on ESCC growth in vitro. Tumor xenograft in nude mice was used to assess the antitumor activity of SNS-032 in vivo. The roles of SNS-032 in ESCC metastasis were conducted by wound healing and transwell assays in vitro, and by a lung and a popliteal lymph node metastasis model in vivo. The results showed that CDK7 and CDK9 were highly expressed in ESCC cells; SNS-032 effectively inhibited cellular viability, abrogated anchorage-independent growth, and potentiated the sensitivity to cisplatin in ESCC cells in vitro and in vivo. In addition, SNS-032 induced a mitochondrial-dependent apoptosis of ESCC cells by reducing Mcl-1 transcription. SNS-032 also potently abrogated the abilities of ESCC cell migration and invasion through transcriptional downregulation of MMP-1. Importantly, SNS-032 remarkably inhibited the growth of ESCC xenograft, increased the overall survival, as well as diminished the lung and lymph node metastasis in nude mice. Taken together, our findings highlight that the CDK7/9 inhibitor SNS-032 is a promising therapeutic agent, and warrants a clinical trial for its efficacy in ESCC patients, even those with metastasis.
Collapse
Affiliation(s)
- Huishan Zeng
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China
| | - Huiru Yang
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China
| | - Yifan Song
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Avenue, 475004, Kaifeng, China
| | - Dong Fang
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China
| | - Liang Chen
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Avenue, 475004, Kaifeng, China.
| | - Zhijun Zhao
- Department of Medicine and Therapeutics, Luohe Medical College, 462000, Luohe, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Avenue, 475004, Kaifeng, China.
| | - Songqiang Xie
- School of Pharmacy, Henan University, N. Jinming Avenue, 475004, Kaifeng, Henan, China.
| |
Collapse
|
10
|
Liu X, Zhang Z, Kan S, Lv Z, Zhou S, Liu X, Jing P, Xu W. PHF20 inhibition promotes apoptosis and cisplatin chemosensitivity via the OCT4‑p‑STAT3‑MCL1 signaling pathway in hypopharyngeal squamous cell carcinoma. Int J Oncol 2021; 59:38. [PMID: 33982773 PMCID: PMC8121096 DOI: 10.3892/ijo.2021.5218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a widely used platinum‑based chemotherapeutic agent for hypopharyngeal squamous cell carcinoma (HSCC). However, resistance to cisplatin limits its use for the treatment of HSCC, and the underlying molecular mechanism requires further investigation. The present study performed functional assays to determine whether the expression of plant homeodomain finger protein 20 (PHF20) may be involved in the apoptosis and cisplatin resistance of HSCC. The expression levels of PHF20 were higher in cisplatin‑resistant HSCC cells compared with those in cisplatin‑sensitive cells. The inhibition of PHF20 suppressed cell viability but did not affect the migratory and invasive abilities of HSCC cells compared with those of negative control‑transfected cells. Furthermore, PHF20 inhibition reduced cell viability by enhancing apoptosis compared with those in the control cells in vitro. Notably, the inhibition of PHF20 sensitized HSCC cells to cisplatin, thus increasing apoptosis via the signal transducer and activator of transcription 3 (STAT3)‑myeloid cell leukemia‑1 (MCL1) pathway. Octamer‑binding transcription factor 4 (OCT4) overexpression restored phosphorylated STAT3‑MCL1‑mediated apoptosis induced by PHF20 inhibition. In vivo experiments confirmed that PHF20 silencing induced tumor growth and increased apoptosis in HSCC cells compared with those in the control cells. Thus, PHF20 inhibition may promote apoptosis and improve cisplatin chemosensitivity via the OCT4‑p‑STAT3‑MCL1 signaling pathway in HSCC.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250022, P.R. China
| | - Zhancheng Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Otorhinolaryngology, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Shifeng Kan
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250022, P.R. China
| | - Zhenghua Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250022, P.R. China
| | - Shengli Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250022, P.R. China
| | - Xianfang Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250022, P.R. China
| | - Peihang Jing
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
11
|
Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 2021; 12:587. [PMID: 34099633 PMCID: PMC8184765 DOI: 10.1038/s41419-021-03858-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as essential roles in the regulation of alternative splicing (AS) in various malignancies. Serine- and arginine-rich splicing factor 1 (SRSF1)-mediated AS events are the most important molecular hallmarks in cancer. Nevertheless, the biological mechanism underlying tumorigenesis of lncRNAs correlated with SRSF1 in esophageal squamous cell carcinoma (ESCC) remains elusive. In this study, we found that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) was upregulated in ESCC clinical samples, which associated with poor prognosis. Through RNA interference and overexpression approaches, we confirmed that DGCR5 contributed to promote ESCC cell proliferation, migration, and invasion while inhibited apoptosis in vitro. Mechanistically, DGCR5 could directly bind with SRSF1 to increase its stability and thus stimulate alternative splicing events. Furthermore, we clarified that SRSF1 regulated the aberrant splicing of myeloid cell leukemia-1 (Mcl-1) and initiated a significant Mcl-1L (antiapoptotic) isoform switch, which contributed to the expression of the full length of Mcl-1. Moreover, the cell-derived xenograft (CDX) model was validated that DGCR5 could facilitate the tumorigenesis of ESCC in vivo. Collectively, our findings identified that the key biological role of lncRNA DGCR5 in alternative splicing regulation and emphasized DGCR5 as a potential biomarker and therapeutic target for ESCC.
Collapse
|
12
|
Wenmaekers S, Viergever BJ, Kumar G, Kranenburg O, Black PC, Daugaard M, Meijer RP. A Potential Role for HUWE1 in Modulating Cisplatin Sensitivity. Cells 2021; 10:cells10051262. [PMID: 34065298 PMCID: PMC8160634 DOI: 10.3390/cells10051262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is a widely used antineoplastic agent, whose efficacy is limited by primary and acquired therapeutic resistance. Recently, a bladder cancer genome-wide CRISPR/Cas9 knock-out screen correlated cisplatin sensitivity to multiple genetic biomarkers. Among the screen’s top hits was the HECT domain-containing ubiquitin E3 ligase (HUWE1). In this review, HUWE1 is postulated as a therapeutic response modulator, affecting the collision between platinum-DNA adducts and the replication fork, the primary cytotoxic action of platins. HUWE1 can alter the cytotoxic response to platins by targeting essential components of the DNA damage response including BRCA1, p53, and Mcl-1. Deficiency of HUWE1 could lead to enhanced DNA damage repair and a dysfunctional apoptotic apparatus, thereby inducing resistance to platins. Future research on the relationship between HUWE1 and platins could generate new mechanistic insights into therapy resistance. Ultimately, HUWE1 might serve as a clinical biomarker to tailor cancer treatment strategies, thereby improving cancer care and patient outcomes.
