1
|
Varadharaj V, Petersen W, Batra SK, Ponnusamy MP. Sugar symphony: glycosylation in cancer metabolism and stemness. Trends Cell Biol 2024:S0962-8924(24)00206-X. [PMID: 39462722 DOI: 10.1016/j.tcb.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Glycosylation is a complex co-translational and post-translational modification (PTM) in eukaryotes that utilizes glycosyltransferases to generate a vast array of glycoconjugate structures. Recent studies have highlighted the role of glycans in regulating essential molecular, cellular, tissue, organ, and systemic biological processes with significant implications for human diseases, particularly cancer. The metabolic reliance of cancer, spanning tumor initiation, disease progression, and resistance to therapy, necessitates a range of uniquely altered cellular metabolic pathways. In addition, the intricate interplay between cell-intrinsic and -extrinsic mechanisms is exemplified by the communication between cancer cells, cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), and immune cells within the tumor microenvironment (TME). In this review article, we explore how differential glycosylation in cancer influences the metabolism and stemness features alongside new avenues in glycobiology.
Collapse
Affiliation(s)
- Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wyatt Petersen
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA.
| |
Collapse
|
2
|
Cheng D, Chu F, Liang F, Zhang N, Wang J, Yue W. Downregulation of circ-RAPGEF5 inhibits colorectal cancer progression by reducing the expression of polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). ENVIRONMENTAL TOXICOLOGY 2024; 39:4249-4260. [PMID: 38775215 DOI: 10.1002/tox.24278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 03/31/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Circular RNA (circRNA) plays a crucial role in the pathogenesis and progression of colorectal cancer (CRC). However, the current understanding of the emerging function and mechanism of circ-RAPGEF5 in CRC remains poorly understood. METHODS We first evaluated the expression level of circ-RAPGEF5 in CRC tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR). Then, we analyzed cell proliferation (EdU and colony formation assay), migration (cell wound healing assay), invasion (transwell assay), and apoptosis (flow cytometry assay). To further elucidate the mechanism of circ-RAPGEF5 in CRC, bioinformatics tools, Dual-luciferase reporter assay, Ago2 RNA immunoprecipitation assay, and RNA pull-down assay were employed. Moreover, we established a CRC transplantation tumor model to evaluate the effect of circ-RAPGEF5 on tumor growth in vivo. RESULTS circ-RAPGEF5 was significantly upregulated in CRC tissues and CRC cells. Furthermore, the downregulation of circ-RAPGEF5 restrained CRC cell proliferation, migration, and invasion, and promoted cell apoptosis in vitro. Mechanistically, circ-RAPGEF5 accelerated the malignant behaviors of CRC cells by sponging miR-545-5p, which targeted polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In addition, we revealed that circ-RAPGEF5 silence curbed tumor growth in vivo. CONCLUSION These findings revealed that circ-RAPGEF5 played an oncogenic role through the miR-545-5p/GALNT3 axis in CRC progression, providing potential therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Duo Cheng
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| | - Feifei Chu
- Department of Digestive Diseases, Zhengzhou Central Hospital Affiliated to Zhengzhou University of Zhengzhou, Zhengzhou City, Henan, China
| | - Fang Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| | - Nan Zhang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| | - Jingjing Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| | - Wenli Yue
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| |
Collapse
|
3
|
Yue S, Wang X, Wang L, Li J, Zhou Y, Chen Y, Zhou Z, Yang X, Shi X, Gao S, Wen Z, Zhu X, Wang Y, Yang S. MOTAI: A Novel Method for the Study of O-GalNAcylation and Complex O-Glycosylation in Cancer. Anal Chem 2024; 96:11137-11145. [PMID: 38953491 PMCID: PMC11257061 DOI: 10.1021/acs.analchem.3c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The Tn antigen, an immature truncated O-glycosylation, is a promising biomarker for cancer detection and diagnosis. However, reliable methods for analyzing O-GalNAcylation and complex O-glycosylation are lacking. Here, we develop a novel method, MOTAI, for the sequential analysis of O-glycosylation using different O-glycoproteases. MOTAI conjugates glycopeptides on a solid support and releases different types of O-glycosylation through sequential enzymatic digestion by O-glycoproteases, including OpeRATOR and IMPa. Because OpeRATOR has less activity on O-GalNAcylation, MOTAI enriches O-GalNAcylation for subsequent analysis. We demonstrate the effectiveness of MOTAI by analyzing fetuin O-glycosylation and Jurkat cell lines. We then apply MOTAI to analyze colorectal cancer and benign colorectal polyps. We identify 32 Tn/sTn-glycoproteins and 43 T/sT-glycoproteins that are significantly increased in tumor tissues. Gene Ontology analysis reveals that most of these proteins are ECM proteins involved in the adhesion process of the intercellular matrix. Additionally, the protein disulfide isomerase CRELD2 has a significant difference in Tn expression, and the abnormally glycosylated T345 and S349 O-glycosylation sites in cancer group samples may promote the secretion of CRELD2 and ultimately tumorigenesis through ECM reshaping. In summary, MOTAI provides a powerful new tool for the in-depth analysis of O-GalNAcylation and complex O-glycosylation. It also reveals the upregulation of Tn/sTn-glycoproteins in colorectal cancer, which may provide new insights into cancer biology and biomarker discovery.
Collapse
Affiliation(s)
- Shuang Yue
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Xiaotong Wang
- Department
of Hepatology and Gastroenterology, The
Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
| | - Lei Wang
- Protein
Metrics LLC, Room 201-01,
Building A, Novasiot, 58 Xiangke Road, Zhangjiang, Shanghai 201203, China
| | - Jiajia Li
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Yufeng Zhou
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Yan Chen
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeyang Zhou
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou 215004, China
| | - Xiaodong Yang
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou 215004, China
| | - Xiaofeng Shi
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Song Gao
- Jiangsu Key
Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongmin Wen
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaojun Zhu
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yan Wang
- Mass
Spectrometry Facility, National Institute of Dental and Craniofacial
Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
4
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Sanji AS, J M, Gurav MJ, Batra SK, Chachadi VB. Cancer snap-shots: Biochemistry and glycopathology of O-glycans: A review. Int J Biol Macromol 2024; 260:129318. [PMID: 38232866 DOI: 10.1016/j.ijbiomac.2024.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.
