1
|
Lewis CV, Garcia AM, Burciaga SD, Posey JN, Jordan M, Nguyen TTN, Stenmark KR, Mickael C, Sul C, Delaney C, Nozik ES. Redistribution of SOD3 expression due to R213G polymorphism affects pulmonary interstitial macrophage reprogramming in response to hypoxia. Physiol Genomics 2024; 56:776-790. [PMID: 39311838 PMCID: PMC11573264 DOI: 10.1152/physiolgenomics.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
The extracellular isoform of superoxide dismutase (SOD3) is decreased in patients and animals with pulmonary hypertension (PH). The human R213G single-nucleotide polymorphism (SNP) in SOD3 causes its release from tissue extracellular matrix (ECM) into extracellular fluids, without modulating enzyme activity, increasing cardiovascular disease risk in humans and exacerbating chronic hypoxic PH in mice. Given the importance of interstitial macrophages (IMs) to PH pathogenesis, this study aimed to determine whether R213G SOD3 increases IM accumulation and alters IM reprogramming in response to hypoxia. R213G mice and wild-type (WT) controls were exposed to hypobaric hypoxia for 4 or 14 days compared with normoxia. Flow cytometry demonstrated a transient increase in IMs at day 4 in both strains. Contrary to our hypothesis, the R213G SNP did not augment IM accumulation. To determine strain differences in the IM reprogramming response to hypoxia, we performed RNAsequencing on IMs isolated at each timepoint. We found that IMs from R213G mice exposed to hypoxia activated ECM-related pathways and a combination of alternative macrophage and proinflammatory signaling. Furthermore, when compared with WT responses, IMs from R213G mice lacked metabolic remodeling and demonstrated a blunted anti-inflammatory response between the early (day 4) and later (day 14) timepoints. We confirmed metabolic responses using Agilent Seahorse assays, whereby WT, but not R213G, IMs upregulated glycolysis at day 4 that returned to baseline at day 14. Finally, we identify differential regulation of several redox-sensitive upstream regulators that could be investigated in future studies.NEW & NOTEWORTHY Redistributed expression of SOD3 out of tissue ECM due to the human R213G SNP exacerbates chronic hypoxic PH. Highlighting the importance of macrophage phenotype, our findings reveal that the R213G SNP does not exacerbate pulmonary macrophage accumulation in response to hypoxia but influences their metabolic and phenotypic reprogramming. We demonstrate a deficiency in the metabolic response to hypoxic stress in R213G macrophages, associated with weakened inflammatory resolution and activation of profibrotic pathways implicated in PH.
Collapse
Affiliation(s)
- Caitlin V Lewis
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Samuel D Burciaga
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janelle N Posey
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Neonatology, Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mariah Jordan
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Neonatology, Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina N Nguyen
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia Mickael
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christina Sul
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Neonatology, Department of Pediatrics, Division of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Kasher M, Freidin MB, Williams FMK, Livshits G. GlycA and CRP Are Genetically Correlated: Insight into the Genetic Architecture of Inflammageing. Biomolecules 2024; 14:563. [PMID: 38785970 PMCID: PMC11117775 DOI: 10.3390/biom14050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammageing is a condition of perpetual low-grade inflammation induced by ageing. Inflammageing may be predicted by the C-reactive protein (CRP) or by a recently described biomarker which measures N-glycosylated side chains of the carbohydrate component of several acute-phase proteins known as GlycA. The objective of this study was to examine in depth the genetic relationships between CRP and GlycA as well as between each of them and other selected cytokines, which may shed light on the mechanisms of inflammageing. Using the Olink 96 Inflammation panel, data on inflammatory mediators for 1518 twins from the TwinsUK dataset were acquired. Summary statistics for genome-wide association studies for several cytokines as well as CRP and GlycA were collected from public sources. Extensive genetic correlation analyses, colocalization and genetic enrichment analyses were carried out to detect the shared genetic architecture between GlycA and CRP. Mendelian randomization was carried out to assess potential causal relationships. GlycA predicted examined cytokines with a magnitude twice as great as that of CRP. GlycA and CRP were significantly genetically correlated (Rg = 0.4397 ± 0.0854, p-value = 2.60 × 10-7). No evidence of a causal relationship between GlycA and CRP, or between these two biomarkers and the cytokines assessed was obtained. However, the aforementioned relationships were explained well by horizontal pleiotropy. Five exonic genetic variants annotated to five genes explain the shared genetic architecture observed between GlycA and CRP: IL6R, GCKR, MLXIPL, SERPINA1, and MAP1A. GlycA and CRP possess a shared genetic architecture, but the relationship between them appears to be modest, which may imply the promotion of differing inflammatory pathways. GlycA appears to be a more robust predictor of cytokines compared to CRP.
