1
|
Yuan W, Xu X, Zhao F. Trends and hot spots in research related to aqueous humor from 2014 to 2023: A bibliometric analysis. Heliyon 2024; 10:e33990. [PMID: 39071583 PMCID: PMC11283149 DOI: 10.1016/j.heliyon.2024.e33990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose To analyze publication trends and investigate research hotspots of aqueous humor (AH) studies. Methods A bibliometric study was conducted based on the Web of Science Core Collection (WOSCC). VOSviewer v. 1.6.18 was utilized to create a knowledge map visualizing the number of annual publications, the distribution of countries, international collaborations, author productivity, source journals and keywords in the field. Results A grand total of 4020 peer-reviewed papers concerning AH were retrieved from 2014 to 2023. The United States of America secured the top position among the most published countries and Duke University emerged as the most active institution. Stamer, WD contributed the most papers in this area. Investigative Ophthalmology & Visual Science was the most prolific journal in AH research. Retrieved publications mainly concentrated on the correlation between AH as a biomarker carrier and different ocular disorders. Six clusters were formed based on the keywords: (1) the diagnosis of endophthalmitis and AH pharmacokinetics; (2) the association of AH with pathogenesis and prognosis of glaucoma; (3) diagnosis and treatment of AH associated with uveitis; (4) the relationship between AH and refractive diseases of the eye; (5) the association of AH with mechanism and biomarkers of ocular tumorigenesis; (6) the indicators of AH associated with fundus disease. Conclusions This study unveiled present patterns of global collaboration, emerging frontiers, fundamental knowledge, research hotspots and current trends in AH.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Gong Q, Fu M, Wang J, Zhao S, Wang H. Potential Immune-Inflammatory Proteome Biomarkers for Guiding the Treatment of Patients with Primary Acute Angle-Closure Glaucoma Caused by COVID-19. J Proteome Res 2024; 23:2587-2597. [PMID: 38836775 PMCID: PMC11232099 DOI: 10.1021/acs.jproteome.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Primary acute angle-closure glaucoma (PAACG) is a sight-threatening condition that can lead to blindness. With the increasing incidence of COVID-19, a multitude of people are experiencing acute vision loss and severe swelling of the eyes and head. These patients were then diagnosed with acute angle closure, with or without a history of PACG. However, the mechanism by which viral infection causes PACG has not been clarified. This is the first study to explore the specific inflammatory proteomic landscape in SARS-CoV-2-induced PAACG. The expression of 92 inflammation-related proteins in 19 aqueous humor samples from PAACGs or cataract patients was detected using the Olink Target 96 Inflammation Panel based on a highly sensitive and specific proximity extension assay technology. The results showed that 76 proteins were significantly more abundant in the PAACG group than in the cataract group. Notably, the top eight differentially expressed proteins were IL-8, MCP-1, TNFRSF9, DNER, CCL4, Flt3L, CXCL10, and CD40. Generally, immune markers are related to inflammation, macrophage activation, and viral infection, revealing the crucial role of macrophages in the occurrence of PAACGs caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department
of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
- National
Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai
Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai
Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai
Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai 200080, China
| | - Mingshui Fu
- Department
of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
- National
Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai
Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai
Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai
Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai 200080, China
| | - Jingyi Wang
- Department
of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
- National
Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai
Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai
Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai
Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai 200080, China
| | - Shuzhi Zhao
- Department
of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
- National
Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai
Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai
Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai
Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai 200080, China
| | - Haiyan Wang
- Department
of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
- National
Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai
Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai
Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai
Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai 200080, China
| |
Collapse
|
3
|
Shi R, Wu Y, Chen H, Zhang Z, Bao S, Qu J, Zhou M. The causal effect of oxidative stress on the risk of glaucoma. Heliyon 2024; 10:e24852. [PMID: 38317903 PMCID: PMC10838757 DOI: 10.1016/j.heliyon.2024.e24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Glaucoma is a complex multifactorial disease. Oxidative stress has been implicated in its pathogenesis. However, establishing a causal relationship between oxidative stress and glaucoma is challenging due to confounding and reverse causality. In this study, we performed bidirectional two-sample Mendelian randomization (MR) analyses based on genetic instrumental variables as proxies for 11 biomarkers of oxidative stress injury to investigate the causal relationship between oxidative stress and glaucoma. Eight significant associations were identified. Increased circulating levels of catalase (OR = 0.915, 95 % CI: 0.848-0.987, P = 0.022), retinol (OR = 0.481, 95 % CI: 0.248-0.932, P = 0.044) and superoxide dismutase (OR = 0.779, 95 % CI: 0. 616-0.986, P = 0.038) are associated with a decreased risk of glaucoma, whereas an increased myeloperoxidase level (OR = 2.145, 95 % CI: 1.119-4.111, P = 0.029) is associated with an increased risk of glaucoma. Glaucoma was causally associated with lower levels of total bilirubin (OR = 0.961, 95 % CI: 0.927-0.997, P = 0.039), glutathione peroxidase (OR = 0. 934, 95 % CI: 0.890-0.981, P = 0.006), paraoxonase (OR = 0.883, 95 % CI: 0.810-0.963, P = 0.005) and albumin (OR = 0.988, 95 % CI: 0.978-0.998, P = 0.014). The bidirectional MR analysis revealed a causal relationship between oxidative stress and glaucoma. These findings provide a greater understanding of the underlying mechanisms of glaucomatous neurodegeneration and imply a potential therapeutic approach for glaucoma through targeting oxidative stress pathways.
