1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Reuvekamp T, Janssen LLG, Ngai LL, Carbaat-Ham J, den Hartog D, Scholten WJ, Kelder A, Hanekamp D, Wensink E, van Gils N, Gradowska P, Löwenberg B, Ossenkoppele GJ, van de Loosdrecht AA, Westers TM, Smit L, Bachas C, Cloos J. The role of the primitive marker CD133 in CD34-negative acute myeloid leukemia for the detection of leukemia stem cells. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024. [PMID: 39177948 DOI: 10.1002/cyto.b.22201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
The most important reason for dismal outcomes in acute myeloid leukemia (AML) is the development of relapse. Leukemia stem cells (LSCs) are hypothesized to initiate relapse, and high CD34+CD38- LSC load is associated with poor prognosis. In 10% of AML patients, CD34 is not or is low expressed on the leukemic cells (<1%), and CD34+CD38- LSCs are absent. These patients are classified as CD34-negative. We aimed to determine whether the primitive marker CD133 can detect LSCs in CD34-negative AML. We retrospectively quantified 148 CD34-negative patients for proportions of CD34-CD133+ and CD133+CD38- cell fractions in the diagnostic samples of CD34-negative patients in the HOVON102 and HOVON132 trials. No prognostic difference was found between patients with high or low proportions of CD34-CD133+, which is found to be aberrantly expressed in AML. A high level of CD133+CD38- cells was not associated with poor overall survival, and expression in AML was similar to normal bone marrow. To conclude, CD133 is useful as an additional primitive marker for the detection of leukemic blast cells in CD34-negative AML. However, CD133+CD38 alone is not suitable for the detection of LSCs at diagnosis.
Collapse
Affiliation(s)
- Tom Reuvekamp
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Luca L G Janssen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jannemieke Carbaat-Ham
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Daphne den Hartog
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute and University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eliza Wensink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Noortje van Gils
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Patrycja Gradowska
- Department of Hematology, Erasmus MC Cancer Institute and University Medical Center Rotterdam, Rotterdam, The Netherlands
- HOVON Foundation, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute and University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
4
|
Ruszkowska-Ciastek B, Kwiatkowska K, Marques-da-Silva D, Lagoa R. Cancer Stem Cells from Definition to Detection and Targeted Drugs. Int J Mol Sci 2024; 25:3903. [PMID: 38612718 PMCID: PMC11011379 DOI: 10.3390/ijms25073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers remain the second leading cause of mortality in the world. Preclinical and clinical studies point an important role of cancer/leukaemia stem cells (CSCs/LSCs) in the colonisation at secondary organ sites upon metastatic spreading, although the precise mechanisms for specific actions are still not fully understood. Reviewing the present knowledge on the crucial role of CSCs/LSCs, their plasticity, and population heterogeneity in treatment failures in cancer patients is timely. Standard chemotherapy, which acts mainly on rapidly dividing cells, is unable to adequately affect CSCs with a low proliferation rate. One of the proposed mechanisms of CSC resistance to anticancer agents is the fact that these cells can easily shift between different phases of the cell cycle in response to typical cell stimuli induced by anticancer drugs. In this work, we reviewed the recent studies on CSC/LSC alterations associated with disease recurrence, and we systematised the functional assays, markers, and novel methods for CSCs screening. This review emphasises CSCs' involvement in cancer progression and metastasis, as well as CSC/LSC targeting by synthetic and natural compounds aiming at their elimination or modulation of stemness properties.
Collapse
Affiliation(s)
- Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Katarzyna Kwiatkowska
- Department of Laboratory Diagnostics, Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Dorinda Marques-da-Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
5
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
6
|
Chea M, Rigolot L, Canali A, Vergez F. Minimal Residual Disease in Acute Myeloid Leukemia: Old and New Concepts. Int J Mol Sci 2024; 25:2150. [PMID: 38396825 PMCID: PMC10889505 DOI: 10.3390/ijms25042150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Minimal residual disease (MRD) is of major importance in onco-hematology, particularly in acute myeloid leukemia (AML). MRD measures the amount of leukemia cells remaining in a patient after treatment, and is an essential tool for disease monitoring, relapse prognosis, and guiding treatment decisions. Patients with a negative MRD tend to have superior disease-free and overall survival rates. Considerable effort has been made to standardize MRD practices. A variety of techniques, including flow cytometry and molecular methods, are used to assess MRD, each with distinct strengths and weaknesses. MRD is recognized not only as a predictive biomarker, but also as a prognostic tool and marker of treatment efficacy. Expected advances in MRD assessment encompass molecular techniques such as NGS and digital PCR, as well as optimization strategies such as unsupervised flow cytometry analysis and leukemic stem cell monitoring. At present, there is no perfect method for measuring MRD, and significant advances are expected in the future to fully integrate MRD assessment into the management of AML patients.
