1
|
Roškar Z, Dreisinger M, Homšak E, Avčin T, Bevc S, Goropevšek A. Increased Frequency of Circulating Activated FOXP3 + Regulatory T Cell Subset in Patients with Chronic Lymphocytic Leukemia Is Associated with the Estimate of the Size of the Tumor Mass, STAT5 Signaling and Disease Course during Follow-Up of Patients on Therapy. Cancers (Basel) 2024; 16:3228. [PMID: 39335199 PMCID: PMC11430700 DOI: 10.3390/cancers16183228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Advanced chronic lymphocytic leukemia (CLL) is accompanied by increased circulating regulatory T cells (Tregs) and increased susceptibility to severe infections, which were also shown to entail a striking induction of FOXP3 expression in Tregs. As homeostasis of the most suppressive CD45RA-FOXP3high activated Treg (aTreg) subset differs, it is critical to analyse homeostatic signalling in Treg subsets. MATERIALS AND METHODS In this study, by using conventional and imaging flow cytometry, we monitored STAT5 signalling/phosphorylation (pSTAT5) and investigated Treg subsets in relation to the Binet stage, the total tumor mass score (TTM) and the disease course during a follow-up of 37 patients with CLL. RESULTS The aTreg percentage was significantly increased among CD4+ T cells from patients with advanced disease and significantly correlated with the TTM. A subgroup of patients with higher aTreg percentages among CD4+FOXP3+ T cells at the start of therapy was characterised by more frequent episodes of severe infections during follow-up. CONCLUSIONS The results suggesting that an aTreg fraction could represent a possible marker of a severe disease course with infectious complications. Augmented homeostatic STAT5 signalling could support aTreg expansion, as higher pSTAT5 levels were significantly correlated with an increased aTreg frequency among CD4+FOXP3+ T cells during the follow-up of patients on therapy, as well as following SARS-CoV-2 antigen-specific stimulation in vitro.
Collapse
Affiliation(s)
- Zlatko Roškar
- Department of Haematology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Mojca Dreisinger
- Department of Haematology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Evgenija Homšak
- Department of Laboratory Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Tadej Avčin
- Department of Allergology, Rheumatology and Clinical Immunology, Children's Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Bevc
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Department of Nephrology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Aleš Goropevšek
- Department of Laboratory Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Sciaccotta R, Gangemi S, Penna G, Giordano L, Pioggia G, Allegra A. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis. Antioxidants (Basel) 2024; 13:475. [PMID: 38671922 PMCID: PMC11047475 DOI: 10.3390/antiox13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic lymphocytic leukemia, in spite of recent advancements, is still an incurable disease; the majority of patients eventually acquire resistance to treatment through relapses. In all subtypes of chronic lymphocytic leukemia, the disruption of normal B-cell homeostasis is thought to be mostly caused by the absence of apoptosis. Consequently, apoptosis induction is crucial to the management of this illness. Damaged biological components can accumulate as a result of the oxidation of intracellular lipids, proteins, and DNA by reactive oxygen species. It is possible that cancer cells are more susceptible to apoptosis because of their increased production of reactive oxygen species. An excess of reactive oxygen species can lead to oxidative stress, which can harm biological elements like DNA and trigger apoptotic pathways that cause planned cell death. In order to upset the balance of oxidative stress in cells, recent therapeutic treatments in chronic lymphocytic leukemia have focused on either producing reactive oxygen species or inhibiting it. Examples include targets created in the field of nanomedicine, natural extracts and nutraceuticals, tailored therapy using biomarkers, and metabolic targets. Current developments in the complex connection between apoptosis, particularly ferroptosis and its involvement in epigenomics and alterations, have created a new paradigm.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Giuseppa Penna
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| |
Collapse
|
3
|
Weng X, Zheng M, Liu Y, Lou G. The role of Bach2 in regulating CD8 + T cell development and function. Cell Commun Signal 2024; 22:169. [PMID: 38459508 PMCID: PMC10921639 DOI: 10.1186/s12964-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Bach2 was initially discovered in B cells, where it was revealed to control the transcription involved in cell differentiation. Bach2 is intimately connected to CD8 + T lymphocytes in various differentiation states and subsets according to recent findings. Bach2 can regulate primitive T cells, stimulate the development and differentiation of memory CD8 + T cells, inhibit the differentiation of effector CD8 + T cells, and play a significant role in the exhaustion of CD8 + T cells. The appearance and development of diseases are tightly linked to irregular CD8 + T cell differentiation and function. Accordingly, Bach2 offers novel approaches and possible targets for the clinical treatment of associated disorders based on research on these pathways. Here, we summarize the role of Bach2 in the function and differentiation of CD8 + T cells and its potential clinical applications.
