1
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
2
|
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M, Batchelor TT. Primary central nervous system lymphoma. Nat Rev Dis Primers 2023; 9:29. [PMID: 37322012 PMCID: PMC10637780 DOI: 10.1038/s41572-023-00439-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.
Collapse
Affiliation(s)
| | - Teresa Calimeri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khê Hoang-Xuan
- APHP, Groupe Hospitalier Salpêtrière, Sorbonne Université, IHU, ICM, Service de Neurologie 2, Paris, France
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Lakshmi Nayak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ateneo Vita-Salute San Raffaele, Milan, Italy
| | - Tracy T Batchelor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Takashima Y, Kawaguchi A, Fukai J, Iwadate Y, Kajiwara K, Hondoh H, Yamanaka R. Survival prediction based on the gene expression associated with cancer morphology and microenvironment in primary central nervous system lymphoma. PLoS One 2021; 16:e0251272. [PMID: 34166375 PMCID: PMC8224980 DOI: 10.1371/journal.pone.0251272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of cell morphology and cell-cell interaction results in cancer cell growth, migration, invasion, and metastasis. Besides, a balance between the extracellular matrix (ECM) and matrix metalloprotease (MMP) is required for cancer cell morphology and angiogenesis. Here, we determined gene signatures associated with the morphology and microenvironment of primary central nervous system lymphoma (PCNSL) to enable prognosis prediction. Next-generation sequencing (NGS) on 31 PCNSL samples revealed gene signatures as follows: ACTA2, ACTR10, CAPG, CORO1C, KRT17, and PALLD in cytoskeleton, CDH5, CLSTN1, ITGA10, ITGAX, ITGB7, ITGA8, FAT4, ITGAE, CDH10, ITGAM, ITGB6, and CDH18 in adhesion, COL8A2, FBN1, LAMB3, and LAMA2 in ECM, ADAM22, ADAM28, MMP11, and MMP24 in MMP. Prognosis prediction formulas with the gene expression values and the Cox regression model clearly divided survival curves of the subgroups in each status. Furthermore, collagen genes contributed to gene network formation in glasso, suggesting that the ECM balance controls the PCNSL microenvironment. Finally, the comprehensive balance of morphology and microenvironment enabled prognosis prediction by a combinatorial expression of 8 representative genes, including KRT17, CDH10, CDH18, COL8A2, ADAM22, ADAM28, MMP11, and MMP24. Besides, these genes could also diagnose PCNSL cell types with MTX resistances in vitro. These results would not only facilitate the understanding of biology of PCNSL but also consider targeting pathways for anti-cancer treatment in personalized precision medicine in PCNSL.
Collapse
Affiliation(s)
- Yasuo Takashima
- Osaka Iseikai Clinic for Cancer Therapy, Iseikai Holonics Group, Osaka, Japan
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Faculty of Medicine, Center for Comprehensive Community Medicine, Saga University, Saga, Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yasuo Iwadate
- Department of Neurosurgery, Graduate School of Medical Sciences, Chiba University, Chiba, Japan
| | - Koji Kajiwara
- Department of Neurosurgery, Graduate School of Medical Sciences, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Hiroaki Hondoh
- Department of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Ryuya Yamanaka
- Osaka Iseikai Clinic for Cancer Therapy, Iseikai Holonics Group, Osaka, Japan
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
5
|
GSEA-assisted gene signatures valid for combinations of prognostic markers in PCNSL. Sci Rep 2020; 10:8435. [PMID: 32439996 PMCID: PMC7242340 DOI: 10.1038/s41598-020-65463-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a brain malignant non-Hodgkin’s B-cell lymphoma. The standard treatments are high-dose methotrexate (MTX)-based chemotherapies and deferred whole brain radiotherapy. However, MTX resistance-dependent global expression and signaling pathway changes and their relationship with prognoses have not yet been elucidated. Here, we conducted a global expression analysis with next-generation sequencing and gene set enrichment analysis (GSEA) in MTX-resistant PCNSL cell lines (HKBML-MTX and TK-MTX) and PCNSL tissues. In rank scores, genes listed in HKBML-MTX and TK-MTX were enriched in PCNSL with poor prognoses. In fold changes, a part of differentially-expressed genes in PCNSL tissues were also detected in HKBML-MTX and TK-MTX cells; FOXD2-AS1 and MMP19 were commonly expressed in both HKBML-MTX and TK-MTX, FABP5 and CD70 were HKBML-MTX-specifically expressed, and CLCN2, HOXB9, INE1, and LRP5L were TK-MTX-specifically expressed, which may provide a combination of prognostic markers on MTX-sensitivities in PCNSL. Additionally, PCNSL subgroups, divided with hierarchical clustering and Kaplan-Meier methods, included twenty commonly expressed genes in both HKBML-MTX and TK-MTX, ten HKBML-MTX-specifically expressed genes, and two TK-MTX-specifically expressed genes. These results suggest that the GSEA-assisted gene signatures can provide a combination for prognostic markers in recurrent PCNSL with MTX resistances.
Collapse
|
6
|
Takashima Y, Kawaguchi A, Yamanaka R. Promising Prognosis Marker Candidates on the Status of Epithelial-Mesenchymal Transition and Glioma Stem Cells in Glioblastoma. Cells 2019; 8:cells8111312. [PMID: 31653034 PMCID: PMC6912254 DOI: 10.3390/cells8111312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Multivariable analyses of global expression profiling are valid indicators of the prognosis of various diseases including brain cancers. To identify the candidates for markers of prognosis of glioblastoma, we performed multivariable analyses on the status of epithelial (EPI)-mesenchymal (MES) transition (EMT), glioma (GLI) stem cells (GSCs), molecular target therapy (MTT), and potential glioma biomarkers (PGBs) using the expression data and clinical information from patients. Random forest survival and Cox proportional hazards regression analyses indicated significant variable values for DSG3, CLDN1, CDH11, FN1, HDAC3/7, PTEN, L1CAM, OLIG2, TIMP4, IGFBP2, and GFAP. The analyses also comprised prognosis prediction formulae that could distinguish between the survival curves of the glioblastoma patients. In addition to the genes mentioned above, HDAC1, FLT1, EGFR, MGMT, PGF, STAT3, SIRT1, and GADD45A constituted complex genetic interaction networks. The calculated status scores obtained by principal component analysis indicated that GLI genes covered the status of EPI, GSC, and MTT-related genes. Moreover, survival tree analyses indicated that MEShigh, MEShighGLIlow, GSChighGLIlow, MEShighMTTlow, and PGBhigh showed poor prognoses and MESmiddle, GSClow, and PGBlow showed good prognoses, suggesting that enhanced EMT and GSC are associated with poor survival and that lower expression of EPI markers and the pre-stages of EMT are relatively less malignant in glioblastoma. These results demonstrate that the assessment of EMT and GSC enables the prediction of the prognosis of glioblastoma that would help develop novel therapeutics and de novo marker candidates for the prognoses of glioblastoma.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|