1
|
Chen C, Li Y, Li Y, Chen Z, Shi P, Xie Y, Qian S. SNCA is a potential therapeutic target for COVID-19 infection in diffuse large B-cell lymphoma patients. Apoptosis 2024; 29:1454-1465. [PMID: 39008196 PMCID: PMC11416394 DOI: 10.1007/s10495-024-01996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Cuprotosis related genes (CRGs) have been proved to be potential therapeutic targets for coronavirus disease 2019 (COVID-19) and cancer, but their immune and molecular mechanisms in COVID-19 infection in Diffuse Large B-cell Lymphoma (DLBC/DLBCL) patients are rarely reported. Our research goal is first to screen the key CRGs in COVID-19 through univariate analysis, machine learning and clinical samples. Secondly, we determined the expression and prognostic role of key CRGs in DLBCL through pan-cancer analysis. We validated the expression levels and prognosis using multiple datasets and independent clinical samples and validated the functional role of key CRGs in DLBCL through cell experiments. Finally, we validated the expression levels of CRGs in COVID-19 infected DLBCL patients samples and analyzed their common pathways in COVID-19 and DLBCL. The results show that synuclein-alpha (SNCA) is the common key differential gene of COVID-19 and DLBCL. DLBCL cells confirm that high expression of SNCA can significantly promote cell apoptosis and significantly inhibit the cycle progression of DLBCL. High expression of SNCA can regulate the binding of major histocompatibility complexes (MHCs) and T cell receptor (TCR) by regulating immune infiltration of Dendritic cells, effectively enhancing T cell-mediated anti-tumor immunity and clearing cancer cells. In conclusion, SNCA may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our study provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- alpha-Synuclein/genetics
- alpha-Synuclein/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/physiology
- Apoptosis/genetics
- Cell Line, Tumor
- Prognosis
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yun Li
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN. School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yiwei Li
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sun X, Wu H, Tang L, Al-Danakh A, Jian Y, Gong L, Li C, Yu X, Zeng G, Chen Q, Yang D, Wang S. GALNT6 promotes bladder cancer malignancy and immune escape by epithelial-mesenchymal transition and CD8 + T cells. Cancer Cell Int 2024; 24:308. [PMID: 39245709 PMCID: PMC11382498 DOI: 10.1186/s12935-024-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Bladder cancer (BC) ranks as the sixth cancer in males and the ninth most common cancer worldwide. Conventional treatment modalities, including surgery, radiation, chemotherapy, and immunotherapy, have limited efficacy in certain advanced instances. The involvement of GALNT6-mediated aberrant O-glycosylation modification in several malignancies and immune evasion is a subject of speculation. However, its significance in BC has not been investigated. Through the integration of bioinformatics analysis and laboratory experimentation, we have successfully clarified the role of GALNT6 in BC. Our investigation revealed that GALNT6 has significant expression in BC, and its high expression level correlates with advanced stage and high grade, leading to poor overall survival. Moreover, both in vitro and in vivo experiments demonstrate a strong correlation between elevated levels of GALNT6 and tumor growth, migration, and invasion. Furthermore, there is a negative correlation between elevated GALNT6 levels, the extent of CD8+ T cell infiltration in the tumor microenvironment, and the prognosis of patients. Functional experiments have shown that the increased expression of GALNT6 could enhance the malignant characteristics of cancer cells by activating the epithelial-mesenchymal transition (EMT) pathway. In brief, this study examined the impact of GALNT6-mediated abnormal O-glycosylation on the occurrence and progression of bladder cancer and its influence on immune evasion. It also explored the possible molecular mechanism underlying the interaction between tumor cells and immune cells, as well as the bidirectional signaling involved. These findings offer a novel theoretical foundation rooted in glycobiology for the clinical application of immunotherapy in BC.
Collapse
Affiliation(s)
- Xiaoxin Sun
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Haotian Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ling Tang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yuli Jian
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Gong
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Congchen Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guang Zeng
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, 210096, Nanjing, China.