Collapse
Affiliation(s)
- Mathias Chea
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
| | - Lucie Rigolot
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Alban Canali
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Francois Vergez
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
7
|
Baik M, Shin S, Kumar S, Seo D, Lee I, Jun HS, Kang KW, Kim BS, Nam MH, Seo S. Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology. BIOSENSORS 2023; 13:993. [PMID: 38131753 PMCID: PMC10741567 DOI: 10.3390/bios13120993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Accurate and efficient classification and quantification of CD34+ cells are essential for the diagnosis and monitoring of leukemia. Current methods, such as flow cytometry, are complex, time-consuming, and require specialized expertise and equipment. This study proposes a novel approach for the label-free identification of CD34+ cells using a deep learning model and lens-free shadow imaging technology (LSIT). LSIT is a portable and user-friendly technique that eliminates the need for cell staining, enhances accessibility to nonexperts, and reduces the risk of sample degradation. The study involved three phases: sample preparation, dataset generation, and data analysis. Bone marrow and peripheral blood samples were collected from leukemia patients, and mononuclear cells were isolated using Ficoll density gradient centrifugation. The samples were then injected into a cell chip and analyzed using a proprietary LSIT-based device (Cellytics). A robust dataset was generated, and a custom AlexNet deep learning model was meticulously trained to distinguish CD34+ from non-CD34+ cells using the dataset. The model achieved a high accuracy in identifying CD34+ cells from 1929 bone marrow cell images, with training and validation accuracies of 97.3% and 96.2%, respectively. The customized AlexNet model outperformed the Vgg16 and ResNet50 models. It also demonstrated a strong correlation with the standard fluorescence-activated cell sorting (FACS) technique for quantifying CD34+ cells across 13 patient samples, yielding a coefficient of determination of 0.81. Bland-Altman analysis confirmed the model's reliability, with a mean bias of -2.29 and 95% limits of agreement between 18.49 and -23.07. This deep-learning-powered LSIT offers a groundbreaking approach to detecting CD34+ cells without the need for cell staining, facilitating rapid CD34+ cell classification, even by individuals without prior expertise.
Collapse
Affiliation(s)
- Minyoung Baik
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| | - Dongmin Seo
- Department of Electrical Engineering, Semyung University, Jecheon 27136, Republic of Korea;
| | - Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (I.L.); (H.S.J.)
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (I.L.); (H.S.J.)
| | - Ka-Won Kang
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-W.K.); (B.S.K.)
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (K.-W.K.); (B.S.K.)
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea; (M.B.); (S.S.); (S.K.)
| |
Collapse
|
8
|
Nazaret A, Fan JL, Lavallée VP, Cornish AE, Kiseliovas V, Masilionis I, Chun J, Bowman RL, Eisman SE, Wang J, Shi L, Levine RL, Mazutis L, Blei D, Pe'er D, Azizi E. Deep generative model deciphers derailed trajectories in acute myeloid leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566719. [PMID: 38014231 PMCID: PMC10680623 DOI: 10.1101/2023.11.11.566719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell genomics has the potential to map cell states and their dynamics in an unbiased way in response to perturbations like disease. However, elucidating the cell-state transitions from healthy to disease requires analyzing data from perturbed samples jointly with unperturbed reference samples. Existing methods for integrating and jointly visualizing single-cell datasets from distinct contexts tend to remove key biological differences or do not correctly harmonize shared mechanisms. We present Decipher, a model that combines variational autoencoders with deep exponential families to reconstruct derailed trajectories ( https://github.com/azizilab/decipher ). Decipher jointly represents normal and perturbed single-cell RNA-seq datasets, revealing shared and disrupted dynamics. It further introduces a novel approach to visualize data, without the need for methods such as UMAP or TSNE. We demonstrate Decipher on data from acute myeloid leukemia patient bone marrow specimens, showing that it successfully characterizes the divergence from normal hematopoiesis and identifies transcriptional programs that become disrupted in each patient when they acquire NPM1 driver mutations.