Collapse
Affiliation(s)
- Stijn Wenmaekers
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Bastiaan J. Viergever
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Gunjan Kumar
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
| | - Peter C. Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Correspondence: (M.D.); (R.P.M.)
| | - Richard P. Meijer
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Correspondence: (M.D.); (R.P.M.)
| |
Collapse
|
13
|
Li M, Liu H, Zhao Q, Han S, Zhou L, Liu W, Li W, Gao F. Targeting Aurora B kinase with Tanshinone IIA suppresses tumor growth and overcomes radioresistance. Cell Death Dis 2021; 12:152. [PMID: 33542222 PMCID: PMC7862432 DOI: 10.1038/s41419-021-03434-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Aurora B kinase is aberrantly overexpressed in various tumors and shown to be a promising target for anti-cancer therapy. In human oral squamous cell carcinoma (OSCC), the high protein level of Aurora B is required for maintaining of malignant phenotypes, including in vitro cell growth, colony formation, and in vivo tumor development. By molecular modeling screening of 74 commercially available natural products, we identified that Tanshinone IIA (Tan IIA), as a potential Aurora B kinase inhibitor. The in silico docking study indicates that Tan IIA docks into the ATP-binding pocket of Aurora B, which is further confirmed by in vitro kinase assay, ex vivo pull-down, and ATP competitive binding assay. Tan IIA exhibited a significant anti-tumor effect on OSCC cells both in vitro and in vivo, including reduction of Aurora B and histone H3 phosphorylation, induction of G2/M cell cycle arrest, increase the population of polyploid cells, and promotion of apoptosis. The in vivo mouse model revealed that Tan IIA delayed tumor growth of OSCC cells. Tan IIA alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Taken together, our data indicate that Tan IIA is an Aurora B kinase inhibitor with therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, Hunan, People's Republic of China
| | - Haidan Liu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Shuangze Han
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, Yang Y, Liu H. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem 2021; 476:1233-1243. [PMID: 33247805 PMCID: PMC7873015 DOI: 10.1007/s11010-020-03985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Vinblastine (VBL) has been considered as a first-line anti-tumor drug for many years. However, vinblastine-caused myocardial damage has been continually reported. The underlying molecular mechanism of the myocardial damage remains unknown. Here, we show that vinblastine induces myocardial damage and necroptosis is involved in the vinblastine-induced myocardial damage both in vitro and in vivo. The results of WST-8 and flow cytometry analysis show that vinblastine causes damage to H9c2 cells, and the results of animal experiments show that vinblastine causes myocardial cell damage. The necrosome components, receptor-interacting protein 1 (RIP1) receptor-interacting protein 3 (RIP3), are significantly increased in vinblastine-treated H9c2 cells, primary neonatal rat ventricular myocytes and rat heart tissues. And the downstream substrate of RIP3, mixed lineage kinase domain like protein (MLKL) was also increased. Pre-treatment with necroptosis inhibitors partially inhibits the necrosome components and MLKL levels and alleviates vinblastine-induced myocardial injury both in vitro and in vivo. This study indicates that necroptosis participated in vinblastine-evoked myocardial cell death partially, which would be a potential target for relieving the chemotherapy-related myocardial damage.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Zhou T, Zhang L, Liu T, Yang Y, Luo F, Zhang Z, Huang Y, Zhao H, Zhang L, Zhao Y. Myeloid cell leukemia-1 is an important predictor of survival and progression of small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1589. [PMID: 33437788 PMCID: PMC7791257 DOI: 10.21037/atm-20-2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Small cell lung cancer (SCLC) is the most fatal malignancy for which more effective therapies are urgently needed. Overexpression of myeloid cell leukemia-1 (Mcl-1) has been demonstrated to be one of the most common genetic alterations among different types of tumor/cancer, which induces resistance against various anti-cancer therapies including cisplatin. The study aimed to explore the role of Mcl-1 in the prognosis and resistance to anti-cancer therapy in patients with SCLC. Methods Patients with SCLC were recruited from those enrolled/treated in Sun Yat-sen University Cancer Center. Their specimens were collected for immunohistochemical evaluation. We compared the baseline characteristics, response to chemotherapy and overall survival (OS) of the patients with different expression levels of Mcl-1. Results The expression level of Mcl-1 was significantly lower in patients with limited stage SCLC than in those with extensive stage SCLC (P=0.014). Based on the median value of Mcl-1 expression level, the patients were divided into high and low Mcl-1 groups, respectively. Univariate analysis revealed that low Mcl-1 expression was associated with a significant improvement in OS, with a hazard ratio (HR) of 0.538. Multivariate analysis confirmed the independent prognostic value of Mcl-1 expression level (P=0.014). Moreover, we found a significantly close relationship between higher Mcl-1 expression level and shorter time to progression (TTP) of the patients received chemotherapy (P=0.040). Conclusions Our findings demonstrated that Mcl-1 expression level was a prognostic biomarker for survival outcomes and cancer progression in the patients with SCLC. Thus, it could be used as a valuable biomarker in identifying those patients with high risk of treatment failure.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lin Zhang
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tingting Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
16
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Hu W, Liu W, Liang H, Zhang C, Zou M, Zou B. Silencing of methyltransferase-like 3 inhibits oesophageal squamous cell carcinoma. Exp Ther Med 2020; 20:138. [PMID: 33082869 PMCID: PMC7557329 DOI: 10.3892/etm.2020.9267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Methyltransferase-like 3 (METTL3) is a methyltransferase responsible for N6-methyladenosine mRNA modifications, which has been demonstrated to serve oncogenic roles in various types of cancer; however, the exact function of METTL3 in oesophageal squamous cell carcinoma (ESCC) has not been determined. The present study aimed to explore the regulatory role of METTL3 in ESCC. In the present study, reverse transcription-quantitative PCR and western blotting were used to examine mRNA and protein expression, CCK-8 assays and flow cytometry were used to determine cellular viability and apoptosis, and wound healing and Transwell assays were conducted to study cellular migration and invasion. The expression levels of METTL3 were significantly higher in ESCC tissues and cell lines compared with adjacent non-tumour tissues and the normal oesophageal epithelial cell line HET-1A, respectively. Increased METTL3 expression was associated with an advanced clinical stage of ESCC and poorer prognosis. Furthermore, the genetic knockdown of METTL3 using small interfering RNA significantly suppressed ESCC growth, invasion and migration in vitro, and induced cellular apoptosis, in addition to reducing the phosphorylation levels of PI3K and AKT. In conclusion, the present study demonstrated that the upregulation of METTL3 promoted ESCC progression, and that inhibition of METTL3 significantly suppressed the malignant phenotypes of ESCC cells, at least in part, by downregulating PI3K/AKT signalling activity. Thus, it is suggested that METTL3 may be a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Wen Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wei Liu