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Shujing Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Pepe P, Salemi M, Marchese G, Salluzzo MG, Lanza G, Marino S, Schillaci F, Truda A, Pepe L, Pennisi M. Transcriptome Analysis in Patients With Muscle-invasive Bladder Cancer. In Vivo 2024; 38:1660-1664. [PMID: 38936905 PMCID: PMC11215567 DOI: 10.21873/invivo.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Bladder cancer (BC) is the most prevalent malignant tumor in the urinary tract, classified mainly into muscle-invasive BC (MIBC) and non-MIBC (NMIBC). Recent studies highlight the important role of changes in transcriptome activity in carcinogenesis, aiding in the identification of additional differentially regulated candidate genes, improving our understanding of the molecular basis of gene regulation in BC. This study aimed to evaluate the transcriptome of MIBC patients compared with normal subjects. MATERIALS AND METHODS mRNA sequencing was conducted using the Illumina NovaSeq 6000 Dx system in a case series comprising 11 subjects with MIBC and 19 healthy controls matched for age and sex. For functional analysis, the pathfindR package was utilized to comprehensively identify pathways enriched in omics data within active subnetworks. RESULTS Our results demonstrated the presence of differentiated pathways, including spliceosome activity, oxidative phosphorylation, and chemical carcinogenesis due to reactive oxygen species, in MIBC patients compared with controls. CONCLUSION The identification of novel molecular pathways in MIBC patients could prove useful in defining cancer predisposition factors and exploring potential therapeutic options.
Collapse
Affiliation(s)
- Pietro Pepe
- Urology Unit, Cannizzaro Hospital, Catania, Italy;
| | | | | | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | | | | | | | - Ludovica Pepe
- Pathology Unit - Policlinico G. Martino University of Messina, Messina, Italy
| | | |
Collapse
|
5
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
6
|
Cai L, Tang S, Liu Y, Zhang Y, Yang Q. The application of weighted gene co-expression network analysis and support vector machine learning in the screening of Parkinson's disease biomarkers and construction of diagnostic models. Front Mol Neurosci 2023; 16:1274268. [PMID: 37908486 PMCID: PMC10614158 DOI: 10.3389/fnmol.2023.1274268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Background This study aims to utilize Weighted Gene Co-expression Network Analysis (WGCNA) and Support Vector Machine (SVM) algorithm for screening biomarkers and constructing a diagnostic model for Parkinson's disease. Methods Firstly, we conducted WGCNA analysis on gene expression data from Parkinson's disease patients and control group using three GEO datasets (GSE8397, GSE20163, and GSE20164) to identify gene modules associated with Parkinson's disease. Then, key genes with significantly differential expression from these gene modules were selected as candidate biomarkers and validated using the GSE7621 dataset. Further functional analysis revealed the important roles of these genes in processes such as immune regulation, inflammatory response, and cell apoptosis. Based on these findings, we constructed a diagnostic model by using the expression data of FLT1, ATP6V0E1, ATP6V0E2, and H2BC12 as inputs and training and validating the model using SVM algorithm. Results The prediction model demonstrated an AUC greater than 0.8 in the training, test, and validation sets, thereby validating its performance through SMOTE analysis. These findings provide strong support for early diagnosis of Parkinson's disease and offer new opportunities for personalized treatment and disease management. Conclusion In conclusion, the combination of WGCNA and SVM holds potential in biomarker screening and diagnostic model construction for Parkinson's disease.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shuang Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yin Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingwan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Gao M, Xiao H, Liang Y, Cai H, Guo X, Lin J, Zhuang S, Xu J, Ye S. The Hyperproliferation Mechanism of Cholesteatoma Based on Proteomics: SNCA Promotes Autophagy-Mediated Cell Proliferation Through the PI3K/AKT/CyclinD1 Signaling Pathway. Mol Cell Proteomics 2023; 22:100628. [PMID: 37532176 PMCID: PMC10495652 DOI: 10.1016/j.mcpro.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
Cholesteatoma is a chronic inflammatory ear disease with abnormal keratinized epithelium proliferation and tissue damage. However, the mechanism of keratinized epithelium hyperproliferation in cholesteatoma remains unknown. Hence, our study sought to shed light on mechanisms affecting the pathology and development of cholesteatoma, which could help develop adjunctive treatments. To investigate molecular changes in cholesteatoma pathogenesis, we analyzed clinical cholesteatoma specimens and paired ear canal skin with mass spectrometry-based proteomics and bioinformatics. From our screen, alpha-synuclein (SNCA) was overexpressed in middle ear cholesteatoma and might be a key hub protein associated with inflammation, proliferation, and autophagy in cholesteatoma. SNCA was more sensitive to lipopolysaccharide-induced inflammation, and autophagy marker increase was accompanied by autophagy activation in middle ear cholesteatoma tissues. Overexpression of SNCA activated autophagy and promoted cell proliferation and migration, especially under lipopolysaccharide inflammatory stimulation. Moreover, inhibiting autophagy impaired SNCA-mediated keratinocyte proliferation and corresponded with inhibition of the PI3K/AKT/CyclinD1 pathways. Also, 740Y-P, a PI3K activator reversed the suppression of autophagy and PI3K signaling by siATG5 in SNCA-overexpressing cells, which restored proliferative activity. Besides, knockdown of SNCA in RHEK-1 and HaCaT cells or knockdown of PI3K in RHEK-1 and HaCaT cells overexpressing SNCA both resulted in attenuated cell proliferation. Our studies indicated that SNCA overexpression in cholesteatoma might maintain the proliferative ability of cholesteatoma keratinocytes by promoting autophagy under inflammatory conditions. This suggests that dual inhibition of SNCA and autophagy may be a promising new target for treating cholesteatoma.