Collapse
Affiliation(s)
- Ashwini S Sanji
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Manasa J
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Maruti J Gurav
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishwanath B Chachadi
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India.
| |
Collapse
|
6
|
Yan J, Gong H, Han S, Liu J, Wu Z, Wang Z, Wang T. GALNT5 functions as a suppressor of ferroptosis and a predictor of poor prognosis in pancreatic adenocarcinoma. Am J Cancer Res 2023; 13:4579-4596. [PMID: 37970359 PMCID: PMC10636670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
Mucin-type O-glycosylation, a posttranslational modification of membrane and secretory proteins, facilitates metastasis and immune escape in tumor cells. N-acetylgalactosaminyl-transferase 5 (GALNT5), the enzyme initiating mucin-type O-glycosylation, is known to advance the progression of various tumors. Yet, the comprehensive role of GALNT5 in pan-cancer scenarios remains to be elucidated. In this research, we conducted a database-centric pan-cancer expression analysis of GALNT5. We examined its aberrant expression, assessed its prognostic implications, and explored the correlations between GALNT5 expression and factors such as ferroptosis, immune cell infiltration levels, and immune checkpoint gene expression across multiple tumor types. To substantiate GALNT5's role, we analyzed cell proliferation, migration, invasion, and ferroptosis in PAAD cells after GALNT5 knockdown. Additionally, RNA-seq was employed to discern potential downstream pathways influenced by GALNT5. Our findings indicate that GALNT5 expression is heightened in the majority of tumors, correlating with the prognosis of multiple cancers. There's a notable association between GALNT5 levels and ferroptosis-related genes, immune cell infiltration, and immune checkpoint genes. In PAAD specifically, the role of GALNT5 was further probed. Knockdown of GALNT5 curtailed the proliferation, migration, and invasion capacities of PAAD cells, concurrently promoting ferroptosis. Moreover, in vivo studies demonstrated that GALNT5 inhibition stunted PAAD tumor growth. The RNA-seq analysis unveiled inflammation and immune-centric pathways, such as the TNF signaling pathway, as potential downstream conduits of GALNT5. In conclusion, our pan-cancer study underscores GALNT5 as a potential therapeutic target for enhancing PAAD prognosis, given its strong ties with ferroptosis and immune cell infiltration. Our experiments further define GALNT5 as a novel suppressor of ferroptosis.
Collapse
Affiliation(s)
- Jiayi Yan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Haiyi Gong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People’s HospitalShanghai, China
| | - Jialiang Liu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Ting Wang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| |
Collapse
|
7
|
Kumar L, Kumar S, Sandeep K, Patel SKS. Therapeutic Approaches in Pancreatic Cancer: Recent Updates. Biomedicines 2023; 11:1611. [PMID: 37371705 DOI: 10.3390/biomedicines11061611] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a significant challenge for effective treatment due to its complex mechanism, different progressing stages, and lack of adequate procedures for screening and identification. Pancreatic cancer is typically identified in its advanced progression phase with a low survival of ~5 years. Among cancers, pancreatic cancer is also considered a high mortality-causing casualty over other accidental or disease-based mortality, and it is ranked seventh among all mortality-associated cancers globally. Henceforth, developing diagnostic procedures for its early detection, understanding pancreatic cancer-linked mechanisms, and various therapeutic strategies are crucial. This review describes the recent development in pancreatic cancer progression, mechanisms, and therapeutic approaches, including molecular techniques and biomedicines for effectively treating cancer.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Kumar Sandeep
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
8
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
9
|
Ding M, Liu J, Lv H, Zhu Y, Chen Y, Peng H, Fan S, Chen X. Knocking down GALNT6 promotes pyroptosis of pancreatic ductal adenocarcinoma cells through NF-κB/NLRP3/GSDMD and GSDME signaling pathway. Front Oncol 2023; 13:1097772. [PMID: 36925932 PMCID: PMC10013470 DOI: 10.3389/fonc.2023.1097772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is a highly lethal malignancy with poor prognosis. Polypeptide N-acetylgalactosaminyltransferase-6 (GALNT6) is frequently overexpressed in PDAC. However, the role of GALNT6 in the PDAC remains unclear. Methods The expression of GALNT6 in pancreatic cancer and normal tissues were analyzed by bioinformatic analyses and immunohistochemistry. CCK8 and colony formation were used to detect cell proliferation. Flow cytometry was applied to detect cell cycle.The pyroptosis was detected by scanning electron microscopy. The mRNA expression was detected by qRT-PCR. The protein expression and localization were detected by western blot and immunofluorescence assay. ELISA was used to detect the levels of inflammatory factors. Results The expression of GALNT6 was associated with advanced tumor stage, and had an area under curve (AUC) value of 0.919 in pancreatic cancer based on the cancer genome atlas (TCGA) dataset. Knockdown of GALNT6 inhibited cell proliferation, migration, invasion and cell cycle arrest of PDAC cells. Meanwhile, knockdown of GALNT6 increased the expression levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18), the release of inflammasome and an increasing of Gasdermin D (GSDMD), N-terminal of GSDMD (GSDMD-N), Gasdermin E (GSDME) and N-terminal of GSDME (GSDME-N) in PDAC cells. GALNT6 suppressed the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and GSDMD by glycosylation of NF-κB and inhibiting the nucleus localization of NF-κB. Additionally, GALNT6 promotes the degradation of GSDME by O-glycosylation. Conclusion We found that GALNT6 is highly expressed in pancreatic cancer and plays a carcinogenic role. The results suggested that GALNT6 regulates the pyroptosis of PDAC cells through NF-κB/NLRP3/GSDMD and GSDME signaling. Our study might provides novel insights into the roles of GALNT6 in PDAC progression.