Collapse
Affiliation(s)
- Xinyu Weng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China.
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Zhang Y, Liu C. Transcriptomic analysis of mRNAs in human whole blood identified age-specific changes in healthy individuals. Medicine (Baltimore) 2023; 102:e36486. [PMID: 38065846 PMCID: PMC10713173 DOI: 10.1097/md.0000000000036486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Older age is one of the most important shared risk factors for multiple chronic diseases, increasing the medical burden to contemporary societies. Current research focuses on identifying aging biomarkers to predict aging trajectories and developing interventions aimed at preventing and delaying the progression of multimorbidity with aging. Here, a transcriptomic changes analysis of whole blood genes with age was conducted. The age-related whole blood gene-expression profiling datasets were downloaded from the Gene Expression Omnibus (GEO) database. We screened the differentially expressed genes (DEGs) between healthy young and old individuals and performed functional enrichment analysis. Cytoscape with Cytohubba and MCODE was used to perform an interaction network of DEGs and identify hub genes. In addition, ROC curves and correlation analysis were used to evaluate the accuracy of hub genes. In total, we identified 29 DEGs between young and old samples that were enriched mainly in immunoglobulin binding and complex, humoral immune response, and immune response-activating signaling pathways. In combination with the PPI network and topological analysis, 4 hub genes (IGLL5, Jchain, POU2AF1, and Bach2) were identified. Pearson analysis showed that the expression changes of these hub genes were highly correlated with age. Among them, 3 hub genes (IGLL5, POU2AF1, and Bach2) were identified with good accuracy (AUC score > 0.7), indicating that these genes were the best indicators of age. Together, our results provided potential biomarkers IGLL5, POU2AF1, and Bach2 to identify individuals at high early risk of age-related disease to be targeted for early interventions and contribute to understanding the molecular mechanisms in the progression of aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chonghui Liu
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Barton PR, Davenport AJ, Hukelmann J, Cantrell DA, Stinchcombe JC, Richard AC, Griffiths GM. Super-killer CTLs are generated by single gene deletion of Bach2. Eur J Immunol 2022; 52:1776-1788. [PMID: 36086884 PMCID: PMC9828676 DOI: 10.1002/eji.202249797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Bach2 codes for a transcriptional regulator exerting major influences on T cell-mediated immune regulation. Effector CTLs derived from in vitro activation of murine CD8+ T cells showed increased proliferative and cytolytic capacity in the absence of BACH2. Before activation, BACH2-deficient splenic CD8+ T cells had a higher abundance of memory and reduced abundance of naïve cells compared to wild-type. CTLs derived from central memory T cells were more potently cytotoxic than those derived from naïve T cells, but even within separated subsets, BACH2-deficiency conferred a cytotoxic advantage. Immunofluorescence and electron microscopy revealed larger granules in BACH2-deficient compared to wild-type CTLs, and proteomic analysis showed an increase in granule content, including perforin and granzymes. Thus, the enhanced cytotoxicity observed in effector CTLs lacking BACH2 arises not only from differences in their initial differentiation state but also inherent production of enlarged cytolytic granules. These results demonstrate how a single gene deletion can produce a CTL super-killer.