Collapse
Affiliation(s)
- Miao Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Heng Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yonglan Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huimin Cai
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojing Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianwei Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Suling Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.
| | - Shengnan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Hou TZ, Yang HM, Cheng YZ, Gu L, Zhang JN, Zhang H. The Parkinson's disease-associated protein α-synuclein inhibits hepatoma by exosome delivery. Mol Carcinog 2023; 62:1163-1175. [PMID: 37144864 DOI: 10.1002/mc.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer. However, their relevant pathogenesis is not clear. In the present study, we investigated the potential role of exosome-delivered α-synuclein (α-syn) in the regulation between PD and liver cancer. We cultured hepatocellular carcinoma (HCC) cells with exosomes derived from conditioned medium of the PD cellular model, and injected exosomes enriched with α-syn into the striatum of a liver cancer rat model. We found that α-syn-contained exosomes from the rotenone-induced cellular model of PD suppressed the growth, migration, and invasion of HCC cells. Integrin αVβ5 in exosomes from the rotenone-induced PD model was higher than that in the control, resulting in more α-syn-contained exosomes being taken up by HCC cells. Consistently, in vivo experiments with rat models also confirmed exosome-delivered α-syn inhibited liver cancer. These findings illustrate the important role of PD-associated protein α-syn inhibiting hepatoma by exosome delivery, suggesting a new mechanism underlying the link between these two diseases and therapeutics of liver cancer.
Collapse
Affiliation(s)
- Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China
| | - Yun-Zhong Cheng
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Yang HM, Cheng YZ, Hou TZ, Fan JK, Gu L, Zhang JN, Zhang H. Upregulation of Parkinson's disease-associated protein alpha-synuclein suppresses tumorigenesis via interaction with mGluR5 and gamma-synuclein in liver cancer. Arch Biochem Biophys 2023; 744:109698. [PMID: 37487948 DOI: 10.1016/j.abb.2023.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yun-Zhong Cheng
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Jing-Kai Fan
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
11
|
Dai J, Li Q, Quan J, Webb G, Liu J, Gao K. Construction of a lipid metabolism-related and immune-associated prognostic score for gastric cancer. BMC Med Genomics 2023; 16:93. [PMID: 37138287 PMCID: PMC10158005 DOI: 10.1186/s12920-023-01515-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The interaction between tumor cells and immune or non-immune stromal cells creates a unique tumor microenvironment, which plays an important role in the growth, invasion and metastasis of gastric cancer (GC). METHODS The candidate genes were selected to construct risk-score by univariate and multivariate Cox regression analysis. Nomograms were constructed by combining clinical pathological factors, and the model performance was evaluated by receiver operating characteristic curve, decision curve analysis, net reclassification improvement and integrated discrimination improvement. The functional enrichment between high-risk group (HRisk) and low-risk group (LRisk) was explored through GO, KEGG, GSVA and ssGSEA. CIBERSORT, quanTIseq and xCell were used to explore the immune cell infiltration between HRisk and LRisk. The relevant EMT scores, macrophage infiltration scores and various metabolic scores were calculated through the "IOBR" package and analyzed visually. RESULTS Through univariate and multivariate Cox regression analysis, we obtained the risk-score of fittings six lipid metabolism related genes (LMAGs). Through survival analysis, we found that risk-score has significant prognostic significance and can accurately reflect the metabolic level of patients. The AUCs of the nomogram model incorporating risk-score 1, 3 and 5 years were 0.725, 0.729 and 0.749 respectively. In addition, it was found that the inclusion of risk-score could significantly improve the prediction performance of the model. It was found that the arachidonic acid metabolism and prostaglandin synthesis were up-regulated in HRisk, and more tumor metastasis related markers and immune related pathways were also enriched. Further study found that HRisk had higher immune score and M2 macrophage infiltration. More importantly, the immune checkpoints of tumor associated macrophages involved in tumor antigen recognition disorders increased significantly. We also found that ST6GALNAC3 can promote arachidonic acid metabolism and up-regulate prostaglandin synthesis, increase M2 macrophage infiltration, induce epithelial mesenchymal transformation, and affect the prognosis of patients. CONCLUSIONS Our research found a novel and powerful LMAGs signature. Six-LMAGs features can effectively evaluate the prognosis of GC patients and reflect the metabolic and immune status. ST6GALNAC3 may be a potential prognostic marker to improve the survival rate and prognostic accuracy of GC patients, and may even be a potential biomarker of GC patients, indicating the response to immunotherapy.