Collapse
Affiliation(s)
- Ronghua Shi
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Yaxuan Wu
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - He Chen
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Zicheng Zhang
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Siqi Bao
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Jia Qu
- School of Biomedical Engineering, School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Hainan Institute of Real World Data, Qionghai, 571437, China
| | - Meng Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
4
|
Manuel MTA, Tayo LL. Navigating the Gene Co-Expression Network and Drug Repurposing Opportunities for Brain Disorders Associated with Neurocognitive Impairment. Brain Sci 2023; 13:1564. [PMID: 38002524 PMCID: PMC10669457 DOI: 10.3390/brainsci13111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Neurocognitive impairment refers to a spectrum of disorders characterized by a decline in cognitive functions such as memory, attention, and problem-solving, which are often linked to structural or functional abnormalities in the brain. While its exact etiology remains elusive, genetic factors play a pivotal role in disease onset and progression. This study aimed to identify highly correlated gene clusters (modules) and key hub genes shared across neurocognition-impairing diseases, including Alzheimer's disease (AD), Parkinson's disease with dementia (PDD), HIV-associated neurocognitive disorders (HAND), and glioma. Herein, the microarray datasets AD (GSE5281), HAND (GSE35864), glioma (GSE15824), and PD (GSE7621) were used to perform Weighted Gene Co-expression Network Analysis (WGCNA) to identify highly preserved modules across the studied brain diseases. Through gene set enrichment analysis, the shared modules were found to point towards processes including neuronal transcriptional dysregulation, neuroinflammation, protein aggregation, and mitochondrial dysfunction, hallmarks of many neurocognitive disorders. These modules were used in constructing protein-protein interaction networks to identify hub genes shared across the diseases of interest. These hub genes were found to play pivotal roles in processes including protein homeostasis, cell cycle regulation, energy metabolism, and signaling, all associated with brain and CNS diseases, and were explored for their drug repurposing experiments. Drug repurposing based on gene signatures highlighted drugs including Dorzolamide and Oxybuprocaine, which were found to modulate the expression of the hub genes in play and may have therapeutic implications in neurocognitive disorders. While both drugs have traditionally been used for other medical purposes, our study underscores the potential of a combined WGCNA and drug repurposing strategy for searching for new avenues in the simultaneous treatment of different diseases that have similarities in gene co-expression networks.
Collapse
Affiliation(s)
- Mathew Timothy Artuz Manuel
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati City 1200, Philippines
| |
Collapse
|
5
|
Jadhav C, Yadav KS. Formulation and evaluation of polymer-coated bimatoprost-chitosan matrix ocular inserts for sustained lowering of IOP in rabbits. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
González Fleitas MF, Dorfman D, Rosenstein RE. A novel viewpoint in glaucoma therapeutics: enriched environment. Neural Regen Res 2021; 17:1431-1439. [PMID: 34916414 PMCID: PMC8771091 DOI: 10.4103/1673-5374.330594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glaucoma is one of the world's most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons. Despite glaucoma's most accepted risk factor is increased intraocular pressure (IOP), the mechanisms behind the disease have not been fully elucidated. To date, IOP lowering remains the gold standard; however, glaucoma patients may still lose vision regardless of effective IOP management. Therefore, the exclusive IOP control apparently is not enough to stop the disease progression, and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance. Besides pharmacological treatments, environmental conditions have been shown to prevent neurodegeneration in the central nervous system. In this review, we discuss current concepts on key pathogenic mechanisms involved in glaucoma, the effect of enriched environment on these mechanisms in different experimental models, as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage. Finally, we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease, preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.