Collapse
Affiliation(s)
- Mengyang Ding
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Honghui Lv
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanlin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yumiao Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Peng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
11
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
12
|
Garay YC, Cejas RB, Lorenz V, Zlocowski N, Parodi P, Ferrero FA, Angeloni G, García VA, Sendra VG, Lardone RD, Irazoqui FJ. Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health. J Mol Med (Berl) 2022; 100:1387-1403. [PMID: 36056254 DOI: 10.1007/s00109-022-02249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Polypeptide N-acetylgalactosamine transferase 3 (ppGalNAc-T3) is an enzyme involved in the initiation of O-GalNAc glycan biosynthesis. Acting as a writer of frequent post-translational modification (PTM) on human proteins, ppGalNAc-T3 has key functions in the homeostasis of human cells and tissues. We review the relevant roles of this molecule in the biosynthesis of O-GalNAc glycans, as well as in biological functions related to human physiological and pathological conditions. With main emphasis in ppGalNAc-T3, we draw attention to the different ways involved in the modulation of ppGalNAc-Ts enzymatic activity. In addition, we take notice on recent reports of ppGalNAc-T3 having different subcellular localizations, highlight critical intrinsic and extrinsic functions in cellular physiology that are exerted by ppGalNAc-T3-synthesized PTMs, and provide an update on several human pathologies associated with dysfunctional ppGalNAc-T3. Finally, we propose biotechnological tools as new therapeutic options for the treatment of pathologies related to altered ppGalNAc-T3. KEY MESSAGES: ppGalNAc-T3 is a key enzyme in the human O-GalNAc glycans biosynthesis. enzyme activity is regulated by PTMs, lectin domain and protein-protein interactions. ppGalNAc-T3 is located in human Golgi apparatus and cell nucleus. ppGalNAc-T3 has a central role in cell physiology as well as in several pathologies. Biotechnological tools for pathological management are proposed.
Collapse
Affiliation(s)
- Yohana Camila Garay
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Romina Beatriz Cejas
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Virginia Lorenz
- Facultad de Bioquímica Y Ciencias Biológicas, Instituto de Salud Y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Natacha Zlocowski
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Instituto de Investigaciones en Ciencias de La Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro Parodi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Franco Alejandro Ferrero
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Genaro Angeloni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Valentina Alfonso García
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Victor German Sendra
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ricardo Dante Lardone
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Fernando José Irazoqui
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
13
|
The Landscape of Using Glycosyltransferase Gene Signatures for Overall Survival Prediction in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5989419. [PMID: 35774357 PMCID: PMC9239767 DOI: 10.1155/2022/5989419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/24/2022] [Accepted: 04/30/2022] [Indexed: 12/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease that occurs in the setting of chronic liver diseases. The role of glycosyltransferase (GT) genes has recently been the focus of research associated with tumor development. However, the prognostic value of GT genes in HCC remains unclear. Therefore, this study aimed to identify GT genes related to HCC prognosis through bioinformatics analysis. We firstly constructed a prognostic signature based on four GT genes using univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses in The Cancer Genome Atlas (TCGA) dataset. Next, the risk score of each patient was calculated, and HCC patients were divided into high- and low-risk groups. Kaplan–Meier analysis showed that the survival rate of high-risk patients was significantly lower than that of low-risk patients. Receiver operating characteristic (ROC) curves assessed that risk scores calculated with a four-gene signature could predict 3- and 5-year overall survival (OS) of HCC patients, revealing the prognostic ability of this gene signature. Moreover, univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent prognostic factor of HCC. Finally, functional analysis revealed that immune-related pathways were enriched and the immune status was different between the two risk groups in HCC. In summary, the novel GT gene signature could be used for prognostic prediction of HCC. Thus, targeting the GT genes may serve as an alternative treatment strategy for HCC.
Collapse
|
14
|
Marimuthu S, Batra SK, Ponnusamy MP. Pan-cancer analysis of altered glycosyltransferases confers poor clinical outcomes. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2:e100. [PMID: 35875597 PMCID: PMC9302706 DOI: 10.1002/ctd2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
16
|
Jiang F, Huang X, Zhang F, Pan J, Wang J, Hu L, Chen J, Wang Y. Integrated Analysis of Multi-Omics Data to Identify Prognostic Genes for Pancreatic Cancer. DNA Cell Biol 2022; 41:305-318. [PMID: 35104421 DOI: 10.1089/dna.2021.0878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) is a common cause of cancer-related deaths. Current research shows that prognostic biomarkers play a key role in the treatment of PC. This study aimed to identify prognostic genes through bioinformatics research. We combined data from 175 cases of PC from the cancer genome atlas (TCGA) database with gene mutation expression, level distribution of methylation, mRNA expression, and through weighted correlation network analysis to nine hub genes. Subsequently, these genes were verified on TCGA and Gene Expression Profiling Interactive Analysis (GEPIA) platforms. Reverse transcription quantitative PCR (RT-qPCR) was performed to investigate the expression levels of 9 genes in PC cells and cancerous and 30 PC cases and corresponding adjacent tissues. CIBERSORT database analysis was conducted for hub genes. Our findings demonstrated that the 9 genes (MST1R, TMPRSS4, PTK6, KLF5, CGN, ABHD17C, MUC1, CAPN8, and B3GNT3) were prognostic biomarkers of PC identified from the top 10 genes of the 2 coexpression modules. The nine genes were then used to divide early PC cases into two subgroups with significant differences in prognosis and differences in function (digestion, extracellular cell adhesion). Further analysis revealed that the nine genes were highly expressed in PC tissues. In addition, MST1R, PTK6, ABHD17C, and CGN mRNA were expressed high in PC cells and clinical tissues. CIBERSORT analysis indicated that the expression of these genes was closely correlated with naive B cells, CD8+ T cells, and M0 macrophages. This suggests that these genes could play a carcinogenic role in the preservation of immune-dominant status for the tumor microenvironment. The nine key genes identified in this study could enhance our understanding of the molecular mechanisms associated with PC.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijuan Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Huang T, Wu Q, Huang H, Zhang C, Wang L, Wang L, Liu Y, Li W, Zhang J, Liu Y. Expression of GALNT8 and O-glycosylation of BMP receptor 1A suppress breast cancer cell proliferation by upregulating ERα levels. Biochim Biophys Acta Gen Subj 2022; 1866:130046. [PMID: 34743989 DOI: 10.1016/j.bbagen.2021.130046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mucin-type O-glycosylation is one of the most abundant types of O-glycosylation and plays important roles in various human carcinomas, including breast cancer. A large family of polypeptide N-acetyl-α-galactosaminyltransferases (GALNTs) initiate and define sites of mucin-type O-glycosylation. However, the specific mechanisms underlying GALNT8 expression and its roles in tumorigenesis remain poorly characterized. METHODS GALNT8 expression was assessed in 140 breast cancer patients. Immunofluorescence, immunoprecipitation, lectin blot and quantitative real-time PCR were used to investigate the expression of GALNT8 and its role in regulating estrogen receptor α (ERα) via bone morphogenetic protein (BMP) signaling. RESULTS The expression of GALNT8 was associated with breast cancer patient survival. GALNT8 downregulation was associated with a reduction in ERα levels, while GALNT8 overexpression elevated the transcription and protein levels of ERα and suppressed colony formation, suggesting an important role of GALNT8 in cancer cell proliferation. Conversely, GALNT8 knockdown led to the inhibition of BMP/SMAD/RUNX2 axis, which decreased ERα transcription. Further analysis suggested that BMP receptor 1A (BMPR1A) was O-GalNAcylated. Sites mutation of BMPR1A indicated that Thr137 and Ser37/Ser39/Ser44/Thr49 of BMPR1A were the main O-glycosylation sites. Although we cannot exclude the indirect effect of GALNT8, our results demonstrated that the expression of GALNT8 and O-glycosylation of BMPR1A play key roles in regulating the activity of BMP/SMAD/RUNX2 signaling and ERα expression. CONCLUSION These findings suggest that GALNT8 expression and abnormal O-GalNAcylation of BMPR1A increase ERα expression and suppress breast cancer cell proliferation by modulating the BMP signaling pathway. GENERAL SIGNIFICANCE Our results identify the involvement of GALNT8 in regulating ERα expression.