Collapse
|
9
|
Bae SG, Kim HJ, Kim MY, Kim DDH, Shin SI, Ahn JS, Park J. Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia. Mol Cells 2023; 46:611-626. [PMID: 37853686 PMCID: PMC10590706 DOI: 10.14348/molcells.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.
Collapse
Affiliation(s)
- Seo-Gyeong Bae
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Mi Yeon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - So-I Shin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Hwasun 58128, Korea
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
10
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
11
|
Bhattacharjee R, Ghosh S, Nath A, Basu A, Biswas O, Patil CR, Kundu CN. Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Crit Rev Oncol Hematol 2022; 177:103753. [PMID: 35803452 DOI: 10.1016/j.critrevonc.2022.103753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a genetically heterogeneous and aggressive cancer of the Hematopoietic Stem/progenitor cells. It is distinguished by the uncontrollable clonal growth of malignant myeloid stem cells in the bone marrow, venous blood, and other body tissues. AML is the most predominant of leukemias occurring in adults (25%) and children (15-20%). The relapse after chemotherapy is a major concern in the treatment of AML. The overall 5-year survival rate in young AML patients is about 40-45% whereas in the elderly patients it is less than 10%. Leukemia stem-like cells (LSCs) having the ability to self-renew indefinitely, repopulate and persist longer in the G0/G1 phase play a crucial role in the AML relapse and refractoriness to chemotherapy. Hence, novel treatment strategies and diagnostic biomarkers targeting LSCs are being increasingly investigated. Through this review, we have explored the signaling modulations in the LSCs as the theragnostic targets. The significance of the self-renewal pathways in overcoming the treatment challenges in AML has been highlighted.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sharad Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Arijit Nath
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Asmita Basu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ojaswi Biswas
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Chandragauda R Patil
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
13
|
Wu S, Shen D, Zhao L. AKAP9 Upregulation Predicts Unfavorable Prognosis in Pediatric Acute Myeloid Leukemia and Promotes Stemness Properties via the Wnt/β-Catenin Pathway. Cancer Manag Res 2022; 14:157-167. [PMID: 35046723 PMCID: PMC8760470 DOI: 10.2147/cmar.s343033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background PRKA kinase anchor protein 9 (AKAP9) is a scaffold protein involved in various cellular processes, including cell adhesion, proliferation, differentiation, and apoptosis. Although the oncogenic role of AKAP9 in solid tumors is well elucidated, the functions and mechanisms of AKAP9 in acute myeloid leukemia (AML) are still not understood. Methods We used the gene expression omnibus (GEO) database (GSE2191) to determine the mRNA expression of AKAP9 in the bone marrow of pediatric AML and healthy patients. We further used the therapeutically available research to generate effective treatments (TARGET) database to elucidate the relationship between AKAP9 expression and clinical outcomes in pediatric patients with AML. In addition, cell proliferation, cell cycle, apoptosis, RT-PCR, and Western blotting assays were applied to reveal the functions of AKAP9 and the underlying mechanisms of AKAP9 silencing in THP1 and HL60 cell lines. Results AKAP9 is overexpressed in the bone marrow of pediatric AML patients as compared with that of healthy patients. High expression of AKAP9 was found to be a predictor of poor overall survival (OS) and event-free survival (EFS). Using univariate and multivariate survival analyses, we found that high AKAP9 expression is an independent predictor of a worse OS and EFS. Functionally, AKAP9 silencing significantly inhibited AML cell proliferation, and cell cycle progression and promoted apoptosis. Moreover, AKAP9 silencing significantly downregulated the expression of stemness markers and β-catenin. Conclusion AKAP9 upregulation is a predictor of unfavorable prognosis, promotes stemness, and activates the Wnt/β-catenin pathway in AML patients. AKAP9 may act as a prognostic biomarker of AML in pediatric patients and a future therapeutic target.
Collapse
Affiliation(s)
- Shiwen Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Departments of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Dongqin Shen
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Li Zhao
- Department of Central Laboratory, Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Correspondence: Li Zhao Department of Central Laboratory, Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou University, No. 1 Donggang West Road, Lanzhou, Gansu, 730000, People’s Republic of ChinaTel +8613919934053Fax +8609318356353 Email
| |
Collapse
|
14
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
15
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|