Collapse
Affiliation(s)
- María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Kusano Y, Yamaguchi T, Nishisako S, Matsumura T, Fukui M, Higa K, Inoue T, Shimazaki J. Elevated Cytokine Levels in Aqueous Humor Are Associated with Peripheral Anterior Synechiae after Penetrating Keratoplasty. Int J Mol Sci 2021; 22:12268. [PMID: 34830147 PMCID: PMC8618311 DOI: 10.3390/ijms222212268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Peripheral anterior synechiae (PAS) after corneal transplantation leads to refractory glaucoma and permanent loss of vision. However, the exact mechanism remains elusive. This study aimed to evaluate the association between cytokine levels in the aqueous humor (AqH) and the progression of PAS after penetrating keratoplasty (PKP). We measured 20 cytokine levels in AqH and assessed the correlation with PAS progression after PKP in 85 consecutive patients who underwent PKP. We also evaluated age-dependent alterations in PAS and cytokine levels in DBA2J mice. PAS developed in 38 (44.7%) of 85 eyes after PKP. The incidence of intraocular pressure increase after PKP was significantly greater in eyes with PAS (26.3%) than in those without PAS (2%, p = 0.0009). The PAS area at 12 months after PKP was significantly positively correlated with the preoperative levels of interleukin (IL)-6, interferon (IFN)-γ and monocyte chemotactic protein (MCP)-1 (p ≤ 0.049). In the DBA2J mice, an experimental glaucoma model that developed PAS at 50 weeks, the AqH levels of IL-2, IL-6, IL-10, IFN-γ, tumor necrosis factor-α, MCP-1 and granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly increased at 50 weeks compared to 8 weeks (p ≤ 0.021). In conclusion, inflammatory alterations in the AqH microenvironment, such as high preoperative specific cytokine levels, can lead to PAS formation and glaucoma.
Collapse
Affiliation(s)
- Yuki Kusano
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
- Department of Ophthalmology, Kumamoto University, Kumamoto 8608-556, Japan;
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
| | - Sota Nishisako
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
- Cornea Center Eye Bank, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan
| | - Takehiro Matsumura
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
| | - Masaki Fukui
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
| | - Kazunari Higa
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
- Cornea Center Eye Bank, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan
| | - Toshihiro Inoue
- Department of Ophthalmology, Kumamoto University, Kumamoto 8608-556, Japan;
| | - Jun Shimazaki
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan; (Y.K.); (S.N.); (T.M.); (M.F.); (K.H.); (J.S.)
- Cornea Center Eye Bank, Ichikawa General Hospital, Tokyo Dental College, Chiba 2728-513, Japan
| |
Collapse
|
8
|
Cueto AFV, Álvarez L, García M, Álvarez-Barrios A, Artime E, Cueto LFV, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. BIOLOGY 2021; 10:763. [PMID: 34439995 PMCID: PMC8389649 DOI: 10.3390/biology10080763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
Glaucoma is an insidious group of eye diseases causing degeneration of the optic nerve, progressive loss of vision, and irreversible blindness. The number of people affected by glaucoma is estimated at 80 million in 2021, with 3.5% prevalence in people aged 40-80. The main biomarker and risk factor for the onset and progression of glaucoma is the elevation of intraocular pressure. However, when glaucoma is diagnosed, the level of retinal ganglion cell death usually amounts to 30-40%; hence, the urgent need for its early diagnosis. Molecular biomarkers of glaucoma, from proteins to metabolites, may be helpful as indicators of pathogenic processes observed during the disease's onset. The discovery of human glaucoma biomarkers is hampered by major limitations, including whether medications are influencing the expression of molecules in bodily fluids, or whether tests to validate glaucoma biomarker candidates should include human subjects with different types and stages of the disease, as well as patients with other ocular and neurodegenerative diseases. Moreover, the proper selection of the biofluid or tissue, as well as the analytical platform, should be mandatory. In this review, we have summarized current knowledge concerning proteomics- and metabolomics-based glaucoma biomarkers, with specificity to human eye tissue and fluid, as well the analytical approach and the main results obtained. The complex data published to date, which include at least 458 different molecules altered in human glaucoma, merit a new, integrative approach allowing for future diagnostic tests based on the absolute quantification of local and/or systemic biomarkers of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| |
Collapse
|
9
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
10
|