Collapse
Affiliation(s)
- Jing Dai
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qiqing Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Gunther Webb
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Juan Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Kai Gao
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Zhou LX, Zheng H, Tian Y, Luo KF, Ma SJ, Wu ZW, Tang P, Jiang J, Wang MH. SNCA inhibits epithelial-mesenchymal transition and correlates to favorable prognosis of breast cancer. Carcinogenesis 2022; 43:1071-1082. [PMID: 36179220 DOI: 10.1093/carcin/bgac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
Alpha-synuclein (SNCA) is a pathological hallmark of Parkinson's disease, known to be involved in cancer occurrence and development; however, its specific effects in breast cancer remain unknown. Data from 150 patients with breast cancer were retrieved from tissue microarray and analyzed for SNCA protein level using immunohistochemistry. Functional enrichment analysis was performed to investigate the potential role of SNCA in breast cancer. SNCA-mediated inhibition of epithelial-mesenchymal transition (EMT) was confirmed with western blotting. The effects of SNCA on invasion and migration were evaluated using transwell and wound-healing experiments. Furthermore, the potential influence of SNCA expression level on drug sensitivity and tumor infiltration by immune cells was analyzed using the public databases. SNCA is lowly expressed in breast cancer tissues. Besides, in vitro and in vivo experiments, SNCA overexpression blocked EMT and metastasis, and the knockdown of SNCA resulted in the opposite effect. A mouse model of metastasis verified the restriction of metastatic ability in vivo. Further analysis revealed that SNCA enhances sensitivity to commonly used anti-breast tumor drugs and immune cell infiltration. SNCA blocks EMT and metastasis in breast cancer and its expression levels could be useful in predicting the chemosensitivity and evaluating the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- Lin-Xi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan Tian
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.,Department of Emergency Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Ke-Fei Luo
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Shu-Juan Ma
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Zi-Wei Wu
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ming-Hao Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
14
|
Low Expression of Phosphodiesterase 2 (PDE2A) Promotes the Progression by Regulating Mitochondrial Morphology and ATP Content and Predicts Poor Prognosis in Hepatocellular Carcinoma. Cells 2022; 12:cells12010068. [PMID: 36611861 PMCID: PMC9818237 DOI: 10.3390/cells12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 2 (PDE2A) modulates the levels of cAMP/cGMP and was recently found to be involved in mitochondria function regulation, closely related to multiple types of tumor progression. This study aimed to estimate the prognostic significance and biological effects of PDE2A on hepatocellular carcinoma (HCC). We comprehensively analyzed the PDE2A mRNA expression in HCC based on The Cancer Genome Atlas (TCGA) database and investigated the effects of PDE2A on the proliferation and metastatic capacity of HCC cells. PDE2A was downregulated in 25 cancer types, including HCC. Lower PDE2A expression was a protective factor in HCC and was negatively associated with serum AFP levels, tumor status, vascular invasion, histologic grade, and pathologic stage of HCC. Moreover, tumors with low PDE2A expression displayed a decreased immune function. Then, the ROC curve was used to assess the diagnostic ability of PDE2A in HCC (AUC = 0.823 in TCGA and AUC = 0.901 in GSE76427). Patients with low PDE2A expression exhibited worse outcomes compared with those with high PDE2A expression. Additionally, GO functional annotations demonstrated the involvement of PDE2A in the ECM organization, systems development, and ERK-related pathways, indicating that PDE2A might regulate HCC growth and metastasis. The in vitro experiments confirmed that overexpression of PDE2A inhibited proliferation, colony formation, migration, and invasion in two HCC cell lines (HLF and SNU-368), while inhibition of PDE2A has the opposite results. The mechanism of PDE2A's effect on HCC cells is attributed to the change of mitochondrial morphology and ATP content. These data demonstrated that PDE2A closely participated in the regulation of HCC proliferation and metastasis and can be used as a predictive marker candidate and a potential therapeutic target for HCC.