Collapse
Affiliation(s)
- Tianmiao Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Qiong Wu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Huang Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Cheng Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Liping Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Lingyan Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Yangzhi Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Wenli Li
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Jianing Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| | - Yubo Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| |
Collapse
|
18
|
Quader S, Tanabe S, Cabral H. Abnormal Glycosylation in Cancer Cells and Cancer Stem Cells as a Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:141-156. [PMID: 36587306 DOI: 10.1007/978-3-031-12974-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties. Here, we highlight the importance of glycosylation in promoting the stemness character of CSCs and the current strategies for targeting abnormal glycosylation toward generating effective therapies against the CSC population.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
19
|
Zhang H, Lu D, Li Q, Lu F, Zhang J, Wang Z, Lu X, Wang J. Identification of Six Prognostic Genes in EGFR-Mutant Lung Adenocarcinoma Using Structure Network Algorithms. Front Genet 2021; 12:755245. [PMID: 34868228 PMCID: PMC8635158 DOI: 10.3389/fgene.2021.755245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023] Open
Abstract
This study aims to determine hub genes related to the incidence and prognosis of EGFR-mutant (MT) lung adenocarcinoma (LUAD) with weighted gene coexpression network analysis (WGCNA). From The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we used 253 EGFR-MT LUAD samples and 38 normal lung tissue samples. At the same time, GSE19188 was additionally included to verify the accuracy of the predicted gene. To discover differentially expressed genes (DEGs), the R package “limma” was used. The R packages “WGCNA” and “survival” were used to perform WGCNA and survival analyses, respectively. The functional analysis was carried out with the R package “clusterProfiler.” In total, 1450 EGFR-MT–specific DEGs were found, and 7 tumor-related modules were marked with WGCNA. We found 6 hub genes in DEGs that overlapped with the tumor-related modules, and the overexpression level of B3GNT3 was significantly associated with the worse OS (overall survival) of the EGFR-MT LUAD patients (p < 0.05). Functional analysis of the hub genes showed the metabolism and protein synthesis–related terms added value. In conclusion, we used WGCNA to identify hub genes in the development of EGFR-MT LUAD. The established prognostic factors could be used as clinical biomarkers. To confirm the mechanism of those genes in EGFR-MT LUAD, further molecular research is required.
Collapse
Affiliation(s)
- Haomin Zhang
- Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Di Lu
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Qinglun Li
- College of Science, University of Shanghai for Science and Technology, Beijing, China
| | - Fengfeng Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jundong Zhang
- Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Zining Wang
- Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Jinliang Wang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Xu Z, Jin H, Duan X, Liu H, Zhao X, Fan S, Wang Y, Yao T. LncRNA PSMA3-AS1 promotes cell proliferation, migration, and invasion in ovarian cancer by activating the PI3K/Akt pathway via the miR-378a-3p/GALNT3 axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:2562-2577. [PMID: 34520102 DOI: 10.1002/tox.23370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The crucial roles of the long noncoding RNAs (lncRNAs) in the development of ovarian cancer (OC) have been extensively studied. According to the prediction result from the Kaplan-Meier Plotter database, high expression of lncRNA proteasome subunit α type-3 antisense RNA1 (PSMA3-AS1) is associated with the poor prognosis in patients with OC. Thus, the study aimed to investigate the role of lncRNA PSMA3-AS1 in OC. Reverse transcription quantitative polymerase chain reaction analysis revealed that PSMA3-AS1 expression was significantly upregulated in OC cells and tissues. PSMA3-AS1 silencing inhibited OC cell proliferation, migration, and invasion, as shown by results of cell counting kit-8, colony formation, wound healing, and Transwell assays, respectively. Additionally, PSMA3-AS1 deficiency suppressed tumor growth in vivo. Mechanistically, luciferase reporter and RNA pulldown assays implied that PSMA3-AS1 served as a competing endogenous RNA for miR-378a-3p to upregulate the expression of polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). GALNT3 was a target gene of miR-378a-3p in OC. Moreover, PSMA3-AS1 activated the PI3K/Akt pathway by upregulating GALNT3 expression. Overall, PSMA3-AS1 promotes OC cell proliferation, migration, invasion, and xenograft tumor growth by activating the PI3K/Akt pathway via the miR-378a-3p/GALNT3 axis.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Jin
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyang Duan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hong Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiwa Zhao
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaoshuang Fan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tiezhu Yao
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021; 28:77. [PMID: 34781949 PMCID: PMC8591907 DOI: 10.1186/s12929-021-00772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.