Igarashi T, Nakamoto K, Kobayashi M, Suzuki H, Arima T, Tobita Y, Takao K, Igarashi T, Okuda T, Okada T, Takahashi H. Brain-derived Neurotrophic Factor in the Aqueous Humor of Glaucoma Patients. J NIPPON MED SCH 2021; 88:128-132. [PMID: 33980757 DOI: 10.1272/jnms.jnms.2021_88-305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis of glaucoma. BDNF concentrations reported in previous studies have varied widely, and the concentration of BDNF in aqueous humor is unknown. In this study, BDNF concentrations in the aqueous humor of glaucoma patients and control patients were measured with ELISA kits. METHODS This prospective, observational study examined BDNF levels in aqueous humor in 62 eyes of 43 patients who underwent cataract surgery or trabeculectomy (11 glaucoma patients and 32 non-glaucoma cataract patients as controls). BDNF concentrations were examined by 4 different enzyme-linked immunosorbent assay (ELISA) techniques. RESULTS The mean ± SD patient age was 72.0 ± 10.1 (range 35 to 87) years. Two of the techniques detected no BDNF in aqueous humor in any samples (n=3 and n=9, respectively); the average value was less than zero. An ultrasensitive ELISA kit did not yield reliable measurements. Finally, in an even more sensitive ELISA (Simoa-HD1), performed by an outside contractor, 25 (54.3%) eyes were below the detection limit, including 20 (55.6%) control and 5 (50%) glaucoma cases. For eyes with detectable BDNF, the overall BDNF concentration was 0.158 pg/mL (n=21): 0.196 pg/mL (n=16) in controls and 0.034 pg/mL (n=5) in glaucoma cases. CONCLUSIONS BDNF level in aqueous humor varies widely.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Takahisa Okuda
- Division of Legal Medicine, Department of Social Medicine, Nihon University School of Medicine
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo
| | | |
Collapse
|
11
|
Wang J, Zhang D, Cao C, Yao J. Betalain exerts a protective effect against glaucoma is majorly through the association of inflammatory cytokines. AMB Express 2020; 10:125. [PMID: 32666339 PMCID: PMC7360000 DOI: 10.1186/s13568-020-01062-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
The present research aimed at evaluating the protective role of betalain on the in vitro glaucoma model using PC12 neuronal cells. The cultured neuronal cells in a customized pressurized chamber were analyzed for the onset of glutathione, myeloperoxidase (MPO), cathepsin, expression of inflammatory enzymes such as cyclooxygenase (COX-1), lipoxygenase (5- LOX), sPLA2 caveolin-1, glaucoma markers and other inflammatory cytokines in the presence and absence of betalain. The results have shown that a significant increase in the expression of oxidative stress with increased activity of cathepsin B and D. On the other hand, the activity of inflammatory enzymes such as COX-1, 5- LOX, sPLA2 were significantly increased in pressure exposed cells. In addition, glaucoma simulated cells demonstrated a significant increase in the VEGF, TGF-β, BDGF, and neuroserpin compared to control. Moreover, cells predisposed to hydrostatic pressure demonstrated an increase in (p < 0.01) inflammatory cytokines such as IL-6, CXCR4, IL-17, IL-1β, and TNF-α levels. However, cells pre-treated with betalain improved the glutathione levels with attenuated MPO activity. Simultaneously, the levels of inflammatory cytokines and other glaucoma marker genes found restored in drug pre-treated cells. Thus, the results of the present study demonstrate that the use of betalain on ocular cells can prevent the progression of the disease that can be a suggestive therapeutic for controlling glaucoma like conditions.
Collapse
|
12
|
Saccà SC, Vernazza S, Iorio EL, Tirendi S, Bassi AM, Gandolfi S, Izzotti A. Molecular changes in glaucomatous trabecular meshwork. Correlations with retinal ganglion cell death and novel strategies for neuroprotection. PROGRESS IN BRAIN RESEARCH 2020; 256:151-188. [PMID: 32958211 DOI: 10.1016/bs.pbr.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by retinal ganglion cell loss. Although significant advances in ophthalmologic knowledge and practice have been made, some glaucoma mechanisms are not yet understood, therefore, up to now there is no effective treatment able to ensure healing. Indeed, either pharmacological or surgical approaches to this disease aim in lowering intraocular pressure, which is considered the only modifiable risk factor. However, it is well known that several factors and metabolites are equally (if not more) involved in glaucoma. Oxidative stress, for instance, plays a pivotal role in both glaucoma onset and progression because it is responsible for the trabecular meshwork cell damage and, consequently, for intraocular pressure increase as well as for glaucomatous damage cascade. This review at first shows accurately the molecular-derived dysfunctions in antioxidant system and in mitochondria homeostasis which due to both oxidative stress and aging, lead to a chronic inflammation state, the trabecular meshwork damage as well as the glaucoma neurodegeneration. Therefore, the main molecular events triggered by oxidative stress up to the proapoptotic signals that promote the ganglion cell death have been highlighted. The second part of this review, instead, describes some of neuroprotective agents such as polyphenols or polyunsaturated fatty acids as possible therapeutic source against the propagation of glaucomatous damage.