Collapse
|
15
|
Chen Z, Cui S, Dai Y, Lu C, Zhang H, Zhao W, Yan H, Zhang Y. TTC7B Is a Novel Prognostic-Related Biomarker in Glioma Correlating with Immune Infiltrates and Response to Oxidative Stress by Temozolomide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7595230. [PMID: 36193074 PMCID: PMC9526613 DOI: 10.1155/2022/7595230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Background Gliomas are one of the most prevalent malignant brain tumors. Hence, identifying biological markers for glioma is imperative. TTC7B (Tetratricopeptide Repeat Domain 7B) is a gene whose role in cancer in currently identified. To this end, we examined the TTC7B expression as well as its prognostic significance, biological roles, and immune system impacts in patients with glioma. Methods We evaluated the function of TTC7B in GBM and LGG through the published CGGA (Chinese Glioma Genome Atlas) and TCGA (The Cancer Genome Atlas) databases. CIBERSORT and TIMER were used to analyze the link between TTC7B and immune cells, while R was used for statistical analysis. In addition, Transwell analysis, including migration and invasion assays, was performed to identify the relationship between TTC7B and temozolomide. Results Low expression of TTC7B was observed in GBM and LGG. 1p/19q codeletion, IDH mutation, chemotherapy, and grade were found to have a significant correlation with TTC7B. Besides, low TTC7B expression was linked with low overall survival (OS) in both GBM and LGG. In the Cox analysis, TTC7B was found to independently function as a risk element for OS of patients with glioma. Furthermore, CIBERSORT analysis demonstrated a positive link between TTC7B and multiple immune cells, especially activated NK cells. Transwell analysis, including migration and invasion assays, revealed that temozolomide reduced the migration and invasion capacity of glioma cells and increased the expression of TTC7B. Conclusion In all, TTC7B could serve as a promising prognostic indicator of LGG and GBM, and is closely associated with immune infiltration and response to oxidative stress by temozolomide.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Shasha Cui
- Nantong Health College of Jiangsu Province, East Zhenxing Road 288#, Nantong 226010, China
| | - Yong Dai
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Chunfeng Lu
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Wei Zhao
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Hongyan Yan
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Yi Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| |
Collapse
|
16
|
RBM24 in the Post-Transcriptional Regulation of Cancer Progression: Anti-Tumor or Pro-Tumor Activity? Cancers (Basel) 2022; 14:cancers14071843. [PMID: 35406615 PMCID: PMC8997389 DOI: 10.3390/cancers14071843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary RBM24 is a highly conserved RNA-binding protein that plays critical roles in the post-transcriptional regulation of gene expression for initiating cell differentiation during embryonic development and for maintaining tissue homeostasis in adult life. Evidence is now accumulating that it is frequently dysregulated across human cancers. Importantly, RBM24 may act as a tumor suppressor or as an oncogene in a context- or background-dependent manner. Its activity can be regulated by protein–protein interactions and post-translational modifications, making it a potential therapeutic target for cancer treatment. However, molecular mechanisms underlying its function in tumor growth and metastasis remain elusive. Further investigation will be necessary to better understand how its post-transcriptional regulatory activity is controlled and how it is implicated in tumor progression. This review provides a comprehensive analysis of recent findings on the implication of RBM24 in cancer and proposes future research directions to delve more deeply into the mechanisms underlying its tumor-suppressive function or oncogenic activity. Abstract RNA-binding proteins are critical post-transcriptional regulators of gene expression. They are implicated in a wide range of physiological and pathological processes by modulating nearly every aspect of RNA metabolisms. Alterations in their expression and function disrupt tissue homeostasis and lead to the occurrence of various cancers. RBM24 is a highly conserved protein that binds to a large spectrum of target mRNAs and regulates many post-transcriptional events ranging from pre-mRNA splicing to mRNA stability, polyadenylation and translation. Studies using different animal models indicate that it plays an essential role in promoting cellular differentiation during organogenesis and tissue regeneration. Evidence is also accumulating that its dysregulation frequently occurs across human cancers. In several tissues, RBM24 clearly functions as a tumor suppressor, which is consistent with its inhibitory potential on cell proliferation. However, upregulation of RBM24 in other cancers appears to promote tumor growth. There is a possibility that RBM24 displays both anti-tumor and pro-tumor activities, which may be regulated in part through differential interactions with its protein partners and by its post-translational modifications. This makes it a potential biomarker for diagnosis and prognosis, as well as a therapeutic target for cancer treatment. The challenge remains to determine the post-transcriptional mechanisms by which RBM24 modulates gene expression and tumor progression in a context- or background-dependent manner. This review discusses recent findings on the potential function of RBM24 in tumorigenesis and provides future directions for better understanding its regulatory role in cancer cells.
Collapse
|