Collapse
Affiliation(s)
- Guzide Bender
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Rezan Fahrioglu Yamaci
- Faculty of Applied Natural Sciences and Cultural Studies, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, via Mersin-10, Famagusta, 99628, North Cyprus, Turkey.
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Li J, Wang Z, Tie C. High expression of ladinin-1 (LAD1) predicts adverse outcomes: a new candidate docetaxel resistance gene for prostatic cancer (PCa). Bioengineered 2021; 12:5749-5759. [PMID: 34516317 PMCID: PMC8806705 DOI: 10.1080/21655979.2021.1968647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Docetaxel resistance is one of the major obstacles that undermine the treatment outcome of PCa. Exploring molecular mechanisms associated with docetaxel resistance could provide insights into the formulation of novel strategies enhancing the efficacy of PCa treatment. Ladinin-1 (LAD1) is an anchoring filament protein in basement membranes, which contributes to the association of the epithelial cells with the underlying mesenchyme. LAD1 has been implicated in the progression of different cancers. However, its role in PCa remains to be investigated. In the present study, we found that LAD1 was highly expressed in docetaxel-resistant PCa cells, while its expression was significantly suppressed in tumor samples after docetaxel treatment. Moreover, the expression level of LAD1 in PCa tissues was significantly higher than that of normal tissue, and high expression level of LAD1 was significantly associated with adverse outcomes of PCa patients. Finally, high expression of LAD1 in PCa tissue was also correlated with the expression level of genes involving in tumor cell proliferation and invasive behaviors. Collectively, our data suggest that LAD1 may serve as a potential prognostic factor in PCa patients.
Collapse
Affiliation(s)
- Jianping Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Chong Tie
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
23
|
Park MS, Yang AY, Lee JE, Kim SK, Roe JS, Park MS, Oh MJ, An HJ, Kim MY. GALNT3 suppresses lung cancer by inhibiting myeloid-derived suppressor cell infiltration and angiogenesis in a TNFR and c-MET pathway-dependent manner. Cancer Lett 2021; 521:294-307. [PMID: 34416337 DOI: 10.1016/j.canlet.2021.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023]
Abstract
The deregulation of polypeptide N-acetyl-galactosaminyltransferases (GALNTs) contributes to several cancers, but their roles in lung cancer remain unclear. In this study, we have identified a tumor-suppressing role of GALNT3 in lung cancer. We found that GALNT3 suppressed lung cancer development and progression in both xenograft and syngeneic mouse models. Specifically, GALNT3 suppressed lung cancer initiation by inhibiting the self-renewal of lung cancer cells. More importantly, GALNT3 attenuated lung cancer growth by preventing the creation of a favorable tumor microenvironment (TME), which was attributed to GALNT3's ability to inhibit myeloid-derived suppressor cell (MDSC) infiltration into tumor sites and subsequent angiogenesis. We also identified a GALNT3-regulated gene (GRG) signature and found that lung cancer patients whose tumors exhibit the GRG signature showed more favorable prognoses. Further investigation revealed that GALNT3 suppressed lung cancer cell self-renewal by reducing β-catenin levels, which led to reduced expression of the downstream targets of the WNT pathway. In addition, GALNT3 inhibited MDSC infiltration into tumor sites by suppressing both the TNFR1-NFκB and cMET-pAKT pathways. Specifically, GALNT3 inhibited the nuclear localization of NFκB and the c-MET-induced phosphorylation of AKT. This then led to reduced production of CXCL1, a chemokine required for MDSC recruitment. Finally, we confirmed that the GALNT3-induced inhibition of the TNFR1-NFκB and cMET-pAKT pathways involved the O-GalNAcylation of the TNFR1 and cMET receptors. In summary, we have identified GALNT3 as the first GALNT member capable of suppressing lung cancer and uncovered a novel mechanism by which GALNT3 regulates the TME.
Collapse
Affiliation(s)
- Mi So Park
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - A-Yeong Yang
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - Seon Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min-Seok Park
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea
| | - Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science And Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
24
|
Groth T, Gunawan R, Neelamegham S. A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis. Beilstein J Org Chem 2021; 17:1712-1724. [PMID: 34367349 PMCID: PMC8313979 DOI: 10.3762/bjoc.17.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/12/2021] [Indexed: 01/05/2023] Open
Abstract
Glycosylation is a common posttranslational modification, and glycan biosynthesis is regulated by a set of glycogenes. The role of transcription factors (TFs) in regulating the glycogenes and related glycosylation pathways is largely unknown. In this work, we performed data mining of TF–glycogene relationships from the Cistrome Cancer database (DB), which integrates chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq data to constitute regulatory relationships. In total, we observed 22,654 potentially significant TF–glycogene relationships, which include interactions involving 526 unique TFs and 341 glycogenes that span 29 the Cancer Genome Atlas (TCGA) cancer types. Here, TF–glycogene interactions appeared in clusters or so-called communities, suggesting that changes in single TF expression during both health and disease may affect multiple carbohydrate structures. Upon applying the Fisher’s exact test along with glycogene pathway classification, we identified TFs that may specifically regulate the biosynthesis of individual glycan types. Integration with Reactome DB knowledge provided an avenue to relate cell-signaling pathways to TFs and cellular glycosylation state. Whereas analysis results are presented for all 29 cancer types, specific focus is placed on human luminal and basal breast cancer disease progression. Overall, the article presents a computational approach to describe TF–glycogene relationships, the starting point for experimental system-wide validation.
Collapse
Affiliation(s)
- Theodore Groth
- Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Rudiyanto Gunawan
- Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.,Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.,Medicine, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
25
|
The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22115822. [PMID: 34070747 PMCID: PMC8198577 DOI: 10.3390/ijms22115822] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell–cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.
Collapse
|
26
|
Khan T, Cabral H. Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies. Front Oncol 2021; 11:649338. [PMID: 33889547 PMCID: PMC8056457 DOI: 10.3389/fonc.2021.649338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.