Collapse
Affiliation(s)
- Sergio C Saccà
- Policlinico San Martino University Hospital, Department of Neuroscience and sense organs, Ophthalmology Unit, Genoa, Italy.
| | | | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Mutagenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
González Fleitas MF, Devouassoux JD, Aranda ML, Calanni JS, Chianelli MS, Dorfman D, Rosenstein RE. Enriched environment provides neuroprotection against experimental glaucoma. J Neurochem 2019; 152:103-121. [PMID: 31587281 DOI: 10.1111/jnc.14885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022]
Abstract
Glaucoma is one of the most frequent causes of visual impairment worldwide, and involves selective damage to retinal ganglion cells (RGCs) and their axons. We analyzed the effect of enriched environment (EE) housing on the optic nerve, and retinal alterations in an induced model of ocular hypertension. For this purpose, male Wistar rats were weekly injected with vehicle or chondroitin sulfate (CS) into the eye anterior chamber for 10 weeks and housed in standard environment or EE. EE housing prevented the effect of experimental glaucoma on visual evoked potentials, retinal anterograde transport, phosphorylated neurofilament-immunoreactivity, axon number, microglial/macrophage reactivity (ionized calcium binding adaptor molecule 1-immunoreactivity), and astrocytosis (glial fibrillary acidic protein-immunostaining), as well as oligodendrocytes alterations (luxol fast blue staining, and myelin basic protein-immunoreactivity) in the proximal portion of the optic nerve. Moreover EE prevented the increase in ionized calcium binding adaptor molecule-1 levels, and RGC loss (Brn3a-immunoreactivity) in the retina from hypertensive eyes. EE increased retinal brain-derived neurotrophic factor levels. When EE housing started after 6 weeks of ocular hypertension, a preservation of visual evoked potentials amplitude, axon, and Brn3a(+) RGC number was observed. Taken together, these results suggest that EE preserved visual functions, reduced optic nerve axoglial alterations, and protected RGCs against glaucomatous damage.
Collapse
Affiliation(s)
- María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Julián D Devouassoux
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Monica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Bisphenol A triggers axonal injury and myelin degeneration with concomitant neurobehavioral toxicity in C57BL/6J male mice. Toxicology 2019; 428:152299. [PMID: 31574244 DOI: 10.1016/j.tox.2019.152299] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is a ubiquitously distributed endocrine disrupting chemical (EDC). BPA exposure in humans has been a matter of concern due to its increased application in the products of day to day use. BPA has been reported to cause toxicity in almost all the vital organ systems even at a very low dose levels. It crosses the blood brain barrier and causes neurotoxicity. We studied the effect of BPA on the cerebral cortex of C57BL/6J mice and examined whether BPA exposure alters the expression of axonal and myelin structural proteins. Male mice were dosed orally to 40 μg and 400 μg BPA/kg body weight for 60 days. BPA exposure resulted in memory loss, muscle coordination deficits and allodynia. BPA exposure also caused degeneration of immature and mature oligodendrocytes as evaluated by decreased mRNA levels of 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), nestin, myelin basic protein (MBP) and myelin-associated glycoprotein-1 (MAG-1) genes revealing myelin related pathology. It was observed that subchronic BPA exposure caused neuroinflammation through deregulation of inflammatory cytokines mRNA and protein expression which further resulted into neurotoxicity through axonal as well as myelin degeneration in the brain. BPA also caused increased oxidative stress in the brain. Our study indicates long-term subchronic low dose exposure to BPA has the potential to cause axonal degeneration and demyelination in the oligodendrocytes and neurons which may have implications in neurological and neuropsychological disorders including multiple sclerosis (MS), neuromyelitis optica and others.
Collapse
|
15
|
Nikhalashree S, George R, Shantha B, Lingam V, Vidya W, Panday M, Sulochana KN, Coral K. Detection of Proteins Associated with Extracellular Matrix Regulation in the Aqueous Humour of Patients with Primary Glaucoma. Curr Eye Res 2019; 44:1018-1025. [DOI: 10.1080/02713683.2019.1608261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sampath Nikhalashree
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Chemical and Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India
| | - Ronnie George
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Balekudaru Shantha
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vijaya Lingam
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Wadke Vidya
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Manish Panday
- Smt Jadhavbai Nathmal Singhvee Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karunakaran Coral
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
16
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|