- Department of Cardiac Major Vascular Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hengxing Liang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Chunmin Zhang
- Institute of Foreign Languages, Central South University, Changsha, Hunan 410075, P.R. China
| | - Min Zou
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bibo Zou
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
18
|
Wang X, Zhou L, Zhang H, Ou H, Long W, Liu X. Upregulation of cervical carcinoma expressed PCNA regulatory long non-coding RNA promotes esophageal squamous cell carcinoma progression. Oncol Lett 2020; 20:142. [PMID: 32934710 PMCID: PMC7471740 DOI: 10.3892/ol.2020.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/28/2020] [Indexed: 12/03/2022] Open
Abstract
Cervical carcinoma expressed PCNA regulatory long non-coding (lnc)RNA (CCEPR) has recently been reported to play oncogenic roles in some common types of human cancer. However, the clinical significance of CCEPR mRNA expression levels in esophageal squamous cell carcinoma (ESCC) and the exact function of CCEPR in regulating the malignant phenotypes of ESCC cells have not been previously investigated. In the present study, CCEPR mRNA expression level was upregulated in ESCC tissues and cell lines, and overexpression of CCEPR was associated with advanced TNM stage, lymph node metastasis, and poor prognosis in ESCC. In vitro experiments showed that silencing CCEPR mRNA expression levels significantly suppressed the proliferation, migration, and invasion of ESCC cells, while inducing ESCC cell apoptosis. Furthermore, inhibition of CCEPR decreased the protein expression levels of matrix metalloproteinase (MMP)2 and MMP9 and inhibited epithelial-mesenchymal transition in ESCC cells. In conclusion, the results showed that CCEPR plays an oncogenic role in ESCC and suggests that CCEPR could be used as a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Oncology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Liangfen Zhou
- Department of Neonatology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Huiyun Zhang
- Department of Oncology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Hui Ou
- Department of Oncology, First People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| | - Wenxing Long
- Department of Invasive Technology, Affiliated Hospital of Xiangnan College, Chenzhou, Hunan 423000, P.R. China
| | - Xiaobao Liu
- Department of Oncology, Second People's Hospital of Chenzhou City, Chenzhou, Hunan 423000, P.R. China
| |
Collapse
|
19
|
Chen H, Zheng B, Xue S, Chen C. Knockdown of miR-183 Enhances the Cisplatin-Induced Apoptosis in Esophageal Cancer Through Increase of FOXO1 Expression. Onco Targets Ther 2020; 13:8463-8474. [PMID: 32943877 PMCID: PMC7468590 DOI: 10.2147/ott.s258680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background As an important member of platinum-based chemotherapeutic drugs, cisplatin is effective and is commonly used in the treatment of esophageal cancer. However, repeated use of cisplatin usually causes severe side-effects on patients. Novel approaches should be explored to increase the sensitivity of cancer cells to cisplatin. Methods The expression level of miR-183 in esophageal cancer tissues and cell lines was measured by quantitative reverse transcriptase real-time PCR (qRT-PCR). The sensitivity of EC cell lines to cisplatin was evaluated by CCK-8 assay and flow cytometry. Luciferase reporter assay was used to confirm the association between miR-183 and FOXO1. The apoptosis pathway of EC cells was tested by Western blot assay. Results The expression level of miR-183 was increased in esophageal cancer patients' tumor tissues and esophageal cancer cell lines. However, knockdown of miR-183 was found to enhance the effect of cisplatin on inducing the apoptotic cell death of esophageal cancer cells. In the mechanism research, we proved that FOXO1 was the target of miR-183 in esophageal cancer cells. Inhibition of miR-183 increased the expression of FOXO1 to promote the expression of Bim and Noxa. As Bim and Noxa acted as key pro-apoptotic proteins in mitochondrial apoptosis, inhibition of miR-183 enhanced the cisplatin-induced apoptosis pathway in esophageal cancer. Conclusion Knockdown of miR-183 enhanced the cisplatin-induced apoptosis in esophageal cancer through an increase of FOXO1 expression.
Collapse
Affiliation(s)
- Hao Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province 350000, People's Republic of China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province 350000, People's Republic of China
| | - Songtao Xue
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province 350000, People's Republic of China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province 350000, People's Republic of China
| |
Collapse
|
20
|
Gao F, Zhou L, Li M, Liu W, Yang S, Li W. Inhibition of ERKs/Akt-Mediated c-Fos Expression Is Required for Piperlongumine-Induced Cyclin D1 Downregulation and Tumor Suppression in Colorectal Cancer Cells. Onco Targets Ther 2020; 13:5591-5603. [PMID: 32606774 PMCID: PMC7304781 DOI: 10.2147/ott.s251295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Deregulation of Cyclin D1 and cell cycle progression plays a critical role in tumorigenesis. The natural compound piperlongumine (PL) exhibits potential anticancer effects in various cancer models, but the underlying mechanism needs further elucidation. Methods The inhibitory effect of PL on colorectal cancer (CRC) cells was determined by anchorage-dependent and -independent assays. The protein level of Cyclin D1 was examined by immunoblot (IB) and immunohistochemical staining (IHC). The mRNA level was determined by qRT-PCR. Phosphorylation of histone H3 was analyzed by immunofluorescence (IF). The cell cycle was examined by flow cytometry. The in vivo antitumor effect was validated by the xenograft mouse model. Results Cyclin D1 was overexpressed in CRC tissues and cells, and was required for maintaining cell growth, colony formation, and in vivo tumorigenesis. PL decreased the protein level of c-Fos, which eventually reduced the transcriptional activity of AP-1 and the mRNA level of Cyclin D1. Mechanism study showed that PL impaired EGF-induced activation of ERK1/2 and Akt signalings, which resulted in a reduction of c-Fos transcription. Furthermore, PL reduced the half-life of c-Fos and caused the ubiquitination-dependent degradation of c-Fos. Finally, the in vivo antitumor effect of PL on CRC cells was examined using a xenograft mouse model. Conclusion Our data indicate that PL is a promising antitumor agent that deserves further study for CRC treatment.