Collapse
Affiliation(s)
- Melody Kasher
- Department of Morphological Sciences, Adelson Medical School, Ariel University, Ariel 40700, Israel;
| | - Maxim B. Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK;
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson Medical School, Ariel University, Ariel 40700, Israel;
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK;
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
3
|
Guo B, Yan S, Zhai L, Cheng Y. LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA. Cytotechnology 2024; 76:259-269. [PMID: 38495293 PMCID: PMC10940554 DOI: 10.1007/s10616-023-00614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00614-x.
Collapse
Affiliation(s)
- Bo Guo
- School of Clinical Medicine, Guangzhou Health Science College, Guangzhou, 510450 Guangdong China
| | - Shengzhe Yan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Lei Zhai
- School of Clinical Medicine, Guangzhou Health Science College, Guangzhou, 510450 Guangdong China
| | - Yanzhen Cheng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 Guangdong China
| |
Collapse
|
4
|
Wang B, Pu R. Association between glycolysis markers and prognosis of liver cancer: a systematic review and meta-analysis. World J Surg Oncol 2023; 21:390. [PMID: 38114977 PMCID: PMC10731852 DOI: 10.1186/s12957-023-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND In recent years, the capacity of tumor cells to maintain high levels of glycolysis, even in the presence of oxygen, has emerged as one of the main metabolic traits and garnered considerable attention. The purpose of this meta-analysis is to investigate the prognostic value of glycolysis markers in liver cancer. METHODS PubMed, Embase, and Cochrane Library databases were searched for articles on glycolytic marker expression levels associated with the prognosis of liver cancer until April 2023. Stata SE14.0 was used to calculate the aggregate hazard ratios and 95% confidence intervals. RESULTS Thirty-five studies were included. The worse overall survival (OS) (P < 0.001), disease-free survival (DFS) (P = 0.001), recurrence-free survival (RFS) (P = 0.004), and time to recurrence (TTR) (P < 0.001) were significantly associated with elevated expression of glycolysis markers. Higher expression of PKM2 (P < 0.001), STMN1 (P = 0.002), MCT4 (P < 0.001), GLUT1 (P = 0.025), HK-2 (P < 0.001), and CA9 (P < 0.001) were significantly related to shorter OS. Increased levels of PKM2 (P < 0.001), CA9 (P = 0.005), and MCT4 (P < 0.001) were associated with worse DFS. Elevated PKM2 expression (P = 0.002) was also associated with poorer RFS in hepatocellular carcinoma patients. GLUT2 expression was not correlated with the prognosis of liver cancer (P = 0.134). CONCLUSIONS Elevated expression of glycolysis markers was associated with worse OS, DFS, RFS, and TTR in patients with liver cancer. Therefore, these glycolysis markers could serve as potential prognostic markers and therapeutic targets in liver cancer. TRIAL REGISTRATION PROSPERO registration: CRD42023469645.
Collapse
Affiliation(s)
- Boqin Wang
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, Dongguan, Guangdong, China.
| |
Collapse
|
5
|
Li H, Deng N, Puopolo T, Jiang X, Seeram NP, Liu C, Ma H. Cannflavins A and B with Anti-Ferroptosis, Anti-Glycation, and Antioxidant Activities Protect Human Keratinocytes in a Cell Death Model with Erastin and Reactive Carbonyl Species. Nutrients 2023; 15:4565. [PMID: 37960218 PMCID: PMC10650133 DOI: 10.3390/nu15214565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Precursors of advanced glycation endproducts, namely, reactive carbonyl species (RCSs), are aging biomarkers that contribute to cell death. However, the impact of RCSs on ferroptosis-an iron-dependent form of cell death-in skin cells remains unknown. Herein, we constructed a cellular model (with human keratinocyte; HaCaT cells) to evaluate the cytotoxicity of the combinations of RCSs (including glyoxal; GO and methyglyoxal; MGO) and erastin (a ferroptosis inducer) using bioassays (measuring cellular lipid peroxidation and iron content) and proteomics with sequential window acquisition of all theoretical mass spectra. Additionally, a data-independent acquisition approach was used to characterize RCSs' and erastin's molecular network including genes, canonical pathways, and upstream regulators. Using this model, we evaluated the cytoprotective effects of two dietary flavonoids including cannflavins A and B against RCSs and erastin-induced cytotoxicity in HaCaT cells. Cannflavins A and B (at 0.625 to 20 µM) inhibited ferroptosis by restoring the cell viability (by 56.6-78.6% and 63.8-81.1%) and suppressing cellular lipid peroxidation (by 42.3-70.2% and 28.8-63.6%), respectively. They also alleviated GO + erastin- or MGO + erastin-induced cytotoxicity by 62.2-67.6% and 56.1-69.3%, and 35.6-54.5% and 33.8-62.0%, respectively. Mechanistic studies supported that the cytoprotective effects of cannflavins A and B are associated with their antioxidant activities including free radical scavenging capacity and an inhibitory effect on glycation. This is the first study showing that cannflavins A and B protect human keratinocytes from RCSs + erastin-induced cytotoxicity, which supports their potential applications as dietary interventions for aging-related skin conditions.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ni Deng
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|