Collapse
Affiliation(s)
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Wang JS, Ruan F, Guo LZ, Wang FG, Wang FL, An HM. B3GNT3 acts as a carcinogenic factor in endometrial cancer via facilitating cell growth, invasion and migration through regulating RhoA/RAC1 pathway-associated markers. Genes Genomics 2021; 43:447-457. [PMID: 33683574 DOI: 10.1007/s13258-021-01072-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aberrant expression of beta-1,3-N-acetylglucosaminyltransferase-3 (B3GNT3) has been frequently clarified in various cancers, however, its role in endometrial cancer (EC) has not been assessed in detail. PURPOSE This study aimed to investigate the biological role of B3GNT3 in EC and simply explored the detailed mechanism. METHODS The EC RNA-Seq dataset from TCGA database was applied to evaluate the expression of B3GNT3 and assess its role on prognostic value. HEC-1-A and KLE cell lines of EC were used to perform loss- and gain-of-function B3GNT3 assays respectively. Quantitative real-time PCR (qRT-PCR) and western blot were used to measure the mRNA and protein levels of indicated molecules respectively. Cell counting kit-8, clone formation tests, and Transwell assay served to determine the changes of proliferative, invasive and migratory abilities of EC cells after altering the expression of B3GNT3. RESULTS B3GNT3 was found to be highly expressed in EC tissues compared to normal tissues according to the online public databases, which confirmed by the following qRT-PCR in 3 EC cell lines. Besides, high B3GNT3 expression presented a worse overall survival in EC patients as compared with low B3GNT3 expression group. Furthermore, functional experiments in vitro indicated that B3GNT3 could facilitate the cell growth, invasion and migration. Moreover, we found that downregulation of B3GNT3 significantly reduced the expression level of GTP-RhoA and GTP-RAC1, whereas upregulation of B3GNT3 presented the opposite results. CONCLUSION The results of current study demonstrate that B3GNT3 acts as an oncogene that promotes EC cells growth, invasion and migration possibly through regulating the RhoA/RAC1 signaling pathway-related markers, suggesting that B3GNT3 may be a candidate biomarker for EC therapeutic intervention.
Collapse
Affiliation(s)
- Ji-Shui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Fang Ruan
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, No.89 of Guhuai Road, Jining, 272029, Shandong, China
| | - Li-Zhu Guo
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, No.89 of Guhuai Road, Jining, 272029, Shandong, China
| | - Feng-Ge Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, No.89 of Guhuai Road, Jining, 272029, Shandong, China
| | - Fu-Ling Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Hong-Min An
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, No.89 of Guhuai Road, Jining, 272029, Shandong, China.
| |
Collapse
|
28
|
Leng X, Wei S, Mei J, Deng S, Yang Z, Liu Z, Guo C, Deng Y, Xia L, Cheng J, Zhao K, Gan F, Li C, Merrell KW, Molina JR, Metro G, Liu L. Identifying the prognostic significance of B3GNT3 with PD-L1 expression in lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:965-980. [PMID: 33718036 PMCID: PMC7947420 DOI: 10.21037/tlcr-21-146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background As a novel treatment, programmed cell death protein 1 (PD-1) inhibitor appears to be less effective in tumors of lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutation. Beta-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3) has reported to be associated with programmed death ligand 1 (PD-L1)/PD-1 interaction. However, the relationship between B3GNT3 and PD-L1 and its prognostic significance in EGFR mutant status are still unknown. Methods B3GNT3 was identified through transcriptome sequencing and The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) database. Flow cytometry and real-time polymerase chain reaction were performed to investigate the association between B3GNT3, PD-L1, and EGFR. Then, B3GNT3 and PD-L1 expression were evaluated by immunohistochemical analysis in 145 surgically resected primary lung adenocarcinomas. The relationships between survival and B3GNT3, PD-L1, and EGFR status were assessed, and the potential prognostic factors in patients with B3GNT3 expression were identified. Results We found that EGFR activation induced PD-L1 expression, and EGFR tyrosine kinase inhibitor (TKI) could reduce PD-L1 protein in EGFR-TKI-sensitive HCC827 and PC9 cell lines. Subsequent analysis showed that EGFR inhibitor could also lead to both decreased PD-L1 and B3GNT3 mRNA expression. A total of 145 lung adenocarcinoma patients were included. PD-L1 >1% and B3GNT3-positive expression in patients might contribute to worse prognosis in both overall survival (OS) [hazard ratio (HR), 2.63; 95% confidence interval (CI), 0.98–7.06; P=0.048] and disease-free survival (DFS) (HR, 3.04; 95% CI, 1.13–8.14; P=0.019), especially in the PD-L1 ≥50% group. However, when patients were negative for B3GNT3, PD-L1, and EGFR (or “triple negative”), there were significant decreases in OS (HR, 5.44; 95% CI, 0.99–29.83; P=0.029) and DFS (HR, 7.24; 95% CI, 1.32–39.73; P=0.008). Positive B3GNT3 expression was a significant risk factor associated with lower DFS (HR, 3.30; P=0.043). Conclusions Our results indicate that the B3GNT3 expression is tightly correlated with PD-L1 expression and EGFR mutation status. B3GNT3 is associated with poor prognosis in lung adenocarcinoma patients. Collectively, these findings may offer new insight into enhancing immune therapy efficacy for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Xuefeng Leng
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China.,Division of Thoracic Surgery, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shiyou Wei
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Jiandong Mei
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Senyi Deng
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Yang
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Liu
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Chenglin Guo
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Yulan Deng
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Liang Xia
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Jiahan Cheng
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Kejia Zhao
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Fanyi Gan
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| | | | - Julian R Molina
- Division of Medical Oncology and Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, via Dottori, 1, 06156, Perugia, Italy
| | - Lunxu Liu
- Department of Thoracic Surgery, Institute of Thoracic Oncology/West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Yao J, Li R, Liu X, Zhou X, Li J, Liu T, Huo C, Qu Y. Prognostic implication of glycolysis related gene signature in non-small cell lung cancer. J Cancer 2021; 12:885-898. [PMID: 33403045 PMCID: PMC7778529 DOI: 10.7150/jca.50274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
Abstract