Collapse
Affiliation(s)
- Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Shuting Yang
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
21
|
Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death Dis 2020; 11:381. [PMID: 32424132 PMCID: PMC7235009 DOI: 10.1038/s41419-020-2579-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Aerobic glycolysis is one of the hallmarks of human cancer cells. Overexpression of hexokinase 2 (HK2) plays a crucial role in the maintaining of unlimited tumor cell growth. In the present study, we found that the oral squamous cell carcinoma (OSCC) cells exhibited an aerobic glycolysis phenotype. Moreover, HK2 is highly expressed in OSCC patient derived-tissues and cell lines. Depletion of HK2 inhibited OSCC cell growth in vitro and in vivo. With a natural product screening, we identified Tanshinone IIA (Tan IIA) as a potential anti-tumor compound for OSCC through suppressing HK2-mediated glycolysis. Tan IIA decreased glucose consumption, lactate production, and promoted intrinsic apoptosis in OSCC cells. The mechanism study revealed that Tan IIA inhibited the Akt-c-Myc signaling and promoted E3 ligase FBW7-mediated c-Myc ubiquitination and degradation, which eventually reduced HK2 expression at the transcriptional level. In summary, these results indicate that targeting HK2-mediated aerobic glycolysis is a promising anti-tumor strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, 410000, Changsha, Hunan, P.R. China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Qing Zhao
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| |
Collapse
|
22
|
Li M, Gao F, Yu X, Zhao Q, Zhou L, Liu W, Li W. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:88. [PMID: 32410646 PMCID: PMC7227341 DOI: 10.1186/s13046-020-01593-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Background Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, survivin has been proposed as an attractive target for new anti-tumor interventions. Methods A natural product library was used for natural compound screening through MTS assay. The expression of survivin in oral squamous cell carcinoma (OSCC) and the inhibitory effect of xanthohumol (XN) on OSCC were examined by anchorage-dependent and -independent growth assays, immunoblot, immunofluorescence, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. Results Survivin is highly expressed in OSCC patient-derived tissues and cell lines. Knockout of survivin reduced the tumorigenic properties of OSCC cells in vitro and in vivo. With a natural compound screening, we identified that xanthohumol inhibited OSCC cells by reducing survivin protein level and activating mitochondrial apoptotic signaling. Xanthohumol inhibited the Akt-Wee1-CDK1 signaling, which in turn decreased survivin phosphorylation on Thr34, and facilitated E3 ligase Fbxl7-mediated survivin ubiquitination and degradation. Xanthohumol alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Conclusion Our findings indicate that targeting survivin for degradation might a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410000, People's Republic of China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qing Zhao
- Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
23
|
Wang ZZ, Huang TY, Gong YF, Zhang XM, Feng-Wang, Huang XY. Effects of sorafenib on fibroblast-like synoviocyte apoptosis in rats with adjuvant arthritis. Int Immunopharmacol 2020; 83:106418. [PMID: 32199349 DOI: 10.1016/j.intimp.2020.106418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by synovial inflammation and hyperplasia resulting from an imbalance between the proliferation and apoptosis of fibroblast-like synoviocytes (FLSs). Our previous study found that sorafenib had inhibitory effects in rats with adjuvant arthritis (AA). The present study investigated the role of sorafenib in the induction of AA FLS apoptosis in vitro. FLSs obtained from AA rats were cultured in vitro and identified. Cell apoptosis was detected using terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) labeling methods. Real-time PCR and Western blotting assays were used to quantify the expression levels of Fas, Caspase-3, Mcl-1, NF-κB and C-jun gene products in AA FLSs. Our data revealed that sorafenib (4 μmol/L) induced apoptosis in AA FLSs, and flow cytometry analysis showed that AA FLSs treated with sorafenib (4 μmol/L) in vitro accumulated in early and late apoptosis. There were significant increases in the expression levels of Fas, Caspase-3 and Mcl-1, and significant decreases in NF-κB and C-jun expression in AA FLSs treated with sorafenib. In summary, these results demonstrate that sorafenib promotes AA FLS apoptosis, which may be related to the upregulation of Fas and Caspase-3 and downregulation of NF-κB and C-jun. All of these findings suggest that sorafenib exerts an inhibitory effect on AA rats in vivo via AA FLS apoptotic induction, which has potential therapeutic implications for RA.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Tian-Yu Huang
- Grade 2016, The First Department of Clinical Medicine, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China
| | - Yong-Fang Gong
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiao-Ming Zhang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Feng-Wang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xue-Ying Huang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
24
|
Isoliquiritigenin Suppressed Esophageal Squamous Carcinoma Growth by Blocking EGFR Activation and Inducing Cell Cycle Arrest. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9259852. [PMID: 32190688 PMCID: PMC7063883 DOI: 10.1155/2020/9259852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Isoliquiritigenin (ILQ) is a natural product isolated from licorice root which has served as traditional Chinese medicine for a long time. Recently, the antitumor effects of ILQ have been widely studied in various cancers, but the role and related mechanisms of ILQ in esophageal squamous carcinoma cells (ESCC) are still poorly understood. In our studies, ILQ showed profound antitumor activities in ESCC cells. In vitro, ILQ substantially inhibited cell proliferation and anchorage-independent growth in a panel of human ESCC cells. Mechanism studies showed that EGFR signaling pathway played an important role for ILQ to exert its antitumor activity in ESCC. Exposure to isoliquiritigenin substantially decreased EGF-induced EGFR activation and its downstream Akt and ERK1/2 signaling pathway. EGFR knockdown with shRNA in ESCC cell significantly reduced the sensitivity of cancer cells to ILQ. Moreover, it was found that ILQ had a significantly inhibitory effect on AP-1 family, the protein of Jun and Fos subfamilies was substantially downregulated, and the transcriptional activity of AP-1 family was dramatically suppressed by ILQ. By reducing the expression of cyclin D1, ESCC cells were induced G0/G1 arrest, and cell division was substantially blocked. Finally, the antitumor potency of ILQ was validated in xenograft models and the tumor growth was prominently restrained by ILQ. Briefly, our study showed that ILQ, or its analogue, appeared to be a promising new therapeutic agent for ESCC management.