Collapse
Affiliation(s)
- Philippa R. Barton
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Alexander J. Davenport
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Jens Hukelmann
- Cell Signalling and Immunology Division, School of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Doreen A. Cantrell
- Cell Signalling and Immunology Division, School of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Jane C. Stinchcombe
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Arianne C. Richard
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0REUK
| | - Gillian M Griffiths
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| |
Collapse
|
8
|
Hu Y, Xu Y, Mao L, Lei W, Xiang J, Gao L, Jiang J, Huang L, Luo OJ, Duan J, Chen G. Gene Expression Analysis Reveals Age and Ethnicity Signatures Between Young and Old Adults in Human PBMC. FRONTIERS IN AGING 2022; 2:797040. [PMID: 35822054 PMCID: PMC9261324 DOI: 10.3389/fragi.2021.797040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022]
Abstract
Human immune system functions over an entire lifetime, yet how and why the immune system becomes less effective with age are not well understood. Here, we characterize peripheral blood mononuclear cell transcriptome from 132 healthy adults with 21–90 years of age using the weighted gene correlation network analyses. In our study, 113 Caucasian from the 10KIP database and RNA-seq data of 19 Asian (Chinese) are used to explore the differential co-expression genes in PBMC aging. These two dataset reveal a set of insightful gene expression modules and representative gene biomarkers for human immune system aging from Asian and Caucasian ancestry, respectively. Among them, the aging-specific modules may show an age-related gene expression variation spike around early-seventies. In addition, we find the top hub genes including NUDT7, CLPB, OXNAD1, and MLLT3 are shared between Asian and Caucasian aging related modules and further validated in human PBMCs from different age groups. Overall, the impact of age and race on transcriptional variation elucidated from this study may provide insights into the transcriptional driver of immune aging.
Collapse
Affiliation(s)
- Yang Hu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yudai Xu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Wen Lei
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Jian Xiang
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Lijuan Gao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Junxing Jiang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li`an Huang
- Department of Neurology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Oscar Junhong Luo, ; Jinhai Duan, ; Guobing Chen,
| | - Jinhai Duan
- Eastern Department of Neurology of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guandong, China
- *Correspondence: Oscar Junhong Luo, ; Jinhai Duan, ; Guobing Chen,
| | - Guobing Chen
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Oscar Junhong Luo, ; Jinhai Duan, ; Guobing Chen,
| |
Collapse
|
9
|
Ciardullo C, Szoltysek K, Zhou P, Pietrowska M, Marczak L, Willmore E, Enshaei A, Walaszczyk A, Ho JY, Rand V, Marshall S, Hall AG, Harrison CJ, Soundararajan M, Eswaran J. Low BACH2 Expression Predicts Adverse Outcome in Chronic Lymphocytic Leukaemia. Cancers (Basel) 2021; 14:23. [PMID: 35008187 PMCID: PMC8750551 DOI: 10.3390/cancers14010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogeneous disease with a highly variable clinical outcome. There are well-established CLL prognostic biomarkers that have transformed treatment and improved the understanding of CLL biology. Here, we have studied the clinical significance of two crucial B cell regulators, BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) and BCL6 (B-cell CLL/lymphoma 6), in a cohort of 102 CLL patients and determined the protein interaction networks that they participate in using MEC-1 CLL cells. We observed that CLL patients expressing low levels of BCL6 and BACH2 RNA had significantly shorter overall survival (OS) than high BCL6- and BACH2-expressing cases. Notably, their low expression specifically decreased the OS of immunoglobulin heavy chain variable region-mutated (IGHV-M) CLL patients, as well as those with 11q and 13q deletions. Similar to the RNA data, a low BACH2 protein expression was associated with a significantly shorter OS than a high expression. There was no direct interaction observed between BACH2 and BCL6 in MEC-1 CLL cells, but they shared protein networks that included fifty different proteins. Interestingly, a prognostic index (PI) model that we generated, using integrative risk score values of BACH2 RNA expression, age, and 17p deletion status, predicted patient outcomes in our cohort. Taken together, these data have shown for the first time a possible prognostic role for BACH2 in CLL and have revealed protein interaction networks shared by BCL6 and BACH2, indicating a significant role for BACH2 and BCL6 in key cellular processes, including ubiquitination mediated B-cell receptor functions, nucleic acid metabolism, protein degradation, and homeostasis in CLL biology.
