1
|
Jiménez-Santos MJ, Nogueira-Rodríguez A, Piñeiro-Yáñez E, López-Fernández H, García-Martín S, Gómez-Plana P, Reboiro-Jato M, Gómez-López G, Glez-Peña D, Al-Shahrour F. PanDrugs2: prioritizing cancer therapies using integrated individual multi-omics data. Nucleic Acids Res 2023:7173696. [PMID: 37207338 DOI: 10.1093/nar/gkad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Genomics studies routinely confront researchers with long lists of tumor alterations detected in patients. Such lists are difficult to interpret since only a minority of the alterations are relevant biomarkers for diagnosis and for designing therapeutic strategies. PanDrugs is a methodology that facilitates the interpretation of tumor molecular alterations and guides the selection of personalized treatments. To do so, PanDrugs scores gene actionability and drug feasibility to provide a prioritized evidence-based list of drugs. Here, we introduce PanDrugs2, a major upgrade of PanDrugs that, in addition to somatic variant analysis, supports a new integrated multi-omics analysis which simultaneously combines somatic and germline variants, copy number variation and gene expression data. Moreover, PanDrugs2 now considers cancer genetic dependencies to extend tumor vulnerabilities providing therapeutic options for untargetable genes. Importantly, a novel intuitive report to support clinical decision-making is generated. PanDrugs database has been updated, integrating 23 primary sources that support >74K drug-gene associations obtained from 4642 genes and 14 659 unique compounds. The database has also been reimplemented to allow semi-automatic updates to facilitate maintenance and release of future versions. PanDrugs2 does not require login and is freely available at https://www.pandrugs.org/.
Collapse
Affiliation(s)
| | - Alba Nogueira-Rodríguez
- CINBIO, Universidade de Vigo, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Hugo López-Fernández
- CINBIO, Universidade de Vigo, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Santiago García-Martín
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Paula Gómez-Plana
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Universidade de Vigo, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Daniel Glez-Peña
- CINBIO, Universidade de Vigo, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
2
|
Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021; 11:712505. [PMID: 34900668 PMCID: PMC8652070 DOI: 10.3389/fonc.2021.712505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid advancements in high-throughput omics technologies and experimental protocols have led to the generation of vast amounts of scale-specific biomolecular data on cancer that now populates several online databases and resources. Cancer systems biology models built using this data have the potential to provide specific insights into complex multifactorial aberrations underpinning tumor initiation, development, and metastasis. Furthermore, the annotation of these single- and multi-scale models with patient data can additionally assist in designing personalized therapeutic interventions as well as aid in clinical decision-making. Here, we have systematically reviewed the emergence and evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data, (ii) systems biology models developed using this data, (iii) associated simulation software for the development of personalized cancer therapeutics, and (iv) translational attempts to pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review concludes that the absence of a generic, zero-code, panomics-based multi-scale modeling pipeline and associated software framework, impedes the development and seamless deployment of personalized in silico multi-scale models in clinical settings.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Smaïl-Tabbone M, Rance B. Contributions from the 2019 Literature on Bioinformatics and Translational Informatics. Yearb Med Inform 2020; 29:188-192. [PMID: 32823315 PMCID: PMC7442509 DOI: 10.1055/s-0040-1702002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Summarize recent research and select the best papers published in 2019 in the field of Bioinformatics and Translational Informatics (BTI) for the corresponding section of the International Medical Informatics Association Yearbook. METHODS A literature review was performed for retrieving from PubMed papers indexed with keywords and free terms related to BTI. Independent review allowed the section editors to select a list of 15 candidate best papers which were subsequently peer-reviewed. A final consensus meeting gathering the whole Yearbook editorial committee was organized to finally decide on the selection of the best papers. RESULTS Among the 931 retrieved papers covering the various subareas of BTI, the review process selected four best papers. The first paper presents a logical modeling of cancer pathways. Using their tools, the authors are able to identify two known behaviours of tumors. The second paper describes a deep-learning approach to predicting resistance to antibiotics in Mycobacterium tuberculosis. The authors of the third paper introduce a Genomic Global Positioning System (GPS) enabling comparison of genomic data with other individuals or genomics databases while preserving privacy. The fourth paper presents a multi-omics and temporal sequence-based approach to provide a better understanding of the sequence of events leading to Alzheimer's Disease. CONCLUSIONS Thanks to the normalization of open data and open science practices, research in BTI continues to develop and mature. Noteworthy achievements are sophisticated applications of leading edge machine-learning methods dedicated to personalized medicine.
Collapse
Affiliation(s)
- Malika Smaïl-Tabbone
- Loria UMR 7503, Université de Lorraine, CNRS, Inria Nancy Grand-Est, Nancy, France
| | - Bastien Rance
- HEGP, AP-HP & Université de Paris, UMRS 1138 Centre de Recherche des Cordeliers, INSERM, Paris, France
| | | |
Collapse
|
4
|
Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, Gelb BD, Ginsburg GS, Hassenstab J, Ho CM, Mobley WC, Nolan GP, Rosen ST, Tan P, Yen Y, Zarrinpar A. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol 2020; 38:497-518. [PMID: 31980301 PMCID: PMC7924935 DOI: 10.1016/j.tibtech.2019.12.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care.
Collapse
Affiliation(s)
- Dean Ho
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, CA, USA; Department of Applied Physics, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Wee Joo Chng
- Department of Haematology and Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Edward K Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xianting Ding
- Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University, NC, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Chih-Ming Ho
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University, CA, USA
| | - Steven T Rosen
- Comprehensive Cancer Center and Beckman Research Institute, City of Hope, CA, USA
| | - Patrick Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yun Yen
- College of Medical Technology, Center of Cancer Translational Research, Taipei Cancer Center of Taipei Medical University, Taipei, Taiwan
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation & Hepatobiliary Surgery, University of Florida, FL, USA
| |
Collapse
|