Collapse
|
25
|
Gao F, Yu X, Li M, Zhou L, Liu W, Li W, Liu H. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization. Cell Death Dis 2020; 11:143. [PMID: 32081857 PMCID: PMC7035355 DOI: 10.1038/s41419-020-2344-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Activating mutations of epidermal growth factor receptor (EGFR) play crucial roles in the oncogenesis of human non-small cell lung cancer (NSCLC). By screening 79 commercially available natural products, we found that the natural compound deguelin exhibited a profound anti-tumor effect on NSCLC via directly down-regulating of EGFR-signaling pathway. Deguelin potently inhibited in vitro EGFR kinase activity of wild type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. The in silico docking study indicated that deguelin was docked into the ATP-binding pocket of EGFRs. By suppression of EGFR signaling, deguelin inhibited anchorage-dependent, and independent growth of NSCLC cell lines, and significantly delayed tumorigenesis in vivo. Further study showed that deguelin inhibited EGFR and downstream kinase Akt, which resulted in the activation of GSK3β and eventually enhanced Mcl-1 phosphorylation at S159. Moreover, deguelin promoted the interaction between Mcl-1 and E3 ligase SCFFBW7, which enhanced FBW7-mediated Mcl-1 ubiquitination and degradation. Additionally, phosphorylation of Mcl-1 by GSK3β is a prerequisite for FBW7-mediated Mcl-1 destruction. Depletion or pharmacological inactivation of GSK3β compromised deguelin-induced Mcl-1 ubiquitination and reduction. Taken together, our data indicate that enhancement of ubiquitination-dependent Mcl-1 turnover might be a promising approach for cancer treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ming Li
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.
| |
Collapse
|
26
|
Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2019; 51:102570. [PMID: 31806563 PMCID: PMC7000337 DOI: 10.1016/j.ebiom.2019.11.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The F-box protein S-phase kinase-associated protein 2 (Skp2) is overexpressed and correlated with poor prognosis in human malignancies, including colorectal cancer (CRC). METHODS A natural product library was used for natural compound screening through glycolysis analysis. The expression of Skp2 in CRCs and the inhibitory effect of dioscin on glycolysis were examined through methods of immunoblot, immunofluorescence, immunohistochemical staining, anchorage-dependent and -independent growth assays, EdU incorporation assay, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. FINDINGS We demonstrated that Skp2 was highly expressed in CRC tissues and cell lines. Knockout of Skp2 inhibited HK2 and glycolysis and decreased CRC cell growth in vitro and in vivo. We screened 88 commercially available natural products and found that dioscin, a natural steroid saponin derived from several plants, significantly inhibited glycolysis in CRC cells. Dioscin decreased the protein level of Skp2 by shortening the half-life of Skp2. Further study showed that dioscin attenuated Skp2 phosphorylation on S72 and promoted the interaction between Skp2 and Cdh1, which eventually enhanced Skp2 lysine 48 (K48)-linked polyubiquitination and degradation. Depletion of Cdh1 impaired dioscin-induced Skp2 reduction, rescued HK2 expression, and glycolysis in CRC cells. Finally, dioscin delayed the in vivo tumor growth, promoted Skp2 ubiquitination, and inhibited Skp2 expression in a mouse xenograft model. INTERPRETATION This study suggests that in addition to pharmacological inactivation of Skp2, enhancement of ubiquitination-dependent Skp2 turnover is a promising approach for cancer treatment.
Collapse
|
27
|
Tang Y, Yang P, Zhu Y, Su Y. LncRNA TUG1 contributes to ESCC progression via regulating miR-148a-3p/MCL-1/Wnt/β-catenin axis in vitro. Thorac Cancer 2019; 11:82-94. [PMID: 31742924 PMCID: PMC6938768 DOI: 10.1111/1759-7714.13236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies. Latest studies report that long noncoding RNAs (LncRNAs) play an essential role in diversified pathological processes of ESCC, although the mechanism by which they do so remains unknown. This study aimed to explore the parts of lncRNA taurine upregulated gene 1 (TUG1) in ESCC tissues and cells, its biofunctional effect and its underlying regulatory mechanism in ESCC. Methods The levels of TUG1 and miR‐148a‐3p were detected by quantitative real‐time polymerase chain reaction (qRT‐PCR) in ESCC cells and tissues. The biofunctional effects were examined by MTT, flow cytometry, and transwell assay. The protein expression levels of epithelial‐mesenchymal transition (EMT)‐related proteins and MCL‐1 were determined by western blot analysis. The binding sites between miR‐148a‐3p and TUG1 or MCL‐1 were predicted by online software starBase and confirmed by dual luciferase reporter assay. Results The mRNA expression of TUG1 was significantly upregulated in ESCC tissues or cells, and was negatively correlated to miR‐148a‐3p expression in tissues. Knockdown of TUG1 inhibited the proliferation, migration, and invasion, promoted apoptosis, and relieved the EMT progression in EC9706 and OE19 cells. Besides, knockdown of miR‐148a‐3p inverted positive effects from TUG1 deletion on ESCC cells. Besides, MCL‐1 reversed the inhibitive effects from TUG1 deletion on expression of EMT‐associated proteins (Wnt1, C‐myc, CyclinD1, and β‐catenin) above subsequently. Conclusion TUG1 regulated the biofunction and EMT progression of ESCC by mediating miR‐148a‐3p/MCL‐1/Wnt/β‐catenin axis in vitro.