Collapse
Affiliation(s)
- Carmela Ciardullo
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.); (M.S.)
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Katarzyna Szoltysek
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Warszawa, Poland;
| | - Peixun Zhou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Monika Pietrowska
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Warszawa, Poland;
| | - Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Elaine Willmore
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Amir Enshaei
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Anna Walaszczyk
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jia Yee Ho
- Newcastle University Medicine Malaysia, EduCity Iskandar, Johor 79200, Malaysia;
| | - Vikki Rand
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK;
| | - Andrew G. Hall
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Christine J. Harrison
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.); (M.S.)
| | - Jeyanthy Eswaran
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
- Newcastle University Medicine Malaysia, EduCity Iskandar, Johor 79200, Malaysia;
| |
Collapse
|
10
|
Klasić M, Zoldoš V. Epigenetics of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:289-301. [PMID: 34687014 DOI: 10.1007/978-3-030-76912-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alternative glycosylation of immunoglobulin G (IgG) affects its effector functions during the immune response. IgG glycosylation is altered in many diseases, but also during a healthy life of an individual. Currently, there is limited knowledge of factors that alter IgG glycosylation in the healthy state and factors involved in specific IgG glycosylation patterns associated with pathophysiology. Genetic background plays an important role, but epigenetic mechanisms also contribute to the alteration of IgG glycosylation patterns in healthy life and in disease. It is known that the expression of many glycosyltransferases is regulated by DNA methylation and by microRNA (miRNA) molecules, but the involvement of other epigenetic mechanisms, such as histone modifications, in the regulation of glycosylation-related genes (glycogenes) is still poorly understood. Recent studies have identified several differentially methylated loci associated with IgG glycosylation, but the mechanisms involved in the formation of specific IgG glycosylation patterns remain poorly understood.
Collapse
Affiliation(s)
- Marija Klasić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
11
|
Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the "inner myeloid". Haematologica 2019; 104:1919-1927. [PMID: 31515352 PMCID: PMC6886412 DOI: 10.3324/haematol.2019.216861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Differentiation of hematopoietic stem and progenitor cells is tightly regulated depending on environmental changes in order to maintain homeostasis. Transcription factors direct the development of hematopoietic cells, such as GATA-1 for erythropoiesis and PU.1 for myelopoiesis. However, recent findings obtained from single-cell analyses raise the question of whether these transcription factors are "initiators" or just "executors" of differentiation, leaving the initiation of hematopoietic stem and progenitor cell differentiation (i.e. lineage commitment) unclear. While a stochastic process is likely involved in commitment, it cannot fully explain the homeostasis of hematopoiesis nor "on-demand" hematopoiesis in response to environmental changes. Transcription factors BACH1 and BACH2 may regulate both commitment and on-demand hematopoiesis because they control erythroid-myeloid and lymphoid-myeloid differentiation by repressing the myeloid program, and their activities are repressed in response to infectious and inflammatory conditions. We summarize possible mechanisms of lineage commitment of hematopoietic stem and progenitor cells suggested by recent findings and discuss the erythroid and lymphoid commitment of hematopoietic stem and progenitor cells, focusing on the gene regulatory network composed of genes encoding key transcription factors. Surprising similarity exists between commitment to erythroid and lymphoid lineages, including repression of the myeloid program by BACH factors. The suggested gene regulatory network of BACH factors sheds light on the myeloid-based model of hematopoiesis. This model will help to understand the tuning of hematopoiesis in higher eukaryotes in the steady-state condition as well as in emergency conditions, the evolutional history of the system, aging and hematopoietic disorders.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|