Abnormal glycolysis is one of the hallmarks of cancer and plays an important role in its development. This study was devoted to identify glycolysis related genes as prognostic biomarkers for non-small cell lung cancer (NSCLC). The mRNA expression profile and clinical follow-up data were obtained using The Cancer Genome Atlas (TCGA) database. The validation set was obtained by bootstrap method of random repeated sampling. A total of 200 glycolysis-related genes were obtained from Gene Set Enrichment Analysis (GSEA) and 46 genes were significantly associated with overall survival (OS). Five genes (PKP2, LDHA, HMMR, COL5A1 and B3GNT3) were eventually identified to calculate risk score of NSCLC patients. The univariate and multivariate Cox regression analysis indicated that the risk score was an independent prognostic factor (training set: HR=2.126, 95% CI [1.605, 2.815], p<0.001; validation set: HR=2.298, 95%CI [1.450, 3.640], p<0.001). Patients assigned to the high-risk group were associated with poor OS compared with patients in the low-risk group (training set: P=7.946e-06; validation set: P=6.368e-07). Receiver operating characteristic (ROC) curve and stratification analysis also demonstrated the potential prognostic performance. In conclusion, we constructed a novel glycolysis related risk signature which might contribute to predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Jie Yao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xijia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jianping Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yiqing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
30
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
31
|
B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8 + T cells in pancreatic cancer. Aging (Albany NY) 2020; 13:2310-2329. [PMID: 33316775 PMCID: PMC7880340 DOI: 10.18632/aging.202255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Beta-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3) has been associated with tumor progression in several solid tumors, and inhibits CD8+ T cell-mediated anti-tumor immunity in breast cancer. However, little is known about the potential functions of B3GNT3 in immunosuppression in pancreatic cancer (PC). This study on B3GNT3 aims to provide novel insights into the mechanisms of immune suppression or evasion in PC. To this end, the clinical significance and oncologic roles of B3GNT3 were investigated through bioinformatic analysis and in vitro studies. Potential associations between the expression of B3GNT3 and tumor immunity were mainly analyzed by single-sample gene set enrichment analysis (ssGSEA) and immunofluorescence in tissue microarray (TMA). B3GNT3 overexpression was observed in PC tissue and was associated with larger tumor sizes, higher histologic grades, and poorer overall survival (OS). B3GNT3 overexpression was associated with the mutation status and expression of driver genes, especially for KRAS and SMAD4. B3GNT3 knockdown inhibited the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of PC cells. B3GNT3 overexpression significantly correlated with decreased infiltration of tumor infiltrating lymphocytes (TILs), especially CD8+ T cells. Overall, our results indicate that B3GTN3 plays a novel role in tumor progression and immunosuppression, thus serving as a potential therapeutic target in PC.
Collapse
|
32
|
Gupta R, Leon F, Thompson CM, Nimmakayala R, Karmakar S, Nallasamy P, Chugh S, Prajapati DR, Rachagani S, Kumar S, Ponnusamy MP. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. Br J Cancer 2020; 122:1661-1672. [PMID: 32203219 PMCID: PMC7251111 DOI: 10.1038/s41416-020-0772-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several reports have shown the role of glycosylation in pancreatic cancer (PC), but a global systematic screening of specific glycosyltransferases (glycoTs) in its progression remains unknown. METHODS We demonstrate a rigorous top-down approach using TCGA-based RNA-Seq analysis, multi-step validation using RT-qPCR, immunoblots and immunohistochemistry. We identified six unique glycoTs (B3GNT3, B4GALNT3, FUT3, FUT6, GCNT3 and MGAT3) in PC pathogenesis and studied their function using CRISPR/Cas9-based KD systems. RESULTS Serial metastatic in vitro models using T3M4 and HPAF/CD18, generated in house, exhibited decreases in B3GNT3, FUT3 and GCNT3 expression on increasing metastatic potential. Immunohistochemistry identified clinical significance for GCNT3, B4GALNT3 and MGAT3 in PC. Furthermore, the effects of B3GNT3, FUT3, GCNT3 and MGAT3 were shown on proliferation, migration, EMT and stem cell markers in CD18 cell line. Talniflumate, GCNT3 inhibitor, reduced colony formation and migration in T3M4 and CD18 cells. Moreover, we found that loss of GCNT3 suppresses PC progression and metastasis by downregulating cell cycle genes and β-catenin/MUC4 axis. For GCNT3, proteomics revealed downregulation of MUC5AC, MUC1, MUC5B including many other proteins. CONCLUSIONS Collectively, we demonstrate a critical role of O- and N-linked glycoTs in PC progression and delineate the mechanism encompassing the role of GCNT3 in PC.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher M Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramakrishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
33
|
Sun Y, Liu T, Xian L, Liu W, Liu J, Zhou H. B3GNT3, a Direct Target of miR-149-5p, Promotes Lung Cancer Development and Indicates Poor Prognosis of Lung Cancer. Cancer Manag Res 2020; 12:2381-2391. [PMID: 32280275 PMCID: PMC7129331 DOI: 10.2147/cmar.s236565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background B3GNT3 (β1, 3-N-acetylglucosaminyltransferase-3) belongs to the β3GlcNAcT family and is essential to form extended core 1 oligosaccharides. Previous studies revealed that B3GNT3 expression was dysregulated in multiple cancers. Here, we aimed to understand the expression profile and function of B3GNT3 in lung cancer. Materials and Methods The expression of B3GNT3 was measured by immunohistochemistry and public database analysis. B3GNT3 was knocked down to evaluate the lung cancer cell proliferation, migration and invasion in in vitro and in vivo tumor formation experiments. miR-149-5p targeting B3GNT3 was identified with TargetScan analysis and confirmed with reporter assay. Overexpression of miR-149-5p was achieved using microRNA mimics and function of microRNA-149-5p/B3GNT3 axis was tested in vitro. Results B3GNT3 was upregulated in lung cancer, and B3GNT3 overexpression was associated with poor prognosis of lung cancer patients. High expression of B3GNT3 was associated with advanced TNM stages, larger tumor size, tumor metastasis and recurrence. Functionally, we demonstrated that knockdown of B3GNT3 suppressed lung cancer cell growth and invasion in vitro. Knockdown of B3GNT3 suppressed lung cancer development in a xenograft tumor model. Moreover, miR-149-5p was validated to negatively regulate B3GNT3 expression through directly targeting B3GNT3 3ʹ-UTR. Overexpression of miR-149-5p could antagonize the tumorigenesis effect of B3GNT3 in vitro. Conclusion In summary, our study demonstrated that B3GNT3 overexpression was correlated with poor prognosis of lung cancer patient, indicating that B3GNT3 could be a promising prognostic biomarker for lung cancer. miR-149-5p negatively regulated B3GNT3 expression, which might be utilized for therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yu Sun
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Tao Liu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Lei Xian
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Wenzhou Liu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Huafu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| |
Collapse
|
34
|
Tian G, Li G, Liu P, Wang Z, Li N. Glycolysis-Based Genes Associated with the Clinical Outcome of Pancreatic Ductal Adenocarcinoma Identified by The Cancer Genome Atlas Data Analysis. DNA Cell Biol 2020; 39:417-427. [PMID: 31968179 DOI: 10.1089/dna.2019.5089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadly tumors in digestive tract tumors. Although there has been advancement in PDAC treatment, its prognosis still remains unsatisfactory, mainly because of dismal diagnosis. This article aims to develop new prognostic factors related to energy metabolism in PDAC and to use these genes for novel risk stratification. Hundred fifty messenger RNA (mRNA) expression profiles and clinicopathological data of PDAC were downloaded from The Cancer Genome Atlas dataset. The glycolysis pathway was the significant pathway based on the gene set enrichment analysis. We chose the glycolysis pathway-related 176 genes for further analysis. Multivariate Cox regression analysis and forward stepwise Cox regression model established a novel three-gene glycolytic signature (including MET, B3GNT3, and SPAG4) for PDAC patients' prognosis prediction. All 150 patients were classified into two groups by the median risk score. High-risk group had a worse outcome compared to the low-risk group. The risk score was also significantly correlated with age and radiotherapy. A nomogram, including the glycolytic gene signature, has shown some clinical net benefit for overall survival prediction. We also validated the validity and reliability in the Puleo dataset. This novel gene expression signature may be involved in the pathophysiology and used for risk stratification and prognosis prediction in PDAC.
Collapse
Affiliation(s)
- Guangwei Tian
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peipei Liu
- Department of Histology and Embryology, Shenyang Medical College, Shenyang, China
| | - Zihui Wang
- Department of Neuroscience, Cleveland Clinic, Cleveland, Ohio
| | - Nan Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
The Challenge of Modulating Heparan Sulfate Turnover by Multitarget Heparin Derivatives. Molecules 2020; 25:molecules25020390. [PMID: 31963505 PMCID: PMC7024324 DOI: 10.3390/molecules25020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
This review comes as a part of the special issue "Emerging frontiers in GAGs and mimetics". Our interest is in the manipulation of heparan sulfate (HS) turnover by employing HS mimetics/heparin derivatives that exert pleiotropic effects and are interesting for interfering at multiple levels with pathways in which HS is implicated. Due to the important role of heparanase in HS post-biosynthetic modification and catabolism, we focus on the possibility to target heparanase, at both extracellular and intracellular levels, a strategy that can be applied to many conditions, from inflammation to cancer and neurodegeneration.
Collapse
|
36
|
Tao C, Luo R, Song J, Zhang W, Ran L. A seven‐DNA methylation signature as a novel prognostic biomarker in breast cancer. J Cell Biochem 2019; 121:2385-2393. [DOI: 10.1002/jcb.29461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chuntao Tao
- Department of Bioinformatics Chongqing Medical University Chongqing China
| | - Ruihan Luo
- Department of Bioinformatics Chongqing Medical University Chongqing China
| | - Jing Song
- Department of Bioinformatics Chongqing Medical University Chongqing China
| | - Wanfeng Zhang
- Department of Bioinformatics Chongqing Medical University Chongqing China
| | - Longke Ran
- Department of Bioinformatics Chongqing Medical University Chongqing China
| |
Collapse
|
37
|
Yang H, Bailey P, Pilarsky C. CRISPR Cas9 in Pancreatic Cancer Research. Front Cell Dev Biol 2019; 7:239. [PMID: 31681770 PMCID: PMC6813368 DOI: 10.3389/fcell.2019.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is now becoming a common cause of cancer death with no significant change in patient survival over the last 10 years. The main treatment options for pancreatic cancer patients are surgery, radiation therapy and chemotherapy, but there is now considerable effort to develop new and effective treatments. In recent years, CRISPR/Cas9 technology has emerged as a powerful gene editing tool with promise, not only as an important research methodology, but also as a new and effective method for targeted therapy. In this review, we summarize current advances in CRISPR/Cas9 technology and its application to pancreatic cancer research, and importantly as a means of selectively targeting key drivers of pancreatic cancer.
Collapse
Affiliation(s)
- Hai Yang
- Department for Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter Bailey
- Department for Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Pilarsky
- Department for Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
38
|
Jiang X, Liu F, Wang Y, Gao J. Secreted protein acidic and rich in cysteine promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells and acquisition of cancerstem cell phenotypes. J Gastroenterol Hepatol 2019; 34:1860-1868. [PMID: 31041810 DOI: 10.1111/jgh.14692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that plays a significant role in tumor development. SPARC has been indicated that promotes tumorigenesis, metastasis, and poor prognosis in prostate cancer and lung cancer. Therefore, we sought to investigate the molecular mechanisms of SPARC in regulating hepatocellular carcinoma (HCC). METHODS We used spheroids cultured in serum-free culture medium to obtain liver cancer stem cells. Flow cytometric analysis was performed to investigate percentage of CD133+ cells in liver cancer cells. Real-time polymerase chain reaction and western blot were used to assess gene expression in cell lines. Transwell and wound healing assays were performed to indicate cell migration of HCC. RESULTS Secreted protein acidic and rich in cysteine was upregulated in spheres formation in HCC cells. Overexpression of SPARC enhanced the ability to form tumor spheres and increased CD133 and Oct4 expressions. Besides, SPARC promoted the migration and epithelial-mesenchymal transition in HCC cells. Importantly, SPARC overexpression stimulated the formation of subcutaneous tumors in nude mice. CONCLUSIONS Our findings suggest that SPARC overexpression promotes tumor growth, inducing epithelial-mesenchymal transition and acquisition of a stem cell phenotype. What is more, research elucidating the biological mechanisms of SPARC may be beneficial to liver cancer treatment.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fengchao Liu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yiying Wang
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|