Collapse
Affiliation(s)
- Yin Tang
- Department of Laboratory, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| | - Ping Yang
- Department of Laboratory, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| | - Yunfeng Zhu
- Department of Laboratory, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| | - Yong Su
- Department of Stomatology, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
28
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Cai J, Sun M, Hu B, Windle B, Ge X, Li G, Sun Y. Sorting Nexin 5 Controls Head and Neck Squamous Cell Carcinoma Progression by Modulating FBW7. J Cancer 2019; 10:2942-2952. [PMID: 31281471 PMCID: PMC6590026 DOI: 10.7150/jca.31055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide. Long-term survival rates in patients with HNSCC have not increased significantly in the past 30 years. Therefore, looking for novel molecular targets that control HNSCC progression is urgently required to improve the treatment of HNSCC. Here, we identified Sorting Nexin 5 (SNX5) as a new regulator that plays an oncogenic function in HNSCC progression. Analyzing HNSCC patients' data from the Cancer Genome Atlas (TCGA) indicates that the expression levels of SNX5 in HNSCC are significantly elevated compared to normal tissues. Furthermore, higher SNX5 expression correlates with a worse prognosis for HNSCC patients. These results suggest that SNX5 has an oncogenic role. Consistently, loss of SNX5 in HNSCC cells dramatically reduces colony formation and significantly decreases tumor growth in xenograft mouse models. SNX5 interacts with the tumor suppressor F-box/WD repeat-containing protein 7 (FBW7), an E3 ubiquitin ligase that mediates ubiquitination and degradation of oncoproteins such as c-Myc, NOTCH1, and Cyclin E1. By interacting with FBW7, SNX5 inhibits FBW7-mediated oncoproteins ubiquitination. In this way, SNX5 decreases the FBW7-mediated oncoproteins degradation to promote HNSCC progression.
Collapse
Affiliation(s)
- Jinyang Cai
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ming Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bin Hu
- Cancer Mouse Models Developing Shared Resource Core, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brad Windle
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Guoping Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
30
|
Zhang Y, Xiao Y, Dong Q, Ouyang W, Qin Q. Neferine in the Lotus Plumule Potentiates the Antitumor Effect of Imatinib in Primary Chronic Myeloid Leukemia Cells In Vitro. J Food Sci 2019; 84:904-910. [PMID: 30866043 DOI: 10.1111/1750-3841.14484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Imatinib, the prototype BCR-ABL tyrosine kinase inhibitor (TKI), is the first-line treatment for Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase. However, a subgroup of patients exhibit poor response or experience relapse. This issue may be overcome by combination therapy using natural compounds. Neferine, a major bisbenzylisoquinoline alkaloid extracted from "lotus plumule" (seed embryo of lotus) commonly used in traditional Chinese medicine and tea, was used herein in the combination treatment of CML. The MTT assay showed that neferine exerted cytotoxicity in primary CML cells in a dose-dependent manner. Moreover, low concentrations of neferine (4 and 8 µM) sensitized primary CML cells to imatinib (CI < 1), and significantly decreased its IC50 from 0.70 ± 0.10 to 0.32 ± 0.06 µM and 0.16 ± 0.02 µM, respectively. Cotreatment of neferine and imatinib significantly decreased the expression of BCR-ABL protein and its molecular chaperone heat shock protein 90 (Hsp90) mRNA and protein levels, and further decreased phospho-extracellular regulated protein kinase 1/2 (p-Erk1/2) and myeloid cell leukemia (Mcl-1) expression. These results suggest that neferine might be a potential imatinib sensitizer in CML treatment. PRACTICAL APPLICATION: In China, Lotus plumule, the green embryo of lotus, is used as a tea and as a source of herbal medicine in the treatment of anxiety, insomnia, spermatorrhea, and thirst. Additional, neferine, a bisbenzylisoquinoline alkaloid extracted from lotus plumule has been shown to have antitumor potential. Herein, the effect of neferine and imatinib cotreatment on primary CML cells obtained from CML patients was assessed, with a synergistic effect being observed between the two compounds. Therefore, neferine might be a promising natural compound to potentiate imatinib in CML patients.
Collapse
Affiliation(s)
- Yalan Zhang
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Yuhang Xiao
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Qixing Dong
- Xiangya Hospital, Central South Univ., Changsha, China
| | | | - Qun Qin
- Xiangya Hospital, Central South Univ., Changsha, China
| |
Collapse
|
31
|
Nicol AF, de Andrade CV, Gomes SC, Brusadelli MG, Lodin HM, Wells SI, Nuovo GJ. The distribution of novel biomarkers in carcinoma-in-situ, microinvasive, and squamous cell carcinoma of the uterine cervix. Ann Diagn Pathol 2019; 38:115-122. [PMID: 30579259 DOI: 10.1016/j.anndiagpath.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Importin-β, exportin-5, p16, Ki-67, Mcl1, PDL1, and cFLIP are each over-expressed in the majority of CIN 1 lesions. These biomarkers, plus HPV E6/E7 RNA, were analyzed in carcinoma-in-situ (CIS), microinvasive, and squamous cell carcinoma (SCC) of the uterine cervix and cervical carcinoma cell lines. Only p16 and Ki-67 continued to be over-expressed in CIS, with a concomitant marked increase in E6/E7 RNA. There was a highly significant increase in PDL1 expression and decrease in Ki-67 (each p < 0.001) in microinvasive cancer compared to CIS whereas p16 and E6/E7 remained stable. As the lesion progressed to SCC, p16 and E6/E7 RNA remained strongly overexpressed with a concomitant over expression of importin-β and Ki67. HPV positive Caski cells showed significant elevations of p16, importin-β, exportin-5 and PDL1 compared to the HPV negative cervical cancer cell line C33A, consistent with viral induction of these biomarkers. The data suggest that PDL1 may be a useful biomarker to differentiate CIS from microinvasive cancer and, thus, anti-PDL1 therapy may inhibit the progression of CIS to the invasive stage.
Collapse
Affiliation(s)
- Alcina F Nicol
- National Institute of Infectious Diseases Evandro Chagas - INI-Fiocruz, Rio de Janeiro, Brazil
| | - Cecilia Vianna de Andrade
- National Institute of Health of Women, Children, and Adolescents, Fernandes Figueira - IFF-FIOCRUZ, Rio de Janeiro, Brazil
| | - Saint Clair Gomes
- National Institute of Health of Women, Children, and Adolescents, Fernandes Figueira - IFF-FIOCRUZ, Rio de Janeiro, Brazil
| | - Marion G Brusadelli
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah M Lodin
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gerard J Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Phylogeny Inc, Powell, OH, USA.
| |
Collapse
|
32
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Carden S, van der Watt P, Chi A, Ajayi-Smith A, Hadley K, Leaner VD. A tight balance of Karyopherin β1 expression is required in cervical cancer cells. BMC Cancer 2018; 18:1123. [PMID: 30445944 PMCID: PMC6240311 DOI: 10.1186/s12885-018-5044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Background Karyopherin β1 (Kpnβ1) is the main nuclear import protein involved in the transport of cargoes from the cytoplasm into the cell nucleus. Previous research has found Kpnβ1 to be significantly overexpressed in cervical cancer and other cancer tissues, and further studies showed that inhibition of Kpnβ1 expression by siRNA resulted in cancer cell death, while non-cancer cells were minimally affected. These results suggest that Kpnβ1 has potential as an anticancer therapeutic target, thus warranting further research into the association between Kpnβ1 expression and cancer progression. Here, the biological effects associated with Kpnβ1 overexpression were investigated in order to further elucidate the relationship between Kpnβ1 and the cancer phenotype. Methods To evaluate the effect of Kpnβ1 overexpression on cell biology, cell proliferation, cell cycle, cell morphology and cell adhesion assays were performed. To determine whether Kpnβ1 overexpression influences cell sensitivity to chemotherapeutic agents like Cisplatin, cell viability assays were performed. Expression levels of key proteins were analysed by Western blot analysis. Results Our data revealed that Kpnβ1 overexpression, above that which was already detected in cancer cells, resulted in reduced proliferation of cervical cancer cells. Likewise, normal epithelial cells showed reduced proliferation after Kpnβ1 overxpression. Reduced cancer cell proliferation was associated with a delay in cell cycle progression, as well as changes in the morphology and adhesion properties of cells. Additionally, Kpnβ1 overexpressing HeLa cells exhibited increased sensitivity to cisplatin, as shown by decreased cell viability and increased apoptosis, where p53 and p21 inhibition reduced and enhanced cell sensitivity to Cisplatin, respectively. Conclusions Overall, our results suggest that a tight balance of Kpnβ1 expression is required for cellular function, and that perturbation of this balance results in negative effects associated with a variety of biological processes. Electronic supplementary material The online version of this article (10.1186/s12885-018-5044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Carden
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aderonke Ajayi-Smith
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Katie Hadley
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
34
|
Chen YT, Xie JY, Sun Q, Mo WJ. Novel drug candidates for treating esophageal carcinoma: A study on differentially expressed genes, using connectivity mapping and molecular docking. Int J Oncol 2018; 54:152-166. [PMID: 30387840 PMCID: PMC6254996 DOI: 10.3892/ijo.2018.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with esophageal carcinoma (ESCA) have a poor prognosis and high mortality rate. Although standard therapies have had effect, there is an urgent requirement to develop novel options, as increasing drug tolerance has been identified in clinical practice. In the present study, differentially expressed genes (DEGs) of ESCA were identified in The Cancer Genome Atlas and Genotype-Tissue Expression databases. Functional and protein-protein interaction (PPI) analyses were performed. The Connectivity Map (CMAP) was selected to predict drugs for the treatment of ESCA, and their target genes were acquired from the Search Tool for Interactions of Chemicals (STITCH) by uploading the Simplified Molecular-Input Line-Entry System structure. Additionally, significant target genes and ESCA-associated hub genes were extracted using another PPI analysis, and the corresponding drugs were added to construct a network. Furthermore, the binding affinity between predicted drug candidates and ESCA-associated hub genes was calculated using molecular docking. Finally, 827 DEGs (|log2 fold-change|≥2; q-value <0.05), which are principally involved in protein digestion and absorption (P<0.005), the plasminogen-activating cascade (P<0.01), as well as the ‘biological regulation’ of the Biological Process, ‘membrane’ of the Cellular Component and ‘protein binding’ of the Molecular Function categories, were obtained. Additionally, 11 hub genes were obtained from the PPI network (all degrees ≥30). Furthermore, the 15 first screen drugs were extracted from CMAP (score <−0.85) and the 9 second screen drugs with 70 target genes were extracted from STITCH. Furthermore, another PPI analysis extracted 51 genes, and apigenin, baclofen, Prestwick-685, menadione, butyl hydroxybenzoate, gliclazide and valproate were selected as drug candidates for ESCA. Those molecular docking results with a docking score of >5.52 indicated the significance of apigenin, Prestwick-685 and menadione. The results of the present study may lead to novel drug candidates for ESCA, among which Prestwick-685 and menadione were identified to be significant new drug candidates.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Yi Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Sun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
35
|
Li W, Yu X, Ma X, Xie L, Xia Z, Liu L, Yu X, Wang J, Zhou H, Zhou X, Yang Y, Liu H. Deguelin attenuates non-small cell lung cancer cell metastasis through inhibiting the CtsZ/FAK signaling pathway. Cell Signal 2018; 50:131-141. [PMID: 30018008 DOI: 10.1016/j.cellsig.2018.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer is the leading cause of cancer-related death among both men and women every year, mainly due to metastasis. Although natural compound deguelin has been reported to inhibited cell migration and invasion in various cancer cells, the details of this regulation progress remain to be fully elucidated. In this study, we investigated the underlying mechanism of deguelin-suppressed metastasis of non-small cell lung cancer (NSCLC) cells. Our results demonstrate that deguelin inhibits NSCLC cell migration, invasion, and metastasis both in vitro and in vivo. These inhibitory effects of deguelin were mediated by suppressing of Cathepsin Z (CtsZ) expression and interrupting the interaction of CtsZ with integrin β3. Moreover, deguelin inhibits the activation of CtsZ downstream FAK/Src/Paxillin signaling. Knockdown of CtsZ mimicked the effect of deguelin on NSCLC cells migration and invasion. Our study reveals that deguelin exerts its anti-metastatic effect both in vitro and in vivo is partly dependent on the suppression of CtsZ signaling. Deguelin would be a potential anti-metastasis agent against NSCLC.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong 256600, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
36
|
Conage-Pough JE, Boise LH. Phosphorylation alters Bim-mediated Mcl-1 stabilization and priming. FEBS J 2018; 285:2626-2640. [PMID: 29775995 DOI: 10.1111/febs.14505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/15/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Mcl-1 is a highly labile protein, subject to extensive post-translational regulation. This distinguishes Mcl-1 from other antiapoptotic proteins and necessitates further study to better understand how interactions with proapoptotic Bcl-2 proteins affect its regulation. One such protein, Bim, is known to stabilize Mcl-1, and Bim phosphorylation has been associated with increased Mcl-1 binding. Consequently, we investigated the potential impact of Bim phosphorylation on Mcl-1 stability. We found that Bim stabilizes and primes Mcl-1 in RPCI-WM1 cells and is constitutively phosphorylated. Additionally, introduction of several phospho-mimetic and unphosphosphorylateable Bim mutations resulted in altered Mcl-1 stability and distinct Bim binding to antiapoptotic proteins. These findings suggest Bim phosphorylation not only regulates Mcl-1 stability but also is a potential mechanism for enforcing Mcl-1 dependence.
Collapse
Affiliation(s)
- Jason E Conage-Pough
- Cancer Biology Graduate Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
De Blasio A, Vento R, Di Fiore R. Mcl-1 targeting could be an intriguing perspective to cure cancer. J Cell Physiol 2018; 233:8482-8498. [PMID: 29797573 DOI: 10.1002/jcp.26786] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022]
Abstract
The Bcl-2 family, which plays important roles in controlling cancer development, is divided into antiapoptotic and proapoptotic members. The change in the balance between these members governs the life and death of the cells. Mcl-1 is an antiapoptotic member of this family and its distribution in normal and cancerous tissues strongly differs from that of Bcl-2. In human cancers, where upregulation of antiapoptotic proteins is common, Mcl-1 expression is regulated independent of Bcl-2 and its inhibition promotes senescence, a major barrier to tumorigenesis. Cancer chemotherapy determines various kinds of responses, such as senescence and autophagy; however, the ideal response to chemotherapy is apoptosis. Mcl-1 is a potent oncogene that is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Mcl-1 is a short-lived protein that, in the NH2 terminal region, contains sites for posttranslational regulation that can lead to proteasomal degradation. The USP9X Mcl-1 deubiquitinase regulates Mcl-1 and the levels of these two proteins are strongly correlated. Mcl-1 has three splicing variants (the antiapoptotic protein Mcl-1L and the proapoptotic proteins Mcl-1S and Mcl-1ES), each contributing toward apoptosis regulation. In cancers responsible for the most deaths in the world, the presence of Mcl-1 is associated with malignant cell growth and evasion of apoptosis. Mcl-1 is also one of the key regulators of cancer stem cells' self-renewal that contributes to tumor survival. A great number of indirect and selective Mcl-1 inhibitors have been produced and some of these have shown efficacy in several clinical trials. Thus, therapeutic manipulation of Mcl-1 can be a useful strategy to combat cancer.
Collapse
Affiliation(s)
- Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| | - Renza Vento
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Riccardo Di Fiore
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Yu X, Liang Q, Liu W, Zhou L, Li W, Liu H. Deguelin, an Aurora B Kinase Inhibitor, Exhibits Potent Anti-Tumor Effect in Human Esophageal Squamous Cell Carcinoma. EBioMedicine 2017; 26:100-111. [PMID: 29129699 PMCID: PMC5832566 DOI: 10.1016/j.ebiom.2017.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
Aurora B kinase has emerged as a key regulator of mitosis and deregulation of Aurora B activity is closely related to the development and progression of human cancers. In the present study, we found that Aurora B is overexpressed in human esophageal squamous cell carcinoma (ESCC), high levels of Aurora B protein were associated with a worse overall survival rate in ESCC patients. Depleting of Aurora B blunted the malignant phenotypes in ESCC cells. Importantly, we demonstrated that a natural compound, deguelin, has a profound anti-tumor effect on ESCC via inhibiting Aurora B activity. Deguelin potently inhibited in vitro Aurora B kinase activity. The in silico docking study further indicated that deguelin was docked into the ATP-binding pocket of Aurora B. Inhibition of Aurora B activity attenuated growth of ESCC cells, resulted in G2/M cell cycle arrest, polyploidy cells formation, and apoptosis induction. Knocking down of Aurora B decreased the sensitivity of ESCC cells to deguelin. The in vivo results showed that deguelin blocked the phosphorylation of histone H3 and inhibited the growth of ESCC tumor xenografts. Overall, we identified deguelin as an effective Aurora B inhibitor, which deserves further studies in other animal models and ESCC treatment.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
39
|
Zhu J, Li Z. Overexpression of miR-101 promotes TRAIL-induced mitochondrial apoptosis in papillary thyroid carcinoma by targeting c-met and MCL-1. Oncotarget 2017; 8:108665-108675. [PMID: 29312559 PMCID: PMC5752472 DOI: 10.18632/oncotarget.21215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 01/02/2023] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) induces apoptosis in malignant cells, but not in normal cells. As papillary thyroid carcinoma cells broadly expressed TRAIL receptors (death receptor 4 and death receptor 5) on their surface, TRAIL is considered as a promising drug for treatment of papillary thyroid carcinoma. However, resistance to TRAIL still be a big obstacle to achieve a satisfactory effect for cancer therapy. Here, we found that overexpression of miR-101 was able to sensitize papillary thyroid carcinoma cells to TRAIL treatment in vitro and in vivo. Mechanically, we found that genes of c-met and MCL-1 were the targets of miR-101. Overexpression of miR-101 in TPC-1 significantly decreased the cellular protein levels of c-met and MCL-1, and thus inhibiting the PI3K/AKT pathway and reducing the resistance to TRAIL-induced mitochondrial apoptosis. Enforced expression of either c-met or MCL-1 could partially inhibit the miR-101 promoted apoptosis in TRAIL-treated TPC-1 cells. These results indicated that miR-101-c-met/MCL-1 axis determined the sensitivity of TRAIL to thyroid cancer in some extent. Combination with TRAIL and miR-101 may represent a novel approach to kill papillary thyroid carcinoma cells efficiently.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Endocrinology, Linyi People's Hospital, Linyi, China, 276000
| | - Zhenjie Li
- Department of Endocrinology, Linyi People's Hospital, Linyi, China, 276000
| |